Dissertations / Theses on the topic 'Membrane proteins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Membrane proteins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gill, Katrina Louise. "Protein-protein interactions in membrane proteins." Thesis, University of Newcastle Upon Tyne, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400016.
Full textHedin, Linnea E., Kristoffer Illergård, and Arne Elofsson. "An Introduction to Membrane Proteins." Stockholms universitet, Institutionen för biokemi och biofysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-69241.
Full textauthorCount :3
Kota, Jhansi. "Membrane chaperones : protein folding in the ER membrane /." Stockholm : Karolinska institutet, 2007. http://diss.kib.ki.se/2007/978-91-7357-102-9/.
Full textWhitehead, L. "Computer simulation of biological membranes and membrane bound proteins." Thesis, University of Southampton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297412.
Full textArmstrong, James P. "Artificial membrane-binding proteins." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.686615.
Full textZhang, Xiao Xiao. "Identification of membrane-interacting proteins and membrane protein interactomes using Nanodiscs and proteomics." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39413.
Full textJosyula, Ratnakar. "Structural studies of yeast mitochondrial peripheral membrane protein TIM44." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2009. https://www.mhsl.uab.edu/dt/2009p/josyula.pdf.
Full textRapp, Mikaela. "The Ins and Outs of Membrane Proteins : Topology Studies of Bacterial Membrane Proteins." Doctoral thesis, Stockholm : Department of Biochemistry and Biophysics, Stockholm University, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-1330.
Full textBerger, Bryan William. "Protein-surfactant solution thermodynamics applications to integral membrane proteins /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 15.42 Mb., 304 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3200533.
Full textKeegan, Neil. "From engineered membrane proteins to self-assembling protein monolayers." Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.419991.
Full textStewart, Christine Catherine. "Toxicity of mutant membrane proteins /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/10259.
Full textYe, Cui. "STABILITY STUDIES OF MEMBRANE PROTEINS." UKnowledge, 2014. http://uknowledge.uky.edu/chemistry_etds/33.
Full textDuncan, Anna Louise. "Coarse-grained molecular dynamics simulations of mitochondrial membrane proteins." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648455.
Full textUlmschneider, Martin B. "Computational studies of membrane proteins." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249198.
Full textChalton, David Allen. "Engineering of outer membrane proteins." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.430336.
Full textFearnley, I. M. "Studies of mitochondrial membrane proteins." Thesis, University of Cambridge, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380262.
Full textWahba, Karim A. "Statistical mechanics of membrane proteins." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1905048771&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textLee, Chongsoo. "Raman spectroscopy of supported lipid bilayers and membrane proteins." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:76f4be6e-b7d3-46c5-a2a1-3dcc7a399410.
Full textGuseva, Ksenia. "Formation and cooperative behaviour of protein complexes on the cell membrane." Thesis, University of Aberdeen, 2011. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=203444.
Full textStubberfield, Lisa Marie. "Interactions of Plasmodium falciparum proteins at the membrane skeleton of infected erythrocytes." Monash University, Dept. of Microbiology, 2003. http://arrow.monash.edu.au/hdl/1959.1/9433.
Full textLADHA, PARAG. "POLYMERIC MEMBRANE SUPPORTED BILAYER LIPID MEMBRANES RECONSTITUTED WITH BIOLOGICAL TRANSPORT PROTEINS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1145901880.
Full textCohen, Alona. "Studies of regulated membrane trafficking /." Access full-text from WCMC, 2008. http://proquest.umi.com/pqdweb?did=1634379741&sid=7&Fmt=2&clientId=8424&RQT=309&VName=PQD.
Full textOldham, Alexis Jean. "Modulation of lipid domain formation in mixed model systems by proteins and peptides." View electronic thesis, 2008. http://dl.uncw.edu/etd/2008-1/r1/oldhama/alexisoldham.pdf.
Full textNilsson, Johan. "Membrane protein topology : prediction, experimental mapping and genome-wide analysis /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-963-3/.
Full textBoulter, Jonathan Michael. "Structural and functional studies of the erythrocyte anion exchanger, band 3." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297079.
Full textFrancisco, Rafael Neves. "Solubilization of membrane proteins using ionic liquids." Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/21537.
Full textThe main goal of this work consists on the study of the ability of ionic liquids (ILs) to extract membrane proteins from biological membranes while keeping their integrity in aqeuous solutions. Since typical surfactants are mainly used for this purpose, ILs are here investigated as a new class of extraction agents. For the evaluation of the ILs solvation ability power, four proteins were selected to be overexpressed in Escherichia coli and to be used as model proteins, namely the Outer Membrane Protein F (OmpF) and Outer Membrane Protein C (OmpC), that are β-barrel proteins, and two bacteriorhodopsins, Haloarcula marismortui (HmBRI) and Haloarcula walsbyi (HwBR), that α-helix proteins. In this work, the investigations carried out with OmpC failed during cloning and OmpF failed during the purification step. On the other hand, the two bacteriorhodopsins were expressed and purified successfully. Although some adjustments (mainly the His-tag) must be performed to improve the expression and the purification level, 1 mg/L of HmBRI and 0.1 mg/L of HwBR were purified. The protein HmBRI was then chosen as a model protein to test the extraction ability of several aqeuous solutions of ILs. Its interesting feature of producing solutions and pellets with a purple colour, and its specific absorbance at 552 nm, make of HmBRI an excellent model protein since it can be easily monotired by Vis-spectroscopy and analysis of its colour. Iimidazolium-, phosphonium-and cholinium-based ILs were investigated in several concentrations in aqueous solutions. None of the ILs studied revelaed to be able to extract HmBRI without denaturation. However, cholinium decanoate was able to extract a higher amount of protein from the biological membrane compared to the commercial detergent decyl maltoside. Mixtures using cholinium decanoate and decyl maltoside were then used to extract the HmBR altough no further improvements on the extraction were observed. Since HmBRI is reported as a good fusion tag for other membrane proteins, avian specific antibodies (polyclonal) were finally produced by immunizing quails to evaluate the performance of HmBRI as a fusion tag.
O objetivo principal deste trabalho consistiu no estudo da capacidade de líquidos iónicos para extrair proteínas de membrana de membranas biológicas, assim como em manter a sua integridade em solução aquosa. Para a avaliação da capacidade de extração, foram selecionadas quatro proteínas para sobreexpressar em Escherichia coli, nomeadamente Outer Membrane Protein F (OmpF) e Outer Membrane Protein C (OmpC), que são proteínas em barril-β, e duas bacteriorodopsinas, Haloarcula marismortui (HmBRI) e Haloarcula walsbyi (HwBR), que são compostas por hélices-α. Infelizmente a produção de OmpC falhou durante o passo de clonagem enquanto que a obtenção de OmpF falhou durante o passo de purificação. Por outro lado, as duas bacteriorodopsinas foram expressas e purificadas com sucesso. Embora alguns ajustes (principalmente ao nível da His-tag) devam ainda ser realizados para melhorar a expressão e a purificação num futuro próximo, por cada litro de cultura foram purificados 1 mg de HmBRI e 0,1 mg de HwBR. A proteína HmBRI foi finalmente escolhida como proteína modelo para testar a capacidade de extração e solubilização de vários líquidos iónicos. A sua característica interessante de produzir soluções e pellets com cor roxa, assim como a sua absorvência específica a 552 nm, faz da HmBRI uma excelente proteína modelo facilmente monitorizada.Os líquidos iónicos estudados são derivados de catiões imidazólio, fosfónio e colinio. De um modo geral, nenhum líquido iónico foi capaz de extrair HmBRI sem a desnaturar. No entanto, o decanoato de colinio foi capaz de extrair mais proteínas da membrana biológica em comparação com o detergente comercial, decilo maltosideo. Por fim, foram estudadas misturas de decanoato de colina e surfactante comercial para extrair, apesar de os resultados serem semelhantes ao quando utilizando apenas líquido iónico. Uma vez que a HmBRI é uma boa proteína de fusão para outras proteínas de membrana, foram produzidos anticorpos específicos de aves (policlonais) pela imunização de codornizes, sendo estes anticorpos posteriormente purificados a partir de gema de ovo. Estes anticorpos são muito úteis na investigação de HmBRI como tag fusão.
Shinohara, Elvira Maria Guerra. "Estudo das proteínas da membrana eritrocitária de mamíferos de treze ordens da classe mammalia." Universidade de São Paulo, 1996. http://www.teses.usp.br/teses/disponiveis/9/9136/tde-28042008-122838/.
Full textForty six different mammal species from thirteen regarding their erythrocyte membrane proteins, following data were observed: 1. No correlation was observed between mean corpuscular volume and spectrins concentration. 2. No correlation was observed between mean corpuscular volume and band 3 concentration. 3. It seems that there is inverse correlation between mean corpuscular volume and ankyrins concentration. Most of the studied animmals belonging to Artiodactyla, which exhibit low mean corpuscular volume, present higher ankyrin concentration. 4. A diffuse band in 4.5 region was observed among the Didelphis marsupialis, Arctocephalus tropicalis, Arctocephalus australis and Panthera leo when the ghosts were treated with 200 µM NEM, what was not found in the others species. This fact could be ascribed to hypothetical sequence of the Iysine, hystidine and cysteine which may be prone to NEM direct chemical action. 5. Although some qualitative and quantitative changes were observed among ali the studied species, ali of them seem to occur in the humans, disclosing that they are \"house-keeping\" proteins which participate as important pieces in the cytoskeleton structure and the membrane as well. 6. Ali the species presented two spectrins, with exception of Dasyprocta sp., which exhibited fours bands in the spectrins region. 7. The band 3 was the protein which showed the greatest variation, since 95 kDa in the Capra hircus up to 169 kDa in the Alouatta sp., as well as in the aspect, diffuse or well defined. 8. A great variability was observed in the 4.1/4.2 region, with apparent absence of one or another. Some Rodentia exhibited only one protein in the 4.1/4.2 region. 9. Among the Primates, the Hominoidea and the Cercopithecoidea presented an uniform pattern, but the New World monkeys (Cebus apella, Alouatta sp. and Ateies paniscus chamek) exhibited a striking molecular weight band 3 variation, although keeping the common diffuse pattern. 11. Ali the studied species did not present the evidence of protease action upon the membrane proteins, except the Didelphis marsupialis and Giraffa camelopardalis, which disclosed a proteolytic action upon the ankyrin.
Carlisle, Glenn E. "Characterization of Mycobacterium avium cytoplasmic membrane proteins with an emphasis on the major cytoplasmic membrane protein." Thesis, Virginia Tech, 1991. http://hdl.handle.net/10919/42610.
Full textMaster of Science
Marchand, Petra. "Structure, membrane association, and processing of meprin subunits." Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06062008-171918/.
Full textBoban, Mirta. "Transcriptional regulation by inner nuclear membrane proteins /." Stockholm, 2007. http://diss.kib.ki.se/2007/978-91-7357-170-8/.
Full textAlmqvist, Jonas. "Structural modeling of membrane transporter proteins /." Stockholm : Department of Physical, Inorganic and Structural Chemistry, Stockholm University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7402.
Full textCox, Katherine L. "Molecular dynamics of outer membrane proteins." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427881.
Full textCrooks, Kim Chantelle. "Turnover of plant plasma membrane proteins." Thesis, Oxford Brookes University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363720.
Full textKulkarni, Chandrashekhar V. "In-Cubo Crystallization of Membrane Proteins." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508495.
Full textFolea, Ioana Mihaela. "Electron microscopy of cyanobacterial membrane proteins." [S.l. : [Groningen : s.n.] ; University of Groningen] [Host], 2008. http://irs.ub.rug.nl/ppn/314679286.
Full textBoekel, Carolina. "Integration and topology of membrane proteins." Doctoral thesis, Stockholm : Department of Biochemistry and Biophysics, Stockholm University, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-8575.
Full textLüthy, Roland. "Proteins involved in membrane transfer processes /." [S.l : s.n.], 1988. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textKochva, Uzi. "Structural analysis of integral membrane proteins." E-thesis Full text (Hebrew University users only), 2007. http://shemer.mslib.huji.ac.il/dissertations/H/JSL/001449168.pdf.
Full textSaleem, Muhammad. "Structural studies of prokaryotic membrane proteins." Thesis, University of Manchester, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492047.
Full textPolozov, Ivan V. "Interactions of class A and class L amphipathic helical peptides with model membranes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0006/NQ30110.pdf.
Full textTuan, Chik Syed Mohd Saufi. "Mixed Matrix Membrane Chromatography for Bovine Whey Protein Fractionation." Thesis, University of Canterbury. Chemical and Process Engineering, 2010. http://hdl.handle.net/10092/3647.
Full textHöglund, Pär J. "Identification, Characterization and Evolution of Membrane-bound Proteins /." Uppsala : Acta Universitatis Upsaliensis Acta Universitatis Upsaliensis, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9329.
Full textHoward, Megan Wilder. "Coronavirus mediated membrane fusion /." Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2008. http://proquest.umi.com/pqdweb?did=1552538711&sid=1&Fmt=6&clientId=18952&RQT=309&VName=PQD.
Full textTypescript. Includes bibliographical references (leaves 161-183). Free to UCD Anschutz Medical Campus. Online version available via ProQuest Digital Dissertations;
Pothakanoori, Kapil. "A Web Service for Protein Refinement and Refinement of Membrane Proteins." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/102.
Full textKrammer, André Thomas. "Computational studies of protein-membrane interactions and forced unfolding of proteins /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/9697.
Full textCao, Liming. "Protein Separation with Ion-exchange Membrane Chromatography." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-050405-174109/.
Full textBjörkholm, Patrik. "Protein Interactions from the Molecular to the Domain Level." Doctoral thesis, Stockholms universitet, Institutionen för biokemi och biofysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-101795.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Tsui, Marco Man Kin. "Studies on yeast SNARE complex formation /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?BIOL%202003%20TSUI.
Full textIncludes bibliographical references (leaves 130-138). Also available in electronic version. Access restricted to campus users.
Mayol, Escuer Eduardo. "Development of bioinformatic tools for the study of membrane proteins." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667335.
Full textMembrane proteins are fundamental elements for every known cell, accounting for a quarter of genes in the Human genome, they play essential roles in cell biology. About 50% of currently marketed drugs have a membrane protein as target, and around a third of them target G-protein-coupled receptors (GPCRs). The current difficulties and limitations in the experimental work necessary for microscopic studies of the membrane as well as membrane proteins urged the use of computational methods. The scope of this thesis is to develop new bioinformatic tools for the study of membrane proteins and also for GPCRs in particular that help to characterize their structural features and understand their function. In regard to membrane proteins, a cornerstone of this thesis has been the creation of two databases for the main classes of membrane proteins: one for α-helical proteins (TMalphaDB) and another for β-barrel proteins (TMbetaDB). These databases are used by a newly developed tool to find structural distortions induced by specific amino acid sequence motifs (http://lmc.uab.cat/tmalphadb and http://lmc.uab.cat/tmbetadb) and in the characterization of inter-residue interactions that occur in the transmembrane region of membrane proteins aimed to understand the complexity and differential features of these proteins. Interactions involving Phe and Leu residues were found to be the main responsible for the stabilization of the transmembrane region. Moreover, the energetic contribution of interactions between sulfur-containing amino acids (Met and Cys) and aliphatic or aromatic residues were analyzed. These interactions are often not considered despite they can form stronger interactions than aromatic-aromatic or aromatic-aliphatic interactions. Additionally, G-protein coupled receptor family, the most important family of membrane proteins, have been the focus of two web applications tools dedicated to the analysis of conservation of amino acids or sequence motifs and pair correlation (GPCR-SAS, http://lmc.uab.cat/gpcrsas) and to allocate internal water molecules in receptor structures (HomolWat, http://lmc.uab.cat/HW). These web applications are pilot studies that can be extended to other membrane proteins families in future projects. All these tools and analysis may help in the development of better structural models and contribute to the understanding of membrane proteins.
Käll, Lukas. "Predicting transmembrane topology and signal peptides with hidden Markov models /." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-719-7/.
Full text