Academic literature on the topic 'Mémoire non volatile, NVM'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mémoire non volatile, NVM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mémoire non volatile, NVM"

1

Shao, Zili, and Yuan-Hao Chang. "Non-Volatile memory (NVM) technologies." Journal of Systems Architecture 71 (November 2016): 1. http://dx.doi.org/10.1016/j.sysarc.2016.11.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chu, Zhaole, Yongping Luo, and Peiquan Jin. "An Efficient Sorting Algorithm for Non-Volatile Memory." International Journal of Software Engineering and Knowledge Engineering 31, no. 11n12 (2021): 1603–21. http://dx.doi.org/10.1142/s0218194021400143.

Full text
Abstract:
Non-volatile memory (NVM) has emerged as an alternative of the next-generation memory due to its non-volatility, byte addressability, high storage-density, and low-energy consumption. However, NVM also has some limitations, e.g. asymmetric read and write latency. Therefore, at present, it is not realistic to completely replace DRAM with NVM in computer systems. A more feasible scheme is to adopt the hybrid memory architecture composed of NVM and DRAM. Following the assumption of hybrid memory architecture, in this paper, we propose an NVM-friendly sorting algorithm called NVMSorting. Particula
APA, Harvard, Vancouver, ISO, and other styles
3

Kawata, Hirotaka, Gaku Nakagawa, and Shuichi Oikawa. "Using DRAM as Cache for Non-Volatile Main Memory Swapping." International Journal of Software Innovation 4, no. 1 (2016): 61–71. http://dx.doi.org/10.4018/ijsi.2016010105.

Full text
Abstract:
The performance of mobile devices such as smartphones and tablets has been rapidly improving in recent years. However, these improvements have been seriously affecting power consumption. One of the greatest challenges is to achieve efficient power management for battery-equipped mobile devices. To solve this problem, the authors focus on the emerging non-volatile memory (NVM), which has been receiving increasing attention in recent years. Since its performance is comparable with that of DRAM, it is possible to replace the main memory with NVM, thereby reducing power consumption. However, the p
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Xiaochang, and Zhengjun Zhai. "UHNVM: A Universal Heterogeneous Cache Design with Non-Volatile Memory." Electronics 10, no. 15 (2021): 1760. http://dx.doi.org/10.3390/electronics10151760.

Full text
Abstract:
During the recent decades, non-volatile memory (NVM) has been anticipated to scale up the main memory size, improve the performance of applications, and reduce the speed gap between main memory and storage devices, while supporting persistent storage to cope with power outages. However, to fit NVM, all existing DRAM-based applications have to be rewritten by developers. Therefore, the developer must have a good understanding of targeted application codes, so as to manually distinguish and store data fit for NVM. In order to intelligently facilitate NVM deployment for existing legacy applicatio
APA, Harvard, Vancouver, ISO, and other styles
5

Tyler, Neil. "Adding NVM Functions." New Electronics 51, no. 19 (2019): 8. http://dx.doi.org/10.12968/s0047-9624(22)61453-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

He, Qinlu, Huiguo Dong, Genqing Bian, et al. "The Research of Spark Memory Optimization Based on Non-Volatile Memory." Journal of Nanoelectronics and Optoelectronics 17, no. 1 (2022): 30–39. http://dx.doi.org/10.1166/jno.2022.3166.

Full text
Abstract:
With the advent of the significant data era, more and more data information needs to be processed, bringing tremendous challenges to storage and computing. The spark amount of data is getting larger and larger, and the I/O bottleneck of computing and scheduling from the disk has increasingly become an essential factor restricting performance. The spark came into being and proposed in-memory computing, which significantly improved the computing speed. In addition, the high rate of the memory is easy to lose without power, and the small but expensive feature is also an urgent need to improve. Th
APA, Harvard, Vancouver, ISO, and other styles
7

Haywood Dadzie, Thomas, Jiwon Lee, Jihye Kim, and Hyunok Oh. "NVM-Shelf: Secure Hybrid Encryption with Less Flip for Non-Volatile Memory." Electronics 9, no. 8 (2020): 1304. http://dx.doi.org/10.3390/electronics9081304.

Full text
Abstract:
The Non-Volatile Memory (NVM), such as PRAM or STT-MRAM, is often adopted as the main memory in portable embedded systems. The non-volatility triggers a security issue against physical attacks, which is a vulnerability caused by memory extraction and snapshots. However, simply encrypting the NVM degrades the performance of the memory (high energy consumption, short lifetime), since typical encryption causes an avalanche effect while most NVMs suffer from the memory-write operation. In this paper, we propose NVM-shelf: Secure Hybrid Encryption with Less Flip (shelf) for Non-Volatile Memory (NVM
APA, Harvard, Vancouver, ISO, and other styles
8

Jin, Kailun, Yajuan Du, Mingzhe Zhang, Zhenghao Yin, and Rachata Ausavarungnirun. "Relieving Compression-Induced Local Wear on Non-Volatile Memory Block via Sliding Writes." Micromachines 14, no. 3 (2023): 568. http://dx.doi.org/10.3390/mi14030568.

Full text
Abstract:
Due to its non-volatility and large capacity, NVM devices gradually take place at various levels of memories. However, their limited endurance is still a big concern for large-scale data centres. Compression algorithms have been used to save NVM space and enhance the efficiency of those lifetime extension methods. However, their own influence on the NVM lifetime is not clear. In order to fully investigate the impact of compression on NVM, this paper first studies bit flips involved in several typical compression algorithms. It is found that more bit flips would happen in the shrunken area of a
APA, Harvard, Vancouver, ISO, and other styles
9

Jung, Myoungsoo, Ellis H. Wilson, Wonil Choi, et al. "Exploring the Future of Out-of-Core Computing with Compute-Local Non-Volatile Memory." Scientific Programming 22, no. 2 (2014): 125–39. http://dx.doi.org/10.1155/2014/303810.

Full text
Abstract:
Drawing parallels to the rise of general purpose graphical processing units (GPGPUs) as accelerators for specific high-performance computing (HPC) workloads, there is a rise in the use of non-volatile memory (NVM) as accelerators for I/O-intensive scientific applications. However, existing works have explored use of NVM within dedicated I/O nodes, which are distant from the compute nodes that actually need such acceleration. As NVM bandwidth begins to out-pace point-to-point network capacity, we argue for the need to break from the archetype of completely separated storage. Therefore, in this
APA, Harvard, Vancouver, ISO, and other styles
10

Zheng, Bolong, Yongyong Gao, Jingyi Wan, et al. "DecLog: Decentralized Logging in Non-Volatile Memory for Time Series Database Systems." Proceedings of the VLDB Endowment 17, no. 1 (2023): 1–14. http://dx.doi.org/10.14778/3617838.3617839.

Full text
Abstract:
Growing demands for the efficient processing of extreme-scale time series workloads call for more capable time series database management systems (TSDBMS). Specifically, to maintain consistency and durability of transaction processing, systems employ write-ahead logging (WAL) whereby transactions are committed only after the related log entries are flushed to disk. However, when faced with massive I/O, this becomes a throughput bottleneck. Recent advances in byte-addressable Non-Volatile Memory (NVM) provide opportunities to improve logging performance by persisting logs to NVM instead. Existi
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mémoire non volatile, NVM"

1

Habhab, Radouane. "Optimisation d'architectures mémoires non-volatiles à piégeage de charges pour les applications microcontrôleur et mémoire autonome." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4102.

Full text
Abstract:
L'objectif de ces travaux de thèse est d'évaluer les performances en programmation/cyclage/rétention d'une cellule mémoire SONOS basée sur une architecture split gate très innovante développée par STMicroelectronics, l'eSTM (embedded Select in Trench Memory). Dans un premier temps, nous expliquons la réalisation de cette mémoire SONOS qui est basée sur une modification de la mémoire eSTM à grille flottante, cette modification se faisant sans coût supplémentaire. Dans un second temps, nous étudions les mécanismes de programmation et d'effacement les plus performants pour cette mémoire ce qui no
APA, Harvard, Vancouver, ISO, and other styles
2

Jovanovic, Natalija. "Bascules et registres non-volatiles à base de ReRAM en technologies CMOS avancées." Electronic Thesis or Diss., Paris, ENST, 2016. http://www.theses.fr/2016ENST0023.

Full text
Abstract:
Les mémoires et l'éléments séquentiels non-volatiles peuvent améliorer l'efficacité énergétique des appareils à piles en éliminant la consommation statique tout en maintenant l'état du système.Parmi les nouvelles technologies NVM intégrées, ReRAMs se distinguent par un temps de programmation rapide, une structure simple, compatible avec la technologie CMOS et très bien scalable. Les flip-flops non-volatiles (NVFF) basées sur ReRAM ont été implémentées dans des nœuds CMOS de 90nm ou plus et souffrent de problèmes de fiabilité dans les nœuds plus petits, en raison de hautes tensions de programma
APA, Harvard, Vancouver, ISO, and other styles
3

Innocenti, Jordan. "Conception et procédés de fabrication avancés pour l’électronique ultra-basse consommation en technologie CMOS 80 nm avec mémoire non volatile embarquée." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4142/document.

Full text
Abstract:
L’accroissement du champ d’application et de la performance des microcontrôleurs s’accompagne d’une augmentation de la puissance consommée limitant l’autonomie des systèmes nomades (smartphones, tablettes, ordinateurs portables, implants biomédicaux, …). L’étude menée dans le cadre de la thèse, consiste à réduire la consommation dynamique des circuits fabriqués en technologie CMOS 80 nm avec mémoire non-volatile embarquée (e-NVM) ; à travers l’amélioration des performances des transistors MOS. Pour augmenter la mobilité des porteurs de charge, des techniques de fabrication utilisées dans les n
APA, Harvard, Vancouver, ISO, and other styles
4

Dulong, Rémi. "Towards new memory paradigms : Integrating non-volatile main memory and remote direct memory access in modern systems." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAS027.

Full text
Abstract:
Les ordinateurs modernes sont construits autour de deux éléments : leur CPU etleur mémoire principale volatile, ou RAM. Depuis les années 1970, ce principe a étéconstamment amélioré pour offrir toujours plus de fonctionnalités et de performances.Dans cette thèse, nous étudions deux paradigmes de mémoire qui proposent denouvelles façons d'interagir avec la mémoire dans les systèmes modernes : la mémoirenon-volatile et les accès mémoire distants. Nous mettons en œuvre des outils logicielsqui exploitent ces nouvelles approches afin de les rendre compatibles et d'exploiterleurs performances avec d
APA, Harvard, Vancouver, ISO, and other styles
5

Melul, Franck. "Développement d'une nouvelle génération de point mémoire de type EEPROM pour les applications à forte densité d'intégration." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0266.

Full text
Abstract:
L’objectif de ces travaux de thèse a été de développer une nouvelle génération de point mémoire de type EEPROM pour les applications à haute fiabilité et à haute densité d’intégration. Dans un premier temps, une cellule mémoire très innovante développée par STMicroelectronics – eSTM (mémoire à stockage de charges de type Splitgate avec transistor de sélection vertical enterré) – a été étudiée comme cellule de référence. Dans une deuxième partie, dans un souci d’améliorer la fiabilité de la cellule eSTM et de permettre une miniaturisation plus agressive de la cellule EEPROM, une nouvelle archit
APA, Harvard, Vancouver, ISO, and other styles
6

Barlas, Marios Dimitrios. "Development and characterization of innovative nonvolatile OxRAM memory cells compatible with advanced nodes." Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0229.

Full text
Abstract:
La mémoire résistive à la base des oxydes de transition métallique (ReRAM) est une classe de technologies de mémoire non volatile dans lesquelles la commutation entre états de mémoire est rendue possible par la décomposition réversible de l’oxyde au moyen de la création et de la dissolution d’un chemin de percolation (filament). Les principaux avantages de cette technologie résident dans l’évolutivité de la cellule de mémoire, principalement en raison de la dimension inférieure à 10 nm du filament, de sa faible consommation d’énergie (<300 pJ / commutateur) et de la compatibilité des matéri
APA, Harvard, Vancouver, ISO, and other styles
7

Chatzistergiou, Andreas. "Library support for historical and persistent data structures in non-volatile memories." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25797.

Full text
Abstract:
In the context of emerging non-volatile memory (NVM) where data structures can persist in-memory and are accessed through CPU loads and stores, we study how to efficiently manage data evolution. This is an extensively applied problem in both the scientific and business domains and is rapidly becoming an important component for a wider range of applications. We argue that the best way to achieve a smoother transition to the new programming model is to design a solution that is non-intrusive and generic i.e. not bound to a specific data model. We propose a novel library-level approach where the
APA, Harvard, Vancouver, ISO, and other styles
8

Guilmain, Marc. "Fabrication de mémoire monoélectronique non volatile par une approche de nanogrille flottante." Thèse, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6127.

Full text
Abstract:
Les transistors monoélectroniques (SET) sont des dispositifs de tailles nanométriques qui permettent la commande d'un électron à la fois et donc, qui consomment peu d'énergie. Une des applications complémentaires des SET qui attire l'attention est son utilisation dans des circuits de mémoire. Une mémoire monoélectronique (SEM) non volatile a le potentiel d'opérer à des fréquences de l'ordre des gigahertz ce qui lui permettrait de remplacer en même temps les mémoires mortes de type FLASH et les mémoires vives de type DRAM. Une puce SEM permettrait donc ultimement la réunification des deux grand
APA, Harvard, Vancouver, ISO, and other styles
9

Bossu, Germain. "Architectures innovantes de mémoire non-volatile embarquée sur film mince de silicium." Aix-Marseille 1, 2009. http://www.theses.fr/2009AIX11044.

Full text
Abstract:
Les plateformes CMOS s’orientent vers l’utilisation de film mince de silicium pour faire face aux effets parasites qui limitent la miniaturisation du transistor sur substrat massif. Cette configuration technologique ouvre la porte à de nouvelles architectures de dispositifs mémoire non-volatile. L’étude réalisée au cours de cette thèse porte sur l’adaptation des technologies film mince pour obtenir des mémoires non-volatile embarquées denses fonctionnant à la tension nominale du circuit pour une co-intégration aisée sur les plateformes technologiques CMOS Bulk et film mince. La construction de
APA, Harvard, Vancouver, ISO, and other styles
10

Nail, Cécile. "Etude de mémoire non-volatile hybride CBRAM OXRAM pour faible consommation et forte fiabilité." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT010/document.

Full text
Abstract:
À mesure que les technologies de l'information (IT) continuent de croître, les dispositifs mémoires doivent évoluer pour répondre aux exigences du marché informatique. De nos jours, de nouvelles technologies émergent et entrent sur le marché. La mémoire Resistive Random Access Memory (RRAM) fait partie de ces dispositifs émergents et offre de grands avantages en termes de consommation d'énergie, de performances, de densité et la possibilité d'être intégrés en back-end. Cependant, pour être compétitif, certains problèmes doivent encore être surmontés en particulier en ce qui concerne la variabi
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Mémoire non volatile, NVM"

1

Hsu, Charles Ching-Hsiang, Yuan-Tai Lin, Evans Ching-Sung Yang, and Evans Ching-Sung Shen. Logic Non-Volatile Memory: The Nvm Solutions from Ememory. World Scientific Publishing Co Pte Ltd, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hsu, Charles Ching-Hsiang. Logic Non-Volatile Memory: The NVM Solutions from eMemory. World Scientific Publishing Co Pte Ltd, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Yuan-Tai, Charles Ching Hsu, and Evans Ching Yang. Logic Non-Volatile Memory: The Nvm Solutions from Ememory. World Scientific Publishing Co Pte Ltd, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dufseth, Rhonda. Booting from External Non-Volatile Memory (NVM) on SAM9X60 MPU. Microchip Technology Incorporated, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Ada. Booting from External Non-Volatile Memory (NVM) on SAMA5D2 MPU Application Note. Microchip Technology Incorporated, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anderson, Julie. Booting from External Non-Volatile Memory (NVM) on SAMA5D2 MPU Application Note. Microchip Technology Incorporated, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alvarez-Hérault, Jérémy. La MRAM, nouvelle mémoire non volatile: Mémoire magnétique à écriture par courant polarisé en spin assistée thermiquement. Omniscriptum, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mémoire non volatile, NVM"

1

Dimitrakis, Panagiotis. "Introduction to NVM Devices." In Charge-Trapping Non-Volatile Memories. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15290-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Kaisong, and Tianzheng Wang. "NVM Hardware and Software." In Indexing on Non-Volatile Memory. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-47627-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Hao, and Yuhao Wang. "Fundamentals of NVM Physics and Computing." In Design Exploration of Emerging Nano-scale Non-volatile Memory. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0551-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Hao, and Yuhao Wang. "Nonvolatile State Identification and NVM SPICE." In Design Exploration of Emerging Nano-scale Non-volatile Memory. Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0551-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khyzha, Artem, and Ori Lahav. "Abstraction for Crash-Resilient Objects." In Programming Languages and Systems. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99336-8_10.

Full text
Abstract:
AbstractWe study abstraction for crash-resilient concurrent objects using non-volatile memory (NVM). We develop a library-correctness criterion that is sound for ensuring contextual refinement in this setting, thus allowing clients to reason about library behaviors in terms of their abstract specifications, and library developers to verify their implementations against the specifications abstracting away from particular client programs. As a semantic foundation we employ a recent NVM model, called Persistent Sequential Consistency, and extend its language and operational semantics with useful
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Zongwei, and Yimao Cai. "Memory Technology: Development, Fundamentals, and Future Trends." In Advanced Memory Technology. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169946-00001.

Full text
Abstract:
The unprecedented development in the fields of artificial intelligence (AI), big data, and the internet of things (IoT) has been booming the expansion of the digital universe where data are growing at astronomical rates. The ever-increasing performance of computing systems is aspiring advanced memory technologies for both storage and computing applications. As the current mainstream non-volatile memory (NVM) technology, flash memory will be extended and continue to dominate for several years. Alternative memory technologies exploiting new materials and concepts to go beyond flash memory for st
APA, Harvard, Vancouver, ISO, and other styles
7

Paul, Raj, Shahnaz Kossar, and Majahid ul Islam. "BISMUTH FERRITE BASED APPLICATIONS." In Futuristic Trends in Physical Sciences Volume 3 Book 4. Iterative International Publishers, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bkps4p4ch1.

Full text
Abstract:
With the increase in the need for higher data storage density, the recent focus in semiconductor research includes the fabrication of efficient non-volatile memory (NVM) devices. NVM are the storage devices that can retrieve the information even when external power is halted. Resistive random-access memory (ReRAM), which is category of NVM has promising futuristic applications due to its significant characteristics such as low power consumption and fast read/write processing and simplicity in device structure. Bismuth ferrite (BFO) was the most studied material which were deposited using sol g
APA, Harvard, Vancouver, ISO, and other styles
8

ELIAHU, Adi, Rotem BEN HUR, Ameer HAJ ALI, and Shahar KVATINSKY. "mMPU, une architecture polyvalente de calcul dans la mémoire basée sur memristor." In Systèmes multiprocesseurs sur puce 1. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch6.

Full text
Abstract:
Ce chapitre décrit l’architecture mMPU conçue pour utiliser des nouvelles technologies de mémoire non volatile, appelées memristors, pour exécuter différentes opérations logiques directement dans la mémoire, évitant ainsi le gaspillage d’énergie associé au mouvement des données. La méthode utilisée pour l’exécution de la logique en mémoire et la conception du contrôleur de mémoire sont présentées en détail.
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, Xiaohan, Ruijing Ge, Deji Akinwande, and Jack C. Lee. "Memristors Based on 2D Monolayer Materials." In Memristor - An Emerging Device for Post-Moore’s Computing and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98331.

Full text
Abstract:
2D materials have been widely used in various applications due to their remarkable and distinct electronic, optical, mechanical and thermal properties. Memristive effect has been found in several 2D systems. This chapter focuses on the memristors based on 2D materials, e. g. monolayer transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN), as the active layer in vertical MIM (metal–insulator–metal) configuration. Resistive switching behavior under normal DC and pulse waveforms, and current-sweep and constant stress testing methods have been investigated. Unlike the filament
APA, Harvard, Vancouver, ISO, and other styles
10

Butterfield, N. R., R. Mays, B. Khan, R. Gudlavalleti, and F. C. Jain. "Quantum Dot Gate (QDG) Quantum Dot Channel (QDC) Multistate Logic Non-Volatile Memory (NVM) with High-K Dielectric HfO2 Barriers." In Selected Topics in Electronics and Systems. WORLD SCIENTIFIC, 2021. http://dx.doi.org/10.1142/9789811242823_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mémoire non volatile, NVM"

1

Tan, P. K., S. L. Ting, H. H. W. Thoungh, et al. "Revolutionizing Failure Analysis: EBAC Nanoprobing Analysis Insights into Inaccessible Floating Gates of Advanced Tech Node Automotive NVMs." In ISTFA 2024. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.istfa2024p0097.

Full text
Abstract:
Abstract The escalating demand for embedded non-volatile memories (NVM) across automotive, mobile, and personal computer applications necessitates continuous innovation in semiconductor devices. This study focuses on the failure analysis (FA) of split-gate NVM memory, which dominates the landscape of embedded NVM in advanced processes. Presenting a novel approach utilizing nanoprobe techniques on non-accessible floating gate (FG) of NVM, we aim to detect leakage pathways through electron beam absorb current (EBAC) analysis. Through comprehensive experimental analysis and case studies, we demon
APA, Harvard, Vancouver, ISO, and other styles
2

Brewer, J. E. "NVM in the far term." In 2005 Non-Volatile Memory Technology Symposium. IEEE, 2005. http://dx.doi.org/10.1109/nvmt.2005.1541374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lindstrom, Jan, Dhananjoy Das, Torben Mathiasen, Dulcardo Arteaga, and Nisha Talagala. "NVM aware MariaDB database system." In 2015 IEEE Non-Volatile Memory System and Applications Symposium (NVMSA). IEEE, 2015. http://dx.doi.org/10.1109/nvmsa.2015.7304362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bu, Jiankang, William Belcher, Courtney Parker, and Hank Prosack. "Unique Challenges and Solutions in CMOS Compatible NVM." In 2006 7th Annual Non-Volatile Memory Technology Symposium. IEEE, 2006. http://dx.doi.org/10.1109/nvmt.2006.378876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Staudigl, Felix, Jan Philipp Thoma, Christian Niesler, et al. "NVM-Flip: Non-Volatile-Memory BitFlips on the System Level." In CODASPY '24: Fourteenth ACM Conference on Data and Application Security and Privacy. ACM, 2024. http://dx.doi.org/10.1145/3643650.3658606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Shuangchen, Ping Chi, Jishen Zhao, Kwang-Ting Cheng, and Yuan Xie. "Leveraging nonvolatility for architecture design with emerging NVM." In 2015 IEEE Non-Volatile Memory System and Applications Symposium (NVMSA). IEEE, 2015. http://dx.doi.org/10.1109/nvmsa.2015.7304356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Park, Sung-Kun, Nam-Yoon Kim, Kwang-il Choi, et al. "Characteristics comparison of standard logic and HVCMOS processed SGLC embedded NVM." In 2014 14th Non-Volatile Memory Technology Symposium (NVMTS). IEEE, 2014. http://dx.doi.org/10.1109/nvmts.2014.7060858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bayram, Ismail, and Yiran Chen. "NV-TCAM: Alternative interests and practices in NVM designs." In 2014 IEEE Non-Volatile Memory Systems and Applications Symposium (NVMSA). IEEE, 2014. http://dx.doi.org/10.1109/nvmsa.2014.6927206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Choi, Gunhee, Seungboo Kim, and Jongmoo Choi. "Quantitative Analysis of File System Performance on NVM." In 2018 IEEE 7th Non-Volatile Memory Systems and Applications Symposium (NVMSA). IEEE, 2018. http://dx.doi.org/10.1109/nvmsa.2018.00027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duan, Hongwei, Liang Shi, Qingfeng Zhuge, Edwin Hsing-Mean Sha, Changlong Li, and Yujiong Liang. "An Empirical Study of NVM-based File System." In 2021 IEEE 10th Non-Volatile Memory Systems and Applications Symposium (NVMSA). IEEE, 2021. http://dx.doi.org/10.1109/nvmsa53655.2021.9628430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!