Academic literature on the topic 'Membrane proteins; Biophysics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Membrane proteins; Biophysics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Membrane proteins; Biophysics"
Chin, G. J. "BIOPHYSICS: Deconstructing Membrane Proteins." Science 307, no. 5713 (February 25, 2005): 1173a. http://dx.doi.org/10.1126/science.307.5713.1173a.
Full textThompson, Lynmarie K., and Merritt Maduke. "Special Issue: Molecular Biophysics of Membranes and Membrane Proteins." Biochimica et Biophysica Acta (BBA) - Biomembranes 1862, no. 1 (January 2020): 183116. http://dx.doi.org/10.1016/j.bbamem.2019.183116.
Full textSawada, Ryusuke, Runcong Ke, Toshiyuki Tsuji, Masashi Sonoyama, and Shigeki Mitaku. "Ratio of membrane proteins in total proteomes of prokaryota." BIOPHYSICS 3 (2007): 37–45. http://dx.doi.org/10.2142/biophysics.3.37.
Full textThoma, Johannes, and Björn M. Burmann. "Fake It ‘Till You Make It—The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics." International Journal of Molecular Sciences 22, no. 1 (December 23, 2020): 50. http://dx.doi.org/10.3390/ijms22010050.
Full textSeparovic, Frances, J. Antoinette Killian, Myriam Cotten, David D. Busath, and Timothy A. Cross. "Modeling the Membrane Environment for Membrane Proteins." Biophysical Journal 100, no. 8 (April 2011): 2073–74. http://dx.doi.org/10.1016/j.bpj.2011.02.058.
Full textFischer, Wolfgang B., Gerhard Thiel, and Rainer H. A. Fink. "Viral membrane proteins." European Biophysics Journal 39, no. 7 (August 12, 2009): 1041–42. http://dx.doi.org/10.1007/s00249-009-0525-y.
Full textGarni, Martina, Sagana Thamboo, Cora-Ann Schoenenberger, and Cornelia G. Palivan. "Biopores/membrane proteins in synthetic polymer membranes." Biochimica et Biophysica Acta (BBA) - Biomembranes 1859, no. 4 (April 2017): 619–38. http://dx.doi.org/10.1016/j.bbamem.2016.10.015.
Full textSmith, Steven O., Kathryn Aschheim, and Michel Groesbeek. "Magic angle spinning NMR spectroscopy of membrane proteins." Quarterly Reviews of Biophysics 29, no. 4 (December 1996): 395–449. http://dx.doi.org/10.1017/s0033583500005898.
Full textFischer, Wolfgang B. "Assembling Within The Lipid Membrane: Viral Membrane Proteins." Biophysical Journal 96, no. 3 (February 2009): 338a—339a. http://dx.doi.org/10.1016/j.bpj.2008.12.3823.
Full textLavi, Yael, Michael A. Edidin, and Levi A. Gheber. "Dynamic Patches of Membrane Proteins." Biophysical Journal 93, no. 6 (September 2007): L35—L37. http://dx.doi.org/10.1529/biophysj.107.111567.
Full textDissertations / Theses on the topic "Membrane proteins; Biophysics"
Zhang, Dongmei. "Rotational motion and organization studies of cell membrane proteins." Thesis, Colorado State University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10137939.
Full textCell membranes are dynamic structures with complex organization. The complexity of the cell membrane arises from intrinsic membrane structure, membrane microdomains within the plasma membrane and the membrane cytoskeleton. Plasma membrane receptors are integral membrane proteins with diverse structures and functions which bind specific ligands to trigger cellular responses. Due to compartmentalization of the plasma membrane and the formation of membrane microdomains, receptors are distributed non-homogeneously in the cell membrane bilayer. Both lateral and rotational diffusion of membrane receptors reflects different kinds of intermolecular interactions within the plasma membrane environment. Understanding protein diffusion within the membrane is very important to further understanding biomolecular interactions in vivo during complex biological processes including receptor-mediated signaling.
Rotational diffusion depends linearly on the in-membrane volume of the rotating proteins. Relative to lateral diffusion, rotational diffusion is a more sensitive probe of an individual molecule’s size and local environment. We have used asymmetric quantum dots (QD) to conduct imaging measurements of individual 2H3 cell Type I Fcϵ receptor rotation on timescales down to 10 msec per frame. We have also used time-tagged single photon counting measurements of individual QD to examine µsec timescales, although rapid timescales are limited by QD emission rates. In both approaches, decays of time-autocorrelation functions (TACF) for fluorescence polarization fluctuations extend into the millisecond timescale, as implied by time-resolved phosphorescence anisotropy results. Depending on instrumental parameters used in data analysis, polarization fluctuation TACFs can contain a contribution from the intensity fluctuation TACF arising from QD blinking. Such QD blinking feed-through is extremely sensitive to these analysis parameters which effectively change slightly from one measurement to another. We discuss approaches based on the necessary statistical independence of polarization and intensity fluctuations to guarantee removal of a blinking-based component from rotation measurements. Imaging results demonstrate a range of rotational behavior among individual molecules. Such slow motions, not observable previously, may occur with large signaling complexes, which are important targets of study in cell biology. These slow motions appear to be a property of the membrane itself, not of the receptor state. Our results may indicate that individual mesoscale membrane regions rotate or librate with respect to the overall cell surface.
The luteinizing hormone receptor (LHR) is a seven transmembrane domain receptor and a member of the GPCR family. It is located on luteal cells, granulosa and theca cells in females. Understanding how these protein receptors function on the plasma membrane will lead to better understanding of mammalian reproduction. LHR becomes aggregated upon binding hCG when receptors are expressed at physiological numbers. Binding of hormone to LHR leads to activation of adenylate cyclase (AC) and an increase in intracellular cyclic AMP (cAMP). ICUE3 is an Epac-based cAMP sensor with two fluorophores, cyan fluorescent protein (CFP) and the YFP variant, cpVenus, and a membrane-targeting motif which can be palmitoylated. Upon binding cAMP, ICUE3 undergoes a conformational change that separates CFP and YFP, significantly reducing FRET and thus increasing the ratio of CFP to YFP fluorescence upon excitation with an arc lamp or 405nm laser source. Hence we have investigated hLHR signal transduction using the cyclic AMP reporter probe, ICUE3. A dual wavelength emission ratio (CFP/YFP) imaging method was used to detect a conformational change in ICUE3 upon binding cAMP. This technique is useful in understanding the sequence of intercellular events following hormone binding to receptor and in particular, the time course involved in signal transduction in a single cell. Our data suggested that CHO cells expressing ICUE3 and directly treated with different concentrations of cAMP with saponin can provide a dose-dependent relationship for changes in intracellular cAMP levels. Forskolin (50µM) causes maximal activation of the intracellular cAMP and an increase in the CFP/YFP emission ratio. In CHO cells expressing both ICUE3 and hLHR-mCherry, the CFP/YFP ratio increased in cells treated with forskolin and in hCG- treated cells. In flow cytometry studies, similar results were obtained when CHO cells expressed < 60k LHR-mCherry per cell. Our results indicate that ICUE3 can provide real time information on intracellular cAMP levels, and the ICUE3 is a reliable cAMP reporter can be used to examine various aspects of LH receptor-mediated signaling.
Ranatunga, Kishani M. "Computational studies of ion channel permeation and selectivity." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325774.
Full textOrwick, Marcella Christine. "Biophysical and magnetic resonance studies of membrane proteins." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:e7974f5f-a5ab-4867-aa5f-feff99716c0f.
Full textSergeev, Mikhail. "Measurement of oligomerization states of membrane proteins via spatial fluorescence intensity fluctuation analysis." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96703.
Full textL'objectif de cette thèse réside dans le développement et l'utilisation d'une nouvelle technique de mesure de fluctuation de fluorescence. Cette technique d'imagerie par microscopie permet de déterminer in situ l'état d'oligomérisation de protéines couplées à un fluorophore. L'analyse par mesure de moments d'ordres supérieurs d'intensité de fluctuation de fluorescence d'images obtenues à partir d'un microscope confocal à balayage laser (CLSM) a été développée afin de mesurer la distribution en monomères/oligomères de protéines marquées par fluorescence. En utilisant des simulations par ordinateur ainsi que des expériences avec des microsphères fluorescentes, les limites de détection et l'exactitude de cette approche statistique ont pu être déterminées. Une série d'expériences contrôles a été effectuée afin de valider l'étude d'état d'oligomérisation de récepteurs membranaires présentée dans cette thèse. Cette méthode a ensuite été appliquée à l'étude de l'état d'oligomérisation dans divers systèmes biologiques. Le récepteur au facteur de croissance épidermique (EGFR) joue un rôle critique dans la croissance, la prolifération et la survie cellulaire. Les étapes d'activation des voies de transduction du signal sont connues pour impliquer l'oligomérisation de l'EGFR. Des études de pharmaco-dynamique d'agglomération provoquée par liaison d'un ligand ont été conduites. La technique d'analyse de distribution spatiale d'intensité (SpIDA), qui permet de mesurer précisément la distribution de monomères/dimères a été utilisée pour mesurer l'augmentation de la population de dimères d'EGFR après liaison du ligand (EGF). La distribution des agrégats se formant au cours de l'internalisation d'EGFR a été mesurée par analyse de moments pour deux populations. Les résultats confirment une hypothèse proposant deux voies distinctes d'internalisation du récepteur. Le co-transporteur électrogénique au bicarbonate de sodium NBCe1-A joue un rôle important dans l'absorption du bicarbonate de sodium à travers la membrane baso-latérale du tubule proximal rénal. Les analyses par moments de fluorescence et SpIDA ont été appliquées pour étudier l'état d'oligomérisation de NBCe1-A dans des cellules mammifères en cultures exprimant plusieurs mutants du co-transporteur. L'analyse de fluctuation spatiale montre que NBCe1-A est présent majoritairement sous forme de monomère sur la membrane cellulaire et de façon négligeable sous forme d'oligomères d'ordres supérieurs. Afin de mesurer l'état d'oligomérisation du co-transporteur naturel, des échantillons de reins de rats ont été préparés et NBCe1-A a été marqué par immunoréaction avec des anticorps fluorescents reconnaissant le type naturel du co-transporteur. L'analyse d'image indique que NBCe1-A est présent sous forme de dimère et rarement sous forme de monomère ou d'oligomères d'ordre supérieurs sur la membrane baso-latérale des tubules proximaux. Le virus humain d'immunodéficience (VIH) détourne la machinerie cellulaire ESCRT pour promouvoir la sortie de la cellule hôte de virions nouvellement formés. L'ATPase VPS4A est impliquée à une étape avancée de la fonction ESCRT en produisant de l'énergie pour la dissociation du complexe ESCRT et l'invagination de la membrane plasmique. L'analyse du moment de fluorescence d'images de VPS4A-eGFP montre une distribution monomérique à l'extérieur des sites de bourgeonnement ainsi que la présence de deux à quatre dodécamères sur les sites de bourgeonnement. La combinaison des résultats des études de la dynamique de VPS4A ainsi que l'analyse de la taille des pics d'intensité lumineux permet de mieux comprendre le cycle de vie du VIH ainsi que son processus de relargage.
Kim, Irene. "Mechanisms of Membrane Disruption by Viral Entry Proteins." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10192.
Full textRobson, Alex J. "Single particle tracking as a tool to investigate the dynamics of integrated membrane complexes in vivo." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7769f80c-a56d-4513-9123-1d65ef8c9911.
Full textOglęcka, Kamila. "Biophysical studies of membrane interacting peptides derived from viral and Prion proteins." Doctoral thesis, Stockholm University, Department of Biochemistry and Biophysics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-7109.
Full textThis thesis focuses on peptides derived from the Prion, Doppel and Influenza haemagglutinin proteins in the context of bilayer interactions with model membranes and live cells. The studies involve spectroscopic techniques like fluorescence, fluorescence correlation spectroscopy (FCS), circular and linear dichroism (CD and LD), confocal fluorescence microscopy and NMR.
The peptides derived from the Prion and Doppel proteins combined with their subsequent nuclear localization-like sequences, makes them resemble cell-penetrating peptides (CPPs). mPrPp(1-28), corresponding to the first 28 amino acids of the mouse PrP, was shown to translocate across cell membranes, concomitantly causing cell toxicity. Its bovine counterpart bPrPp(1-30) was demonstrated to enter live cells, with and without cargo, mainly via macropinocytosis. The mPrPp(23-50) peptide sequence overlaps with mPrPp(1-28) sharing the KKRPKP sequence believed to encompass the driving force behind translocation. mPrPp(23-50) was however found unable to cross over cell membranes and had virtually no perturbing effects on membranes.
mDplp(1-30), corresponding of the first 30 N-terminal amino acids of the Doppel protein, was demonstrated to be almost as membrane perturbing as melittin. NMR experiments in bicelles implied a transmembrane configuration of its alpha-helix, which was corroborated by LD in vesicle bilayers. The positioning of the induced alpha-helix in transportan was found to be more parallel to the bilayer surface in the same model system.
Positioning of the native Influenza derived fusion peptide in bilayers showed no pH dependence. The glutamic acid enriched variant however, changed its insertion angle from 70 deg to a magic angle alignment relative the membrane normal upon a pH drop from 7.4 to 5.0. Concomitantly, the alpha-helical content dramatically rose from 18% to 52% in partly anionic membranes, while the native peptide’s helicity increased only from 39% to 44% in the same conditions.
Raychaudhuri, Pinky. "Bilayer formation with fluorinated amphiphiles and applications in membrane protein studies." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:f8d7ec23-7b2f-4610-b7c8-395b2660464a.
Full textBottorf, Lauren Marie. "Developing Electron Paramagnetic Resonance Spectroscopy Methods for Secondary Structural Characterization of Membrane Proteins." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1510164534760125.
Full textCheng, Zhiliang. "Posttargeting Events in Cotranslational Translocation Through the Sec61 Complex: a Thesis." eScholarship@UMMS, 2006. https://escholarship.umassmed.edu/gsbs_diss/1.
Full textBooks on the topic "Membrane proteins; Biophysics"
Postis, Vincent L. G., and Adrian Goldman, eds. Biophysics of Membrane Proteins. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0724-4.
Full textDomene, Carmen, ed. Computational Biophysics of Membrane Proteins. Cambridge: Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782626695.
Full textDr, Janáček Karel, and Koryta Jiři, eds. Biophysical chemistry of membrane functions. Chichester: Wiley, 1988.
Find full textSansom, M. S. P., and Philip Charles Biggin. Molecular simulations and biomembranes: From biophysics to function. Cambridge: Royal Society of Chemistry, 2010.
Find full textL, Longo Marjorie, Risbud Subhash H, Jue Thomas, and SpringerLink (Online service), eds. Biomembrane Frontiers: Nanostructures, Models, and the Design of Life. Totowa, NJ: Humana Press, 2009.
Find full textMembrane structural biology: With biochemical and biophysical foundations. Cambridge: Cambridge University Press, 2008.
Find full textservice), SpringerLink (Online, ed. Biophysical Chemistry of Proteins: An Introduction to Laboratory Methods. Boston, MA: Springer Science+Business Media, LLC, 2011.
Find full textChattopadhyay, Amitabha, Simone Furini, Ben Corry, Carmen Domene, and Carmen Domene. Computational Biophysics of Membrane Proteins. Royal Society of Chemistry, The, 2016.
Find full text(Editor), C. Reyes Mateo, Javier Gómez (Editor), José Villalaín (Editor), and José M. González Ros (Editor), eds. Protein-Lipid Interactions: New Approaches and Emerging Concepts (Springer Series in Biophysics). Springer, 2005.
Find full textBerliner, Lawrence J., and Marcus A. Hemminga. ESR Spectroscopy in Membrane Biophysics (Biological Magnetic Resonance). Springer, 2007.
Find full textBook chapters on the topic "Membrane proteins; Biophysics"
Zhan, Ling-Peng, Chao-Zi Liu, and Zong-Xiu Nie. "Mass Spectrometry of Membrane Proteins." In Membrane Biophysics, 285–317. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6823-2_10.
Full textWang, Shenlin, Xiaojun Xu, and Yufei Yang. "Solid-State Nuclear Magnetic Resonance Spectroscopy of Membrane Proteins." In Membrane Biophysics, 251–83. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6823-2_9.
Full textLall, Sahil, and M. K. Mathew. "Dynamics of Membrane Proteins." In Springer Series in Biophysics, 219–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66601-3_10.
Full textGoddard, Alan D., John A. Linney, Annaïg J. Rozo, Joanne Oates, and Anthony Watts. "Membrane Proteins: Structure and Organization." In Encyclopedia of Biophysics, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-642-35943-9_748-1.
Full textFindlay, Heather E., and Paula J. Booth. "Membrane Proteins: Folding and Stability." In Encyclopedia of Biophysics, 1471–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_611.
Full textGoddard, Alan, Joanne Oates, and Anthony Watts. "Membrane Proteins: Structure and Organization." In Encyclopedia of Biophysics, 1478–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_748.
Full textFindlay, Heather E., Nicola J. Harris, and Paula J. Booth. "Membrane Proteins: Folding and Stability." In Encyclopedia of Biophysics, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-35943-9_611-1.
Full textJorgensen, Christian, Victoria Oakes, and Carmen Domene. "Computer Simulations of Membrane Proteins." In Springer Series in Biophysics, 351–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66601-3_15.
Full textChen, Tsung-Yu, Yu-Fung Lin, and Jie Zheng. "Electrophysiological Measurements of Membrane Proteins." In Fundamental Concepts in Biophysics, 1–35. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-397-4_5.
Full textConn, Charlotte E. "Lipid Mesophases for Crystallizing Membrane Proteins." In Encyclopedia of Biophysics, 1269–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_568.
Full textConference papers on the topic "Membrane proteins; Biophysics"
Maftouni, Negin, Mehriar Amininasab, MohammadReza Ejtehadi, and Farshad Kowsari. "Multiscale Molecular Dynamics Simulation of Nanobio Membrane in Interaction With Protein." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93054.
Full textVernerey, Franck J. "Biophysical Model of the Coupled Mechanisms of Cell Adhesion, Contraction and Spreading." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80309.
Full textMonroe, D. M., D. W. Deerfield, D. L. Olson, T. N. Stewart, H. R. Roberts, R. G. Hiskey, and L. G. Pedersen. "BINDING OF CALCIUM TO HUMAN AND BOVINE FACTOR X." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643835.
Full text