Contents
Academic literature on the topic 'Membre-1 du groupe F de la sous-famille-1 de récepteurs nucléaires'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Membre-1 du groupe F de la sous-famille-1 de récepteurs nucléaires.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Membre-1 du groupe F de la sous-famille-1 de récepteurs nucléaires"
Nikitin, Artemii. "Role of nuclear receptor RORα in regulatory T cells." Thesis, Université de Lille (2018-2021), 2019. http://www.theses.fr/2019LILUS073.
Full textTranscription factors of the nuclear receptor superfamily have a vast influence on development and function ofregulatory T cell (TREG) cells. TREG cells are suppressive immune cells of adaptive immune system. Their mainfunctions are control of inflammatory response mounted by other immune cells and maintenance of localtissue homeostasis. As TREG act at various sites of the body and both in homeostatic and inflammatory state,they need to adequately respond to local tissue-specific cues as well as adapt to aggressive immuneenvironments while preserving their long-lasting tolerogenic properties. This is achieved by weaving complextranscriptional networks, converging at transcription factors with various coordination functions, the mainbeing forkhead box P3 (FOXP3). During last few years, many studies focused on TREG cells found innon-lymphoid tissue (NLT). These populations of TREG are examined in the contexts of homeostasis and manyinflammatory diseases, and tissue- or function-specific transcription factor (TF) were assigned to some ofthem as regulators of development, activation, proliferation, stability, migration and suppressive functions.Retinoic acid receptor-related orphan receptor alpha (RORa) is a nuclear receptor, which controls cerebellumdevelopment, liver and whole-body metabolism and differentiation of T-helper (TH)17, type 2 innate lymphoidcells (ILC2) and type 3 innate lymphoid cells (ILC3). RORa is highly expressed in NLT TREG, includingpopulations in visceral adipose tissue (VAT), intestine and skin, and gets more and more mentions in thearticles dedicated to TREG in NLT. These RORa-expressing populations of TREG were all shown to be involvedin various pathologies. However, RORa role in TREG was directly addressed only once in a recent study. It’sactive involvement in various processes, high expression in NLT TREG and lack of knowledge make RORa anattractive target for investigation, to deepen current view of homeostasis control by TREG and thus betterunderstand mechanisms of development of associated diseases. To attain these objectives, a mouse strain withTREG-specific RORa deficiency was generated. Our central hypothesis is that RORa controls development orfunction of TREG cells in homeostasis of NLT and potentially in inflammatory diseases. For studying a role ofRORa in NLT TREG during control of tissue homeostasis, in particular, VAT TREG, we have charachterizedphenotype of untreated RORaFoxp3/Foxp3 mice and challenged mice with a model of diet-induced obesity(DIO). In both cases we have found an important role of TREG-expressed RORa. To further investigate a roleof RORa in TREG during pathologies and it’s contribution to various types of immune response we have testedan involvement of RORa in TREG in the model of allergic pathology, namely house dust mite (HDM)-inducedallergic airway inflammation (AAI) model.To elucidate molecular mechanisms of RORa action in TREG cells, we have performed gene expression profilingof TREG cells from examined tissues and conditions in vivo, as well as in vitro. We also have studied a role ofRORa in epigenetic landscape of TREG cells in vitro by probing histone acetylation marks genome wide. As aresult of this study, we have gained a broader understanding of TREG control by nuclear receptors and TF ingeneral in homeostatic conditions and during inflammation. Nuclear receptors proved to be useful targets fortherapeutic agents thanks to their versatile functions inside the cell and to ligand-dependency. Given thecrucial importance of TREG cells in organismal homeostasis and their involvement in numerous pathologies,targeting particular cues inside these cells may be a powerful tool in new treatment strategies. Results of ourstudy might serve as a basis for development of novel pharmaceutical agents targeting RORa
Verrier, Thomas. "Function and plasticity of NKp46 expressing innate lymphoid cells." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC173/document.
Full textGroup 3 Innate Lymphoid cells (ILC3) actively maintain mucosal homeostasis through the production of Interleukin-22 (IL-22). ILC3 encompass 2 major populations, LTi (« Lymphoid Tissue inducer »), characterized by the expression of the chemokine receptor CCR6, and ILC3 that express the transcription factor T-bet, which include a population expressing the surface marker NKp46, a receptor originally used to identify group 1 ILC (ILC1). ILC1 plays a major role in the defense against intracellular pathogens and anti-tumoral responses. Three major ILC1 populations have been identified: the cytotoxic lymphocytes « Natural Killer » (NK or ILC1b), which largely rely for on the transcription factor Eomes their generation and express the integrin CD49b; hepatic and intestinal ILC1 that depends on the T-bet transcription factor and express CD49a (ILC1a); and a population that expresses CD49a and CD49b (ILC1ab) and populates the salivary gland and the uterus, which is independent of the transcription factor Nfil3. My work aimed to understand the biology of NKp46 expressing ILC, as well as factor involved in their development, maturation and function. The major part of my work focuses on NKp46+ ILC3. First, we demonstrate a major role for the chemokine receptor CXCR6 in their localisation in the lamina propria villi (Satoh-Takayama et al. 2014). Second, I showed that NKp46+ ILC3 could lose NKp46 expression (Verrier et al. 2016). Induced by TGFβ, this loss of expression was associated with higher IL-22 production and by the acquisition of markers identifying LTi (CCR6, MHC-II), demonstrating NKp46+ ILC3 plasticity. Finally, in collaboration with Rachel Golub’s group, we confirmed a putative role for Notch-signaling in this plasticity (Chea et al. 2016). In this manuscript, I will discuss the development and the heterogeneity of ILC3, ILC1a, ILC1b and ILC1ab. All the results I generated support a dynamic vision of ILC biology, which reflects how they adapt in response to environmental cues. By characterizing the different actors involved in this dynamic process, my work could be used to design therapies aiming at controlling the equilibrium between these different populations in diverse pathologies such as cancer, viral infection, or intestinal diseases
Maurer, Gaëtan. "Analyse du rôle du facteur de transcription Ikaros dans le développement des lymphocytes TH17." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAJ115.
Full textTH17 cells are characterized by the expression of the cytokine IL-17A, as well as the transcription factor RORɣt. They are known to play key role in the pathogenesis of the multiple sclerosis. These cells exist in two forms: the regulating cells, immunomodulatory, and the pathogenic cells which are critical for the inflammation. Thus it is important to understand the mechanism which underlies the differentiation of naïve CD4+ T cells in these two cellular types. I found that the transcription factor Ikaros is an indirect repressor of the transcription of pathogenic genes (Il3, Csf2, Ifng, Stat4…) in naïve CD4+ T cells, cultured to induce a polarization toward regulatory TH17 cells. Moreover, in absence of Ikaros and in regulatory condition of culture, adding IL-6 alone increases the expression of GM-CSF, key factor to induce auto-immune diseases, suggesting a role of Ikaros in this pathway. In conclusion, our results suggest that Ikaros is necessary to polarize correctly naïve CD4+ T cells in TH17 cells
Porez, Geoffrey. "Nouvelles propriétés hépatiques des récepteurs nucléaires FXR et Rev-Erb Alpha." Thesis, Lille 2, 2014. http://www.theses.fr/2014LIL2S015/document.
Full textOrosomucoïdes, members of the superfamily of lipocalines, are among proteins plasmatiques the most plentiful. They are proteins of the acute(sharp) phase of the inflammation secreted by hépatocytes in answer to a stress (inflammation, cancer, cirrhosis), and usually used in private hospital as marker(scorer) of a pathological state. They go during an inflammatory state to inhibit the proliferation of neutrophiles and lymphocytes. I was able to show that the nuclear receiver FXR, implied(involved) in numerous metabolic ways and more recently as having an anti-inflammatory role in the liver, regulates the expression of orosomucoïdes exclusively at the hepatic level to the mouse. (...]
Zecchin, Mathilde. "Le rôle du récepteur nucléaire Rev-erb-α dans les maladies inflammatoires : la régulation circadienne du complexe inflammasome NLRP3 dans l'hépatite fulminante et l'inhibition du développement de l'athérosclérose et de la calcification vasculaire." Thesis, Lille, 2018. http://www.theses.fr/2018LILUS057.
Full textAtherosclerosis is chronic inflammatory disease of the vascular wall, which consists inthe accumulation of Low Density Lipoproteins (LDL) into the vascular wall triggering theinternalization of leucocytes. Recruited monocytes differentiate into macrophages to removeLDL through the so-called reverse cholesterol transport pathway. However, when flux isimpaired, lipid-laden macrophages become foam cells leading to their apoptosis or necrosis.Their lipid content and cellular debris are then released in the extracellular matrix, thus formingthe necrotic core. In addition, laden-cholesterol crystals trigger lysosomal damage inmacrophage, which activates the NLRP3 inflammasome complex. NLRP3 inflammasome isinvolved in the maturation of the pro-caspase 1, which subsequently cleaves the pro- IL1B andpro-IL18 into mature IL1B and IL18. These interleukins are then released and stimulate thesecretion of interferon γ by CD4+ T cells, leading to the proliferation and the migration ofSmooth Muscle Cells (SMC) toward the necrotic core to form the fibrous cap. In addition tothe numerous risk factors of cardiovascular diseases such as diabetes or smoking, disruption ofdaily rhythms, as seen in shiftwork, increases the incidence of these diseases. Beyond its majorrole in metabolism and inflammation control, the nuclear receptor Rev-erb-α is also a corecomponent of the molecular clock. Altogether, it thus represents a putative therapeutic target inthe treatment of such multifactorial diseases related to clock impairment. My work shows thatthe deletion of Rev-erbα in a murine model of atherosclerosis (LDLr-/-) leads to an increase inplasma lipid levels and accelerates atherogenesis. In addition, Rev-erb-α regulates the circadianexpression of the NLRP3 pathway components as well as the subsequent secretion of IL1B andIL18 in primary human and mouse macrophages. At the molecular level, Rev-erb-α directlyrepresses the NLRP3 pathway, whereas Rev-erbα deficiency enhances its activation. Thismechanism may regulate the circadian susceptibility to inflammatory stimuli depending on thetime of challenge in acute inflammation models such as fulminant hepatitis or peritonitis. Theabsence of Rev-erbα also induces the expression of Nlrp3, Il1β and Il18 in models of chronicinflammation such as atherosclerosis as well as the expression of NLRP3 in lesionalmacrophages. In addition, IL1B and IL18 stimulate the differentiation of SMCs into osteoblastlikecells that form intimal calcification. It is noteworthy that Rev-erbα deletion in LDLr-/- miceis associated to an increase in lesion calcification in vivo, while the absence of Rev-erb-α inprimary SMCs increases their differentiation into osteoblasts and the formation of calciumdeposit in vitro. Interestingly, this differential effect observed on calcium deposition in vitro isexacerbated when primary SMCs are stimulated in culture with IL1B. Therefore, Rev-erb-α may be involved not only in macrophage-mediated IL1B production but also in the sensing ofsuch signal by SMCs. Conversely, treatment with Rev-erb ligands inhibits these effects. Thiswork emphasizes the key role of Rev-erb-α in the circadian regulation of the inflammatoryresponse and in the development of cardiovascular diseases, thus identifying Rev-erb-α as anew therapeutic target that act on several aspects of the pathology
Thorel, Quentin. "Rôle de l'horloge circadienne dans le maintien de l'homéostasie du muscle squelettique : Implications physiologiques et pathologiques." Thesis, Université de Lille (2018-2021), 2021. https://pepite-depot.univ-lille.fr/ToutIDP/EDBSL/2021/2021LILUS052.pdf.
Full textSkeletal muscle homeostasis is ensured by its remarkable ability to control many of its physiological parameters such as its metabolic function or its mass according to the needs of the organism. Muscle mass regulation is essential for global health since its deregulation not only impacts overall energy metabolism but also other parameters such as locomotion. This tissue has an important capacity to regenerate following injuries caused by intensive exercises or myopathies. Skeletal muscle regeneration requires a well-orchestrated spatio-temporal interaction between satellite cells (SCs) and immune cells, which provides the optimal microenvironment for SC proliferation and differentiation.Circadian rhythms, generated by our biological clock, control various physiological functions such as metabolism and immunity. This ancestral system is present in all organisms allowing them to anticipate and optimize physiological functions to predictable daily changes. The clock integrates signals related to energy state and, in turn, regulates many metabolic pathways gating them to the most relevant time of the day. Concerning immunity, the major role of the clock is to coordinate leucocyte circulation and function allowing the body to anticipate phases of the day with higher risk of infections. In this context, we are interested in the role of the circadian clock in the control of skeletal muscle mass but also in its regenerative capacity. The role of Rev-erbα, a key component of the biological clock, has already been demonstrated in this tissue by our laboratory. Indeed, this nuclear receptor regulates muscle oxidative capacity by controlling mitochondrial biogenesis and autophagy. My thesis results highlight that Rev-erbα is also essential in the regulation of muscle mass. Specifically, global deletion of Rev-erbα leads to muscle mass decrease associated with increased expression of genes related to muscle atrophy. Interestingly, pharmacological activation of this receptor prevents muscle atrophy induced by glucocorticoid treatment.During my thesis, I also highlighted the role of the circadian clock in the control of muscle regeneration process. We have shown that environmental and genetic clock disruption lead to defective skeletal muscle regeneration associated with an alteration of immune cells recruitment, mainly myeloid cells. Furthermore, regenerative process defects observed in our myeloid cells-specific genetic clock disruption models bring out the importance of a functional clock in these cells to control skeletal muscle repair. Transcriptomic analyses allowed us to associate this regeneration defect to disturbed expression of chemokines essential in the communication between immune cells and satellite cells, which could elicit myogenesis alteration.In the context of muscle regeneration, we also investigated the role of a newly identified immune population: innate lymphoid cells (ILCs). This innate immune cells are located essentially in mucosal tissues such as lung or intestine where they ensure a sentinel function. We have shown that ILCs, and mainly ILC2, are present in skeletal muscle after injury. Interestingly, we have demonstrated that ILC2 depletion results in impaired regenerative process
Chen, Hui. "Neuronal Glucocorticoid Receptor Regulation of Brain Derived Neurotrophic Factor Expression." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS242/document.
Full textIn the central nervous system (CNS), the hippocampus is a structure of major importance for cognitive and behavioral functions. The brain-derived neurotrophic factor (BDNF), a key player in such neuronal functions is highly expressed in the hippocampus. Rodent Bdnf gene structure is relatively complex, composed of 8 noncoding exons (I to VIII), each one with a specific promoter (1 to 8), and one common coding exon IX. Glucocorticoids (GC) exert pleiotropic actions on neuronal processes by binding to and activating the glucocorticoid receptor (GR), as well as the mineralocorticoid receptor (MR). GR functions as a transcription factor, directly by interacting to glucocorticoid response elements or indirectly by interacting with other transcription factors, leading to the regulation of target gene transcription. It has been suggested that Bdnf expression is regulated by stress and high GC concentrations. However, it remains to define whether Bdnf is a GR target gene and what are the underlying molecular mechanisms. Herein, we demonstrate that high GC levels downregulate total Bdnf mRNA expression via GR in various in vitro neuron-like cellular models. In primary cultures of mouse hippocampal neurons and BZ cells, BDNF IV- and VI-containing transcripts are involved in this regulatory mechanism. Moreover, in transient transfections, promoter 4 activity was reduced by activated GR. Furthermore, ChIP analysis and mutagenesis experiments demonstrate that the GR-induced repression on Bdnf expression and transcriptional activities occurs through GR binding to a small 74 bp promoter sequence upstream of exon IV. The exact GR binding site on DNA and its putative transcription factor partners are currently under investigation. Altogether, these findings contribute to a better understanding of the mechanisms by which GR represses BDNF expression. Our study brings new insights into the molecular interactions between GC signaling and BDNF signaling in neurons, both important pathways in the pathophysiology of the CNS