Contents
Academic literature on the topic 'Mémoires résistives (RRAMs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mémoires résistives (RRAMs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Mémoires résistives (RRAMs)"
Bazzi, Hussein. "Resistive memory co-design in CMOS technologies." Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0567.
Full textMany diversified applications (internet of things, embedded systems for automotive and medical applications, artificial intelligence) require an integrated circuit (SoC, System on Chip) with high-performance non-volatile memories to operate optimally. Although Flash memory is widely used today, this technology needs high voltage for programing operations and has reliability issues that are hard to handle beyond 18 nm technological node, increasing the cost of circuit design and fabrication. In this context, the semiconductor industry seeks an alternative non-volatile memory that can replace Flash memories. Among possible candidates (MRAM - Magnetic Random Access Memory, PCM - Phase Change Memory, FeRAM - Ferroelectric Random Access Memory), Resistive memories (RRAMs) offer superior performances on essential key points: compatibility with CMOS manufacturing processes, scalability, current consumption (standby and active), operational speed. Due to its relatively simple structure, RRAM technology can be easily integrated in any design flow opening the way for the development of new architectures that answer Von Neumann bottleneck. In this thesis, the main object is to show the integration abilities of RRAM devices with CMOS technology, using circuit design and electrical measurements, in order to develop different hybrid structures: non-volatile Static Random Access Memories (SRAM), True Random Number Generator (TRNG) and artificial neural networks
Alayan, Mouhamad. "Étude des mémoires résistives (RRAM) à base d’HfO2 : caractérisation et modélisation de la fiabilité des cellules mémoire et des nouveaux dispositifs d'accès (Sélecteurs)." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT032/document.
Full textThe performance gaps in nowadays memory hierarchy on the first hand between processor and main memory, on the other hand between main memory and storage have become a bottleneck for system performances. Due to these limitations, many emerging memories have been proposed as alternative solutions to fill out such concerns. The emerging non-volatile resistive random-access memories (RRAM) are considered as strong candidates for storage class memory (SCM), embedded nonvolatile memories (eNVM), enhanced solid-state disks, and neuromorphic computing. However, reliability challenges such as RRAM thermal stability and resistance variability are still under improvement processes. In addition, to achieve high integration densities the RRAM needs two terminal selector devices in one-selector one-resistor (1S1R) serial cell. The BEOL selector device enables suppression of the parasitic leakage paths, which hinder memory array operation in crossbar and vertical 3D architectures.In this PhD, our main focus is to address and treat the above challenges. Here, the work can be divided into two main parts: i) the investigation of the reliability of HfO2 based RRAM cells and ii) the characterization of the basis memory operations and performances of HfO2 based RRAM cells co-integrated with two different back end of line (BEOL) selector technologies.For the reliability part, we have investigated the effects of aluminum (Al) doping on data retention of HfO2 based RRAM cells. Single and double layer devices with different aluminum concentration were fabricated and tested. From macroscopic electrical characteristics, like time dependent dielectric breakdown (TDDB) and ramped voltage forming, microscopic properties of the materials such as the activation energy to break a bond at zero field and the dipole moment of the bond were extracted. These parameters have been used to shed new light on the mechanisms governing the forming process by means of device level simulations. Second, we have addressed the radiation immunity of HfO2 based RRAM for possible space applications as well. Our RRAM devices were exposed to 266 MeV Iodine heavy ions energy. Pre- and post-exposure analysis were carried out on the memory states and the programming voltages to study the effects of the irradiation on the memory characteristics. Throughout this work, we have performed physics based simulations to understand the dynamics of the forming process as well as the physical mechanisms involved during the memory operations.For the access devices part, we have evaluated two different types of selectors. For accurate reading and low power writing a strong selectivity in the current/voltage characteristics is required. In the first studied device, the selectivity is introduced by adding an oxide tunnel barrier. The main advantage of this strategy is that it is easy to integrate, however it suffers of low selectivity (~10) and low programming current. Second, an OTS based selector co-integrated with HfO2 based RRAM was fully characterized. OTS selector provides higher selectivity compared to the oxide tunnel barrier with the possibilities to strongly increase this selectivity by material engineering. Over 106 read cycles have been achieved on our 1S1R devices using an innovative read strategy that we have suggested to prevent disruptive read and to reduce the power consumption
Cabout, Thomas. "Optimisation technologique et caractérisation électrique de mémoires résistives OxRRAM pour applications basse consommation." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4778/document.
Full textToday, non-volatile memory market is dominated by charge storage based technologies. However, this technology reaches his scaling limits and solutions to continue miniaturization meet important technological blocks. Thus, to continue scaling for advanced nodes, new non-volatile solutions are developed. Among them, oxide based resistive memories (OxRRAM) are intensively studied. Based on resistance switching of Metal/Isolator/Metal stack, this technology shows promising performances and scaling perspective but isn’t mature and still suffer from a lake of switching mechanism physical understanding.Results presented in this thesis aim to contribute to the development of OxRRAM technology. In a first part, an analysis of different materials constituting RRAM allow us to compare unipolar and bipolar switching modes and select the bipolar one that benefit from lower programming voltage and better performances. Then identified memory stack TiNHfO2Ti have been integrated in 1T1R structure in order to evaluate performances and limitation of this structure. Operating of 1T1R structure have been carefully studied and good endurance and retention performances are demonstrated. Finally, in the last part, thermal activation of switching characteristics have been studied in order to provide some understanding of the underling physical mechanisms. Reset operation is found to be triggered by local temperature while retention performances are dependent of Set temperature
Onkaraiah, Santhosh. "Modélisation et conception de circuits à base de mémoires non-volatiles résistives innovantes." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4759.
Full textThe grave challenges to future of traditional memories (flash and DRAM) at 1X nm regime has resulted in increased quest for new physical state variables (other than charge or voltage), new devices and architectures offering memory and logic functions beyond traditional transistors. Many thin film devices with resistance change phenomena have been extensively reported as ’promising candidates’. Among them, Ox- ide Resistive Memory (OxRRAM) and Conductive Bridge Resistive Memory (CBRAM) are leading contenders for the next generation high density memories. In this work, we focus on the role of Resistive Memories in embedded memories and their impact on FPGAs in particular. We begin with the discussion on the compact modeling of resistive memory devices for design enabling, we have designed novel circuits of non- volatile flip-flop (NVFF), non-volatile look-up table (NVLUT), non-volatile 2x2 switch and non-volatile SRAM (NVSRAM) using Resistive Memories. We simulated the impact of these design structures on the FPGA system assessing the performance parameters of area, delay and power. By using the novel 1T-2R memory element concept of CBRAMs in FPGAs to implement Look-up Tables (NVLUT), we would scale down the area impact by 5%, enhance speed by 24% and reduce the power by 18% compared to SRAM based FPGAs. The thesis addresses aspects of compact modeling, circuit design and system evaluation using resistive memories
Guenery, Pierre-Vincent. "Nanostructures d’oxyde d’indium pour les mémoires résistives RRAM intégrées en CMOS Back-End-Of-Line." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI114.
Full textThe current computer memories are nothing more than the extreme miniaturization of the technology developed in the 1960s. These memories reached technological limits that are technically difficult and very costly to overcome. Memories must therefore be reinvented by a profound change in their shape, such as the development of three-dimensional structures for example, or by the use of innovative technologies. A new physical phenomenon in the field of memories interested us during this thesis. It consists in an electrically and reversibly control of the resistivity of a structure that can reach at least two level to code the information in a durable way. These memories are called non-volatile resistive memories. A lot of research is being carried out to understand and control this technology. The main current defect of this emerging technology is its lack of reproducibility. We propose an original approach consisting in the integration of indium oxide nanoparticles into the structure of a resistive memory that is directly compatible with existing chips. The purpose of particle integration is to increase the homogeneity of these memories by controlling the electrical behaviour of the structure. The study initially focused on the challenges of memory manufacturing and in particular on the deposition of nanoparticles. To have a beneficial effect, the manufacture of these products must be perfectly controlled. The study then details the electrical characterization of the memories. We discuss about the phenomena that are at the origin of the change in resistivity in order to try to better control them
Schulman, Alejandro Raúl. "Mémoires résistives non volatiles à base de jonctions métal-oxyde complexe." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI031/document.
Full textResistive Random Access Memories (RRAM) have attracted significant attention recently, as it is considered as one of the most promising candidates for the next generation of non-volatile memory devices. This is due to its low power consumption, fast switching speed and the ability to become a high density memory compatible with the conventional CMOS processes. The working principle of this kind of memories is the resistive switching (RS) which is simply the controlled reversible change in the resistivity of a junction generated by an external electric field. It has been proposed that the RS is coupled with the migration of oxygen vacancies generating a reversible conduction path inside the oxide. Many experiments have been done to address the switching mechanism during the last decade without any conclusive answer of what is the physical mechanism beneath the RS. The main goal of the present work it's to understand the physical mechanism that control the RS and to point out which are the key parameters that can help improve the performance of the memory devices from a technological point of view. In this dissertation we report on the studies of the RS in different interfaces metal/oxide where we have utilized gold, silver and platinum as metal and as complex oxides: YBa2Cu3O7–δ (YBCO), La0.67Sr0.33MnO3 (LSMO) y La0.7Sr0.3CoO3 (LSCO). This oxides have been chosen because all of them are strongly correlated compounds with physical properties strongly dependent of their oxygen stoichiometry. They also have a similar crystalline structure (perovskite type) and a high oxygen mobility. We realized the proof of concept for each type of junction successfully and explain the RS effect and explained the RS utilizing an electric assisted diffusion of oxygen vacancies model. We characterized them the conduction mechanism of the junctures with a conduction dominated by the Poole-Frenkel effect in the YBCO and by the SCLC mechanism in the LSCO. The feasibility of the memory devices in this junctions have been tested reaching high repeatability with optimize power consumption with more than 103 successful switching events. We have also studied the effects of accumulating cyclic electrical pulses of increasing amplitude on the non-volatile resistance state of the junctions. We have found a relation between the RS amplitude and the number of applied pulses, at a fixed amplitude and temperature. This relation remains very similar to the Basquin equation use to describe the stress-fatigue lifetime curves in mechanical tests. This points out to the similarity between the physics of the RS and the propagation of defects in materials subjected to repeated mechanical stress. This relation can be used as the basis to build an error correction scheme. Finally, we have analyzed the time evolution of the remnant resistive state in the oxide-metal interfaces. The time relaxation can be described by a stretched exponential law that is characterized by a power exponent close to 0.5. We found that the characteristic time increases with increasing temperature and applied power which means that this is not a standard thermally activated process. The results are a clear evidence of the relation between RS and the diffusion of oxygen vacancies on a two-dimensional surface with a temperature-dependent density of trapping centers, which may correspond, physically, to the diffusion along grain boundaries
Las memorias resistivas están entre los principales candidatos a ser utilizados como elementos en una nueva generación de memorias no volátiles. Esto se debe a su bajo consumo energético, una alta velocidad de lectura/escritura y a la posibilidad de lograr memorias de alta densidad compatibles con los procesos de la tecnología CMOS actual (por sus siglas en inglés: Complementary Metal–Oxide–Semiconductor).El funcionamiento de estas memorias se basa en la conmutación resistiva (CR), que consiste en el cambio controlado de la resistencia de una interfase metal-óxido a través de estímulos eléctricos. Si bien hasta el presente no se ha podido determinar con certeza el mecanismo físico que controla la CR, se piensa que está basado en el movimiento de vacancias de oxígeno que formarían de manera reversible zonas de alta/baja conducción dentro del óxido.La presente tesis tiene como objetivo principal entender los mecanismos físicos que gobiernan a la CR y poner en evidencia algunos de los aspectos esenciales que pueden contribuir a lograr dispositivos útiles desde el punto de vista tecnológico.Para ello se han realizado estudios de las características principales de la CR para distintas interfases metal-óxido a distintas condiciones de temperatura. Se han utilizado Au, Pt y Ag como metales y los siguientes óxidos complejos YBa2Cu3O7–δ (YBCO), La0.67Sr0.33MnO3 (LSMO) y La0.7Sr0.3CoO3 (LSCO). Se han elegido estos óxidos complejos debido a que presentan características similares, como ser materiales fuertemente correlacionados con una estructura cristalina tipo perovskita y una alta movilidad de oxígenos, lo que afecta muchas de sus propiedades físicas, ya que dependen fuertemente de la estequiometría.Nuestros resultados han demostrado la existencia de una CR bipolar en todos estos sistemas. Ésta es explicada satisfactoriamente a través de un modelo de difusión de vacancias de oxígeno asistidas por campo eléctrico.Se han caracterizado las interfases como dispositivos de memoria, estudiando sus mecanismos de conducción, encontrándose una conducción dominada por un mecanismo del tipo Poole-Frenkel para la muestra de YBCO y una conducción del tipo SCLC para el LSCO y el LSMO. Adicionalmente, se ha conseguido una alta durabilidad y repetitividad en el funcionamiento de estas junturas como dispositivos de memoria,vgracias a la optimización en el protocolo utilizado para escribir/borrar, lográndose más de 103 conmutaciones consecutivas sin fallas en dispositivos bulk.También se ha estudiado el efecto de la acumulación de pulsos idénticos en las interfases obteniéndose una relación entre la amplitud de la CR y el número de pulsos aplicado a amplitud y temperatura fijas. Luego de someter la interfase a ciclos de fatiga eléctrica, se ha encontrado una similitud entre la evolución de la resistencia remanente en esta con la propagación de defectos en un metal sometido a pruebas de fatiga mecánica. Esta relación puede ser usada como base para generar un algoritmo de corrección de errores y para mejorar la efectividad y el consumo de energía de estos dispositivos de memoria.Finalmente, se han realizado estudios sobre la evolución temporal de cada estado de resistencia. Hemos demostrado que sigue una ley exponencial estirada con un exponente cercano a 0.5 y un tiempo característico dado, que depende tanto de la temperatura como de la potencia utilizada. Estos resultados implican que la evolución temporal no está dominada por un proceso estándar de difusión térmicamente activado. La difusión de vacancias de oxígeno ocurre en una superficie con una densidad de trampas que depende de la temperatura, donde dicha superficie correspondería físicamente a los bordes de grano del óxido
Traoré, Boubacar. "Etude des cellules mémoires résistives RRAM à base de HfO2 par caractérisation électrique et simulations atomistiques." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT037/document.
Full textAmong non-volatile memory technologies, NAND Flash represents a significant portion in the IC market and has benefitted from the traditional scaling of semiconductor industry allowing its high density integration. However, this scaling seems to be problematic beyond the 22 nm node. In an effort to go beyond this scaling limitation, alternative memory solutions are proposed among which Resistive RAM (RRAM) stands out as a serious candidate for NAND Flash replacement. Hence, in this PhD thesis we try to respond to many open questions about RRAM devices based on hafnium oxide (HfO2), in particular, by addressing the lack of detailed physical comprehension about their operation and reliability. The impact of scaling, the role of electrodes, the process of defects formation and diffusion are investigated. The impact of alloying/doping HfO2 with other materials for improved RRAM performance is also studied. Finally, our study attempts to provide some answers on the conductive filament formation, its stability and possible composition
Souchier, Émeline. "Élaboration de couches minces de GaV4S8 par pulvérisation magnétron : du matériau au premier dispositif pour mémoire à transition résistive (RRAM)." Nantes, 2010. http://www.theses.fr/2010NANT2021.
Full textThe compounds of the lacunar spinel family AM4X8 (A = Ga, Ge ; M = V, Ta, Nb ; X = S, Se) are small gap Mott insulators which undergo a resistive switching under electric pulses. This non-volatile and reversible switching, discovered on single crystals, has potential applications in the field of RRAM non-volatile memories. To unlock this potential, a major challenge, the deposition of these chalcogenide materials in thin layers, remains. In this work, GaV4S8 thin layers were synthesized for the first time, using RF magnetron sputtering. This technique is compatible with the current technological fabrication steps used in microelectronics. We first prepared sputtering targets with a compacity higher than 90%. Through a thorough parametric study of the deposition and annealing conditions, crystallized and stoichiometric thin layers have been obtained with electronic properties identical to the bulk material. At room temperature, the thin layers exhibit both the resistive switching and cycling property induced by electric pulses. The study on the resistive switching reveals the existence of a threshold electric field, which suggests that it is related to an electric field effect. Our entire study demonstrates, on the one hand, that the mechanism behind the resistive switching differs from those identified in other systems reported so far and, on the other hand, that the cycling characteristics (amplitude, switching time and voltage) of GaV4S8 are competitive with respect to those encountered in other kind of emerging non-volatile memories
Levisse, Alexandre. "3D high density memory based on emering resistive technologies : circuit and architecture design." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0584.
Full textWhile conventional non-volatiles memories, such as floating gate Flash memories, are becoming more and more difficult and costly to integrate and suffer of reduced performances and reliability, emerging resistive switching memories (RRAM), such as OxRAM, CBRAM, MRAM or PCM, are seen in the scientific community as a good way for tomorrow’s high-density memories. However, standard RRAM architectures (such as 1 Transistor-1 RRAM) are not competitive with flash technology in terms of density. Thereby, this thesis proposes to explore the opportunities opened by transistor-less RRAM architectures: Crosspoint and Vertical RRAM (VRRAM) architectures.First, the positioning of Crosspoint and VRRAM architectures in the memory hierarchy is studied. New constraints such as the sneakpath currents, the voltage drop through the metal lines or the periphery area overhead are identified and modeled. In a second time, circuit solutions answering to previously mentioned effects are proposed. Finally, this thesis proposes to explore new opportunities opened by the use of innovative transistors to improve the density or the performances of RRAM-based memory architectures
Levisse, Alexandre. "3D high density memory based on emering resistive technologies : circuit and architecture design." Electronic Thesis or Diss., Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0584.
Full textWhile conventional non-volatiles memories, such as floating gate Flash memories, are becoming more and more difficult and costly to integrate and suffer of reduced performances and reliability, emerging resistive switching memories (RRAM), such as OxRAM, CBRAM, MRAM or PCM, are seen in the scientific community as a good way for tomorrow’s high-density memories. However, standard RRAM architectures (such as 1 Transistor-1 RRAM) are not competitive with flash technology in terms of density. Thereby, this thesis proposes to explore the opportunities opened by transistor-less RRAM architectures: Crosspoint and Vertical RRAM (VRRAM) architectures.First, the positioning of Crosspoint and VRRAM architectures in the memory hierarchy is studied. New constraints such as the sneakpath currents, the voltage drop through the metal lines or the periphery area overhead are identified and modeled. In a second time, circuit solutions answering to previously mentioned effects are proposed. Finally, this thesis proposes to explore new opportunities opened by the use of innovative transistors to improve the density or the performances of RRAM-based memory architectures