Journal articles on the topic 'Membrane protein band 3'

To see the other types of publications on this topic, follow the link: Membrane protein band 3.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Membrane protein band 3.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

van den Akker, Emile, Timothy J. Satchwell, Geoff Daniels, and Ashley M. Toye. "Mapping the Assembly of Band 3 and Rhesus Multi-Protein Complexes During Erythropoiesis." Blood 116, no. 21 (November 19, 2010): 812. http://dx.doi.org/10.1182/blood.v116.21.812.812.

Full text
Abstract:
Abstract Abstract 812 Band 3 forms the core of a large multiprotein complex in the erythrocyte membrane, the Band 3 macrocomplex, which also includes proteins of the Rhesus complex (Rh and RhAG). Mutations in genes encoding proteins within this complex can result in hereditary spherocytosis with varying severity. The effect of distinct mutations and deficiencies in proteins of the Band 3 macrocomplex has been studied in detail in mature erythrocytes. This revealed important functional and structural properties of individual proteins and their relationships with other proteins within the Band 3 macrocomplex. Nevertheless, considerably less is know about the spatio-temporal mechanisms that direct the formation of the Band 3 macrocomplex, and that may explain the aberrations in the complex observed in spherocytosis. Therefore, we studied expression and mutual interactions of proteins of the band3 macrocomplex during development of proerythroblasts to reticulocytes. Using confocal microscopy and western blotting, significant pools of intracellular Band 3 and RhAG were found in the basophilic normoblast. These intracellular pools gradually decreased in the polychromatic normoblast and were absent or low in the orthochromatic normoblast and reticulocytes, while surface expression increased. We used pronase treatment of intact cells to remove extracellular epitopes of BRIC 6 (Band 3 antibody) and LA1818 (RhAG antibody) to study the mechanism by which the intracellular pool of Band 3 and RhAG contributes to formation of the Band 3 complex on the cell surface. Pronase treatment of cells incubated with cycloheximide to block protein synthesis resulted in a reduced but still significant reappearance of BRIC6 (Band 3) and LA1818 (RhAG) epitopes on the plasma membrane confirming the presence of intracellular Band 3 and RhAG pools. It also showed that the bulk of Band 3 and RhAG is synthesized and trafficked to the membrane between the early basophilic and polychromatic stage. Immuneprecipitation of Band 3 from cell lysates of pronase treated cells pre-treated with brefeldin A to collapse the Golgi showed no increase in co-immuneprecipitated protein 4.2 albeit an increase in intracellular Band 3 expression. This suggests that protein 4.2 and Band 3 interact in the first Golgi compartment or late ER. In addition, pre-treatment of cells with cycloheximide prior to pronase treatment resulted in depletion of the intracellular Band 3 and co-immuneprecipitated protein 4.2 pool indicating that Band 3 and protein 4.2 traffic as a complex to the plasma-membrane. We were unable to co-immuneprecipitate Rh or Band 3 with intracellular pools of RhAG, whereas Rh was co-immuneprecipitated with RhAG from the plasma-membrane and from total cell lysates. Knockdown of RhAG in differentiating erythroblasts revealed a concomitant drop in membrane expression of Rh, leaving Band 3 unaffected, indicating that plasma-membrane expression of Rh but not Band 3 is dependent on RhAG. In conclusion, despite the described association between the RhAG complex and the Band 3 complex in erythrocytes, the data suggest that the Band 3-protein 4.2 complex traffics and assembles independently from Rh and RhAG during erythroid differentiation. The experiments suggest that Rh and RhAG do not traffic as a complex to the plasma-membrane but probably assemble in the plasma-membrane. The RhAG knockdown experiments suggest that the dependency of Rh on RhAG as observed in Rhnull syndrome erythrocytes (“Rh regulator type”) originates early during erythropoiesis. Band3 surface expression was not affected upon RhAG knock down, which re-produced the unperturbed Band 3 levels seen in these patients. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
2

Perrotta, Silverio, Borriello Adriana, Lucia De Franceschi, Bruno Nobili, Achille Iolascon, Anna Maria Brunati, Francesca Rossi, et al. "New Insights into the Function of N-Terminal 11 Amino Acids of Band 3 from Structural and Functional Study of a Naturally Occuring Band 3 Variant." Blood 104, no. 11 (November 16, 2004): 577. http://dx.doi.org/10.1182/blood.v104.11.577.577.

Full text
Abstract:
Abstract The 911 amino acid human erythroid AE1 (eAE1) Cl-/HCO3- exchanger SLC4A1 (usually called band 3) is the major intrinsic membrane protein of red cells. The N-terminal cytoplasmic domain of AE1 represents the anchoring site for membrane-associated proteins such as ankyrin, protein 4.2, protein 4.1, glycolytic enzymes (including aldolase and glyceraldeyde-3-phosphate dehydrogenase (GAPDH) and hemoglobin. We identified marked band 3 deficiency in the second son of a consanguineous marriage with a life-threatening nonimmune hemolytic anemia. The patient was transfusion-dependent prior to splenectomy. SDS-PAGE and immunoblotting analysis of the proband red cell membrane proteins showed approximately 12±4% of band 3 and protein 4.2 compared to controls. Direct nucleotide sequence of SLC4A1 gene showed a single base substitution (T->C) at position +2 in the donor splice site of intron 2 (Band 3 Neapolis). Functionally, the mutation causes an altered splicing with the consequent formation of two different mature mRNAs, one including intron 2 and one skipping exon 2. While intron 2 retention leads to premature translation termination, exon 2 skipping causes the loss of the normal start site of eAE1 protein translation. The purification of mutant band 3 and its characterization by MALDI mass spectrometry demonstrated the lack of the first 11 amino acids due to the usage of second in frame start site. Real-time RT-PCR analyses of reticulocyte mRNA showed a marked decrement in band 3 transcription accounting for protein deficiency. The lack of the 11 N-terminal amino acids resulted in complete absence of membrane bound aldolase while other glycolitic enzymes (for example GAPDH) were membrane bound. Syk tyrosine kinase recognized the truncated band 3 as a substrate in vitro. In spite of this ability to be phosphorylated by Syk and to recruit Lyn tyrosine kinase in vitro, we were unable to demonstrate Tyr-phosphorylation of mutant band 3 in intact erythrocytes following stimulation by oxidative stress. This finding implies a requirement for the 11 N-terminal amino acids for the sequential Tyr-phosphorylation of band 3 in intact red cell membranes. The mutant band 3 was largely present in the high molecular weight aggregate fraction (about 5.2 fold higher than control), indicating its increased tendency to cluster in the membrane. The spontaneous clustering of truncated band 3 strongly suggests that the negatively charged N-terminal domain may regulate oligomeric state of band 3 in the membrane. Biophysical characterization showed that band 3 deficiency resulted in decreased cohesion between lipid bilyer and spectrin based membrane skeleton accounting for membrane loss. The structural and functional characterization of the naturally occuring mutant band 3 has enabled us to identify a significant role for the 11 N-terminal amino acids in band 3 function and in red cell membrane physiology.
APA, Harvard, Vancouver, ISO, and other styles
3

Satchwell, Timothy J., Bethan R. Hawley, Amanda J. Bell, Maria Leticia Ribeiro, and Ashley M. Toye. "The Cytoskeletal Binding Domain of Band 3 Is Required for Multiprotein Complex Formation and Retention during Erythropoiesis." Blood 124, no. 21 (December 6, 2014): 4003. http://dx.doi.org/10.1182/blood.v124.21.4003.4003.

Full text
Abstract:
Abstract The bicarbonate/chloride exchanger protein band 3 is the most abundant protein in the erythrocyte membrane and forms the core of a major multiprotein complex required for vertical association between the plasma membrane and the underlying spectrin cytoskeleton. A wealth of knowledge, derived from a host of varied studies including in vitro binding assays, work on mature erythrocytes and in other cellular systems have identified a number of binding partners including ankyrin, adducin and protein 4.2 amongst others. However, studies of the role that band 3 and the establishment of its connectivity with the cytoskeleton play both in assembly of multiprotein complexes during erythropoiesis and in particular in protein retention during enucleation have been understandably limited by the technical challenges associated with study of this protein within its unique native cellular context. The complete absence of band 3 in human erythrocytes has only been reported once, in a Portuguese patient with severe hereditary spherocytosis and distal renal tubular acidosis resulting from homozygosity for a V488M band 3 mutation (band 3 Coimbra). In this study, we used in vitro culture of erythroblasts derived from this patient as well as shRNA mediated depletion of band 3 to investigate the development of a band 3 deficient erythrocyte membrane and to specifically assess the formation, stability and retention of band 3 dependent protein complexes in the absence of this core protein during erythropoiesis and erythroblast enucleation. We demonstrate that the mutant band 3 Coimbra protein is expressed at very low but detectable levels during erythropoiesis but does not reach the cell surface and is not rescued by interaction with wild type protein. Failure to traffic to the plasma membrane and rapid degradation during erythropoiesis accounts for the absence of band 3 in Coimbra erythrocytes. The absence of plasma membrane expression of band 3 results in secondary deficiencies of a host of band 3 associated membrane proteins that we quantitatively show result predominantly from reduced plasma membrane expression during erythropoiesis compounded by impaired retention in the nascent reticulocyte membrane during erythroblast enucleation. In order to explore the importance of the capacity of band 3 to associate with the cytoskeleton for surface expression of this protein and its associated multiprotein complex binding proteins, immature band 3 Coimbra patient erythroblasts were lentivirally transduced with N terminally GFP-tagged wild type band 3 or band 3 mutants with absent or impaired ability to associate with the cytoskeleton. We demonstrate for the first time the ability to restore expression of band 3 to normal levels in this uniquely compromised patient and to rescue key secondary protein deficiencies arising from the absence of band 3 in reticulocytes. Exogenous expression levels of band 3, monitored by GFP intensity, correlate directly with degree of rescue of a variety of band 3 associated proteins. When expressed in band 3 deficient Coimbra erythroblasts, the band 3 membrane domain, which is unable to associate with the cytoskeleton, exhibits an increased partitioning to the plasma membrane surrounding the extruded nuclei compared to wild type band 3 and fails to rescue reticulocyte membrane retention of band 3 associated proteins. Expression of the kidney isoform of band 3, which is unable to bind ankyrin but retains the binding site for the cytoskeletal accessory protein, protein 4.2 results in partial rescue of the protein 4.2 dependent CD47 only. This demonstrates the importance of band 3 association with the cytoskeleton for efficient retention of band 3 associated proteins during erythroblast enucleation. Interestingly, whilst both exhibit reduced reticulocyte membrane retention relative to wild type, a significant proportion of both band 3 membrane domain and kidney band 3 is retained in the reticulocyte membrane following erythroblast enucleation indicating that cytoskeletal attachment of band 3 is not the sole determinant of partitioning during this complex process. This study advances our understanding of the mechanisms by which the properties of band 3 influence the sculpting and composition of the erythrocyte membrane and highlights the role of this protein as a core for assembly and stabilisation of key membrane proteins in both the early and late stages of terminal erythroid differentiation. Disclosures No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
4

Kodippili, Gayani C., Jeff Spector, Caitlin Sullivan, Frans A. Kuypers, Richard Labotka, Patrick G. Gallagher, Ken Ritchie, and Philip S. Low. "Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes." Blood 113, no. 24 (June 11, 2009): 6237–45. http://dx.doi.org/10.1182/blood-2009-02-205450.

Full text
Abstract:
Abstract Membrane-spanning proteins may interact with a variety of other integral and peripheral membrane proteins via a diversity of protein-protein interactions. Not surprisingly, defects or mutations in any one of these interacting components can impact the physical and biological properties on the entire complex. Here we use quantum dots to image the diffusion of individual band 3 molecules in the plasma membranes of intact human erythrocytes from healthy volunteers and patients with defects in one of their membrane components, leading to well-known red cell pathologies (hereditary spherocytosis, hereditary elliptocytosis, hereditary hydrocytosis, Southeast Asian ovalocytosis, and hereditary pyropoikilocytosis). After characterizing the motile properties of the major subpopulations of band 3 in intact normal erythrocytes, we demonstrate that the properties of these subpopulations of band 3 change significantly in diseased cells, as evidenced by changes in the microscopic and macroscopic diffusion coefficients of band 3 and in the compartment sizes in which the different band 3 populations can diffuse. Because the above membrane abnormalities largely arise from defects in other membrane components (eg, spectrin, ankyrin), these data suggest that single particle tracking of band 3 might constitute a useful tool for characterizing the general structural integrity of the human erythrocyte membrane.
APA, Harvard, Vancouver, ISO, and other styles
5

ZIPSER, Yehudit, and Nechama S. KOSOWER. "Phosphotyrosine phosphatase associated with band 3 protein in the human erythrocyte membrane." Biochemical Journal 314, no. 3 (March 15, 1996): 881–87. http://dx.doi.org/10.1042/bj3140881.

Full text
Abstract:
The anion-exchange band 3 protein is the main erythrocyte protein that is phosphorylated by tyrosine kinase. To study the regulation of band 3 phosphorylation, we examined phosphotyrosine phosphatase (PTP) activity in the human erythrocyte. We show that the human erythrocyte membrane contains a band 3-associated neutral PTP which is activated by Mg2+ and inhibited by Mn2+ and vanadate. The PTP is active in the intact cell and in the isolated membrane. A major fraction of the PTP is tightly bound to the membrane and can be extracted from it by Triton X-100; a minor part is associated with the Triton X-100-insoluble cytoskeleton. The behaviour of the PTP parallels that of band 3, the major fraction of which is extractable by detergents with a minor fraction being anchored to the cytoskeleton. Moreover, band 3 is co-precipitated when the PTP is immunoprecipitated from solubilized membranes, and PTP is co-precipitated when band 3 is immunoprecipitated. The PTP appears to be related to PTP1B (identified using an antibody to an epitope in its catalytic domain and by molecular mass). The system described here has a unique advantage for PTP research, since it allows the study of the interaction of a PTP with an endogenous physiological substrate that is present in substantial amounts in the cell membrane. The membrane-bound, band 3-associated, PTP may play a role in band 3 function in the erythrocyte and in other cells which have proteins analogous to band 3.
APA, Harvard, Vancouver, ISO, and other styles
6

Schwarz-Ben Meir, N., T. Glaser, and N. S. Kosower. "Band 3 protein degradation by calpain is enhanced in erythrocytes of old people." Biochemical Journal 275, no. 1 (April 1, 1991): 47–52. http://dx.doi.org/10.1042/bj2750047.

Full text
Abstract:
Band 3 protein is a major erythrocyte transmembrane glycoprotein. We compared the degradation of band 3 protein by calpain I (a cytoplasmic, micromolar-Ca2(+)-requiring thiol proteinase) in the cells from old individuals (greater than 70 years old) to that in the cells from young ones (20-30 years old). In the young, little degradation of band 3 protein occurred in calpain-treated erythrocyte ghosts. In the old, significant band 3 protein degradation was found in erythrocyte ghosts treated similarly. The difference between young and old in the susceptibility of band 3 protein to calpain was retained in membrane vesicles (membranes stripped of peripheral proteins by NaOH) and in chymotrypsin-generated 60 kDa fragment (CH-60). The isolated N-terminal cytoplasmic 43 kDa fragment was degraded by calpain to a similar extent in old and in young. The separated 17 kDa membrane domain of the CH-60 and the trypsin-generated C-terminal 55 kDa membrane-spanning fragment were not degraded by calpain I in the young, nor in the old. Thus the N-terminal cytoplasmic domain is the domain degraded by calpain I. Enhanced sensitivity in the old is observed in intact band 3 protein and in CH-60, the isolated cytoplasmic domain being equally susceptible in young and old. The observed age-related enhanced sensitivity to calpain is consistent with the presence of modifications in band 3 protein and alterations in the association with the calpain-calpastatin system. Band 3 protein has several important functions, with modifications in the protein having implications for altered cell behaviour in the old individual.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, SC, J. Palek, SJ Yi, PE Nichols, LH Derick, SS Chiou, D. Amato, JD Corbett, MR Cho, and DE Golan. "Molecular basis of altered red blood cell membrane properties in Southeast Asian ovalocytosis: role of the mutant band 3 protein in band 3 oligomerization and retention by the membrane skeleton." Blood 86, no. 1 (July 1, 1995): 349–58. http://dx.doi.org/10.1182/blood.v86.1.349.bloodjournal861349.

Full text
Abstract:
Southeast Asian ovalocytosis (SAO) is an asymptomatic trait characterized by rigid, poorly deformable red cells that resist invasion by several strains of malaria parasites. The underlying molecular genetic defect involves simple heterozygous state for a mutant band 3 protein, which contains a deletion of amino acids 400 through 408, linked with a Lys 56-to-Glu substitution (band 3-Memphis polymorphism). To elucidate the contribution of the mutant SAO band 3 protein to increased SAO red blood cell (RBC) rigidity, we examined the participation of the mutant SAO band 3 protein in increased band 3 attachment to the skeleton and band 3 oligomerization. We found first that SAO RBC skeletons retained more band 3 than normal cells and that this increased retention preferentially involved the mutant SAO band 3 protein. Second, SAO RBCs contained a higher percentage of band 3 oligomer-ankyrin complexes than normal cells, and these oligomers were preferentially enriched by the mutant SAO protein. At the ultrastructural level, the increased oligomer formation of SAO RBCs was reflected by stacking of band 3-containing intramembrane particles (IMP) into longitudinal strands. The IMP stacking was not reversed by treating SAO RBCs in alkaline pH (pH 11), which is known to weaken ankyrin-band 3 interactions, or by removing the cytoplasmic domain of band 3 from SAO membranes with trypsin. Finally, we found that band 3 protein in intact SAO RBCs exhibited a markedly decreased rotational mobility, presumably reflecting the increased oligomerization and the membrane skeletal association of the SAO band 3 protein. We propose that the mutant SAO band 3 has an increased propensity to form oligomers, which appear as longitudinal strands of IMP and exhibit increased association with membrane skeleton. This band 3 oligomerization underlies the increase in membrane rigidity by precluding membrane skeletal extension, which is necessary for membrane deformation.
APA, Harvard, Vancouver, ISO, and other styles
8

Hanspal, Manjit, David E. Golan, Yva Smockova, Scott J. Yi, Michael R. Cho, Shih-Chun Liu, and Jiri Palek. "Temporal Synthesis of Band 3 Oligomers During Terminal Maturation of Mouse Erythroblasts. Dimers and Tetramers Exist in the Membrane as Preformed Stable Species." Blood 92, no. 1 (July 1, 1998): 329–38. http://dx.doi.org/10.1182/blood.v92.1.329.413k20_329_338.

Full text
Abstract:
Band 3, the anion transport protein of the erythrocyte membrane, exists in the membrane as a mixture of dimers (B3D) and tetramers (B3T). The dimers are not linked to the skeleton and constitute the free mobile band 3 fraction. The tetramers are linked to the skeleton by their interaction with ankyrin. In this report we have examined the temporal synthesis and assembly of band 3 oligomers into the plasma membrane during red cell maturation. The oligomeric state of newly synthesized band 3 in early and late erythroblasts was analyzed by size-exclusion high-pressure liquid chromatography of band 3 extracts derived by mild extraction of plasma membranes with the nonionic detergent C12E8 (octaethylene glycol n-dodecyl monoether). This analysis revealed that at the early erythroblast stage, the newly synthesized band 3 is present predominantly as tetramers, whereas at the late stages of erythroid maturation, it is present exclusively as dimers. To examine whether the dimers and tetramers exist in the membrane as preformed stable species or whether they are interconvertible, the fate of band 3 species synthesized during erythroblast maturation was examined by pulse-chase analysis. We showed that the newly synthesized band 3 dimers and tetramers are stable and that there is no interconversion between these species in erythroblast membranes. Pulse-chase analysis followed by cellular fractionation showed that, in early erythroblasts, the newly synthesized band 3 tetramers are initially present in the microsomal fraction and later incorporated stably into the plasma membrane fraction. In contrast, in late erythroblasts the newly synthesized band 3 dimers move rapidly to the plasma membrane fraction but then recycle between the plasma membrane and microsomal fractions. Fluorescence photobleaching recovery studies showed that significant fractions of B3T and B3D are laterally mobile in early and late erythroblast plasma membranes, respectively, suggesting that many B3T-ankyrin complexes are unattached to the membrane skeleton in early erythroblasts and that the membrane skeleton has yet to become tightly organized in late erythroblasts. We postulate that in early erythroblasts, band 3 tetramers are transported through microsomes and stably incorporated into the plasma membrane. However, when ankyrin synthesis is downregulated in late erythroblasts, it appears that B3D are rapidly transported to the plasma membrane but then recycled between the plasma membrane and microsomal compartments. These observations may suggest novel roles for membrane skeletal proteins in stabilizing integral membrane protein oligomers at the plasma membrane and in regulating the endocytosis of such proteins.
APA, Harvard, Vancouver, ISO, and other styles
9

Campanella, M. Estela, Haiyan Chu, Nancy J. Wandersee, Luanne L. Peters, Narla Mohandas, Diana M. Gilligan, and Philip S. Low. "Characterization of glycolytic enzyme interactions with murine erythrocyte membranes in wild-type and membrane protein knockout mice." Blood 112, no. 9 (November 1, 2008): 3900–3906. http://dx.doi.org/10.1182/blood-2008-03-146159.

Full text
Abstract:
Previous research has shown that glycolytic enzymes (GEs) exist as multienzyme complexes on the inner surface of human erythrocyte membranes. Because GE binding sites have been mapped to sequences on the membrane protein, band 3, that are not conserved in other mammalian homologs, the question arose whether GEs can organize into complexes on other mammalian erythrocyte membranes. To address this, murine erythrocytes were stained with antibodies to glyceraldehyde-3-phosphate dehydrogenase, aldolase, phosphofructokinase, lactate dehydrogenase, and pyruvate kinase and analyzed by confocal microscopy. GEs were found to localize to the membrane in oxygenated erythrocytes but redistributed to the cytoplasm upon deoxygenation, as seen in human erythrocytes. To identify membrane proteins involved in GE assembly, erythrocytes from mice lacking each of the major erythrocyte membrane proteins were examined for GE localization. GEs from band 3 knockout mice were not membrane associated but distributed throughout the cytoplasm, regardless of erythrocyte oxygenation state. In contrast, erythrocytes from mice lacking α-spectrin, ankyrin, protein 4.2, protein 4.1, β-adducin, or dematin headpiece exhibited GEs bound to the membrane. These data suggest that oxygenation-dependent assembly of GEs on the membrane could be a general phenomenon of mammalian erythrocytes and that stability of these interactions depends primarily on band 3.
APA, Harvard, Vancouver, ISO, and other styles
10

Puchulu-Campanella, Estela, Francesco M. Turrini, Yen-Hsing Li, and Philip S. Low. "Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3." Proceedings of the National Academy of Sciences 113, no. 48 (November 15, 2016): 13732–37. http://dx.doi.org/10.1073/pnas.1611904113.

Full text
Abstract:
Src homology 2 (SH2) domains are composed of weakly conserved sequences of ∼100 aa that bind phosphotyrosines in signaling proteins and thereby mediate intra- and intermolecular protein–protein interactions. In exploring the mechanism whereby tyrosine phosphorylation of the erythrocyte anion transporter, band 3, triggers membrane destabilization, vesiculation, and fragmentation, we discovered a SH2 signature motif positioned between membrane-spanning helices 4 and 5. Evidence that this exposed cytoplasmic sequence contributes to a functional SH2-like domain is provided by observations that: (i) it contains the most conserved sequence of SH2 domains, GSFLVR; (ii) it binds the tyrosine phosphorylated cytoplasmic domain of band 3 (cdb3-PO4) withKd= 14 nM; (iii) binding of cdb3-PO4to erythrocyte membranes is inhibited both by antibodies against the SH2 signature sequence and dephosphorylation of cdb3-PO4; (iv) label transfer experiments demonstrate the covalent transfer of photoactivatable biotin from isolated cdb3-PO4(but not cdb3) to band 3 in erythrocyte membranes; and (v) phosphorylation-induced binding of cdb3-PO4to the membrane-spanning domain of band 3 in intact cells causes global changes in membrane properties, including (i) displacement of a glycolytic enzyme complex from the membrane, (ii) inhibition of anion transport, and (iii) rupture of the band 3–ankyrin bridge connecting the spectrin-based cytoskeleton to the membrane. Because SH2-like motifs are not retrieved by normal homology searches for SH2 domains, but can be found in many tyrosine kinase-regulated transport proteins using modified search programs, we suggest that related cases of membrane transport proteins containing similar motifs are widespread in nature where they participate in regulation of cell properties.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Dachuan, Anatoly Kiyatkin, Jeffrey T. Bolin, and Philip S. Low. "Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3." Blood 96, no. 9 (November 1, 2000): 2925–33. http://dx.doi.org/10.1182/blood.v96.9.2925.

Full text
Abstract:
Abstract The red blood cell membrane (RBCM) is a primary model for animal cell plasma membranes. One of its major organizing centers is the cytoplasmic domain of band 3 (cdb3), which links multiple proteins to the membrane. Included among its peripheral protein ligands are ankyrin (the major bridge to the spectrin-actin skeleton), protein 4.1, protein 4.2, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, deoxyhemoglobin, p72syk protein tyrosine kinase, and hemichromes. The crystal structure of cdb3 is reported at 0.26 nm (2.6 Å) resolution. A tight symmetric dimer is formed by cdb3; it is stabilized by interlocked dimerization arms contributed by both monomers. Each subunit also includes a larger peripheral protein binding domain with an α+ β-fold. The binding sites of several peripheral proteins are localized in the structure, and the nature of the major conformational change that regulates membrane-skeletal interactions is evaluated. An improved structural definition of the protein network at the inner surface of the RBCM is now possible.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Dachuan, Anatoly Kiyatkin, Jeffrey T. Bolin, and Philip S. Low. "Crystallographic structure and functional interpretation of the cytoplasmic domain of erythrocyte membrane band 3." Blood 96, no. 9 (November 1, 2000): 2925–33. http://dx.doi.org/10.1182/blood.v96.9.2925.h8002925_2925_2933.

Full text
Abstract:
The red blood cell membrane (RBCM) is a primary model for animal cell plasma membranes. One of its major organizing centers is the cytoplasmic domain of band 3 (cdb3), which links multiple proteins to the membrane. Included among its peripheral protein ligands are ankyrin (the major bridge to the spectrin-actin skeleton), protein 4.1, protein 4.2, aldolase, glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase, deoxyhemoglobin, p72syk protein tyrosine kinase, and hemichromes. The crystal structure of cdb3 is reported at 0.26 nm (2.6 Å) resolution. A tight symmetric dimer is formed by cdb3; it is stabilized by interlocked dimerization arms contributed by both monomers. Each subunit also includes a larger peripheral protein binding domain with an α+ β-fold. The binding sites of several peripheral proteins are localized in the structure, and the nature of the major conformational change that regulates membrane-skeletal interactions is evaluated. An improved structural definition of the protein network at the inner surface of the RBCM is now possible.
APA, Harvard, Vancouver, ISO, and other styles
13

Anong, William A., Taina Franco, Haiyan Chu, Tahlia L. Weis, Emily E. Devlin, David M. Bodine, Xiuli An, Narla Mohandas, and Philip S. Low. "Adducin forms a bridge between the erythrocyte membrane and its cytoskeleton and regulates membrane cohesion." Blood 114, no. 9 (August 27, 2009): 1904–12. http://dx.doi.org/10.1182/blood-2009-02-203216.

Full text
Abstract:
Abstract The erythrocyte membrane skeleton is the best understood cytoskeleton. Because its protein components have homologs in virtually all other cells, the membrane serves as a fundamental model of biologic membranes. Modern textbooks portray the membrane as a 2-dimensional spectrin-based membrane skeleton attached to a lipid bilayer through 2 linkages: band 3–ankyrin–β-spectrin and glycophorin C–protein 4.1–β-spectrin.1–7 Although evidence supports an essential role for the first bridge in regulating membrane cohesion, rupture of the glycophorin C–protein 4.1 interaction has little effect on membrane stability.8 We demonstrate the existence of a novel band 3–adducin–spectrin bridge that connects the spectrin/actin/protein 4.1 junctional complex to the bilayer. As rupture of this bridge leads to spontaneous membrane fragmentation, we conclude that the band 3–adducin–spectrin bridge is important to membrane stability. The required relocation of part of the band 3 population to the spectrin/actin junctional complex and its formation of a new bridge with adducin necessitates a significant revision of accepted models of the erythrocyte membrane.
APA, Harvard, Vancouver, ISO, and other styles
14

Kay, M. M., J. Hughes, I. Zagon, and F. B. Lin. "Brain membrane protein band 3 performs the same functions as erythrocyte band 3." Proceedings of the National Academy of Sciences 88, no. 7 (April 1, 1991): 2778–82. http://dx.doi.org/10.1073/pnas.88.7.2778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kottahachchi, D. U., T. R. Ariyaratne, and G. A. U. Jayasekera. "Mass Spectrometry Based Analysis of Erythrocyte Membrane Associated Proteins in Chronic Myeloid Leukemia Patients in Sri Lanka." International Letters of Chemistry, Physics and Astronomy 38 (September 2014): 74–86. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.38.74.

Full text
Abstract:
The research reported in this paper was conducted to analyze erythrocyte membrane associated proteins (ERMBPs) of some of chronic myeloid leukemia (CML) patients and selected individuals of Sri Lanka employing one dimensional sodium dodecyl sulphate poly acrylamide gel electrophoresis (1D-SDS-PAGE) combined with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI–TOF-MS). Erythrocyte membranes from blood were isolated by osmotic lysis, centrifugation and washings. ERMBPs were separated on 1D-SDS-PAGE, visualized by silver staining and the separated protein bands dissected out from the gel and were subjected to digestion by proteolytic enzyme, trypsin, and the resulting peptide mixture was analyzed by MALDI-TOF-MS. Resulting experimental peptide mass values were analyzed by peptide mass fingerprint (PMF) technique. From this analysis 10 ERMBPs including α and β spectrin, ankyrin, band 3, band 4.1, band 4.2, band 7, dematin, actin, 55 KDa erythrocyte membrane protein were identified accurately with their primary structure information. The study was able to provide some evidence for Cathepsin associated cleavage of Band 3 anion transport protein in CML patients reported previously. In addition we were able to detect changes in gel bands between healthy controls and CML patients around the area of 20 kDa in the 1 D-SDS-PAGE. It was identified as nuclear protein Dbf 4 related factor 1 isoform 2. Although erythrocytes are devoid of nuclei, such unexpected nuclear proteins have been identified in previous research. We were successful in identifying several human ERMBPs with available resources. As the identified proteins were known to be related to pathology of some of the hematological diseases, this methodology could be extended to detect the protein changes in erythrocyte membrane protein associated diseases. Therefore, this initial research would at some point lead to discovery of biomarkers to these hematological diseases in Sri Lanka.
APA, Harvard, Vancouver, ISO, and other styles
16

Kottahachchi, D. U., T. R. Ariyaratne, and G. A. U. Jayasekera. "Mass Spectrometry Based Analysis of Erythrocyte Membrane Associated Proteins in Chronic Myeloid Leukemia Patients in Sri Lanka." International Letters of Chemistry, Physics and Astronomy 38 (September 3, 2014): 74–86. http://dx.doi.org/10.56431/p-n8w9gf.

Full text
Abstract:
The research reported in this paper was conducted to analyze erythrocyte membrane associated proteins (ERMBPs) of some of chronic myeloid leukemia (CML) patients and selected individuals of Sri Lanka employing one dimensional sodium dodecyl sulphate poly acrylamide gel electrophoresis (1D-SDS-PAGE) combined with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI–TOF-MS). Erythrocyte membranes from blood were isolated by osmotic lysis, centrifugation and washings. ERMBPs were separated on 1D-SDS-PAGE, visualized by silver staining and the separated protein bands dissected out from the gel and were subjected to digestion by proteolytic enzyme, trypsin, and the resulting peptide mixture was analyzed by MALDI-TOF-MS. Resulting experimental peptide mass values were analyzed by peptide mass fingerprint (PMF) technique. From this analysis 10 ERMBPs including α and β spectrin, ankyrin, band 3, band 4.1, band 4.2, band 7, dematin, actin, 55 KDa erythrocyte membrane protein were identified accurately with their primary structure information. The study was able to provide some evidence for Cathepsin associated cleavage of Band 3 anion transport protein in CML patients reported previously. In addition we were able to detect changes in gel bands between healthy controls and CML patients around the area of 20 kDa in the 1 D-SDS-PAGE. It was identified as nuclear protein Dbf 4 related factor 1 isoform 2. Although erythrocytes are devoid of nuclei, such unexpected nuclear proteins have been identified in previous research. We were successful in identifying several human ERMBPs with available resources. As the identified proteins were known to be related to pathology of some of the hematological diseases, this methodology could be extended to detect the protein changes in erythrocyte membrane protein associated diseases. Therefore, this initial research would at some point lead to discovery of biomarkers to these hematological diseases in Sri Lanka.
APA, Harvard, Vancouver, ISO, and other styles
17

Hamasaki, Naotaka, Hiroyuki Kuma, Kazuhisa Ota, Masao Sakaguchi, and Katsuyoshi Mihara. "A new concept in polytopic membrane proteins following from the study of band 3 protein." Biochemistry and Cell Biology 76, no. 5 (October 1, 1998): 729–33. http://dx.doi.org/10.1139/o98-085.

Full text
Abstract:
In the present communication, we introduce a novel concept in multispanning polytopic membrane proteins revealed by the study of the band 3 protein. The transmembrane domain of such proteins can be divided into three categories, that is, hydrophilic loops connecting transmembrane peptides (category 1), portions embedded by peptide-peptide interactions (category 2), and portions embedded by peptide-lipid interactions (category 3). Category 2 peptides of polytopic membrane proteins were found to stably reside in the lipid bilayer without peptide-lipid interactions that had been thought to be essential for transmembrane segments. Category 3 peptides are equivalent to single-spanning segments of bitopic membrane proteins. Three different experiments, namely proteolytic digestion, chemical modification of the band 3 protein, and cell free transcription and translation, were used to categorize the transmembrane peptides.Key words: band 3 protein, transmembrane (TM) peptide, classification of TM, category 2-TM, polytopic membrane protein.
APA, Harvard, Vancouver, ISO, and other styles
18

Van Dort, Heidi M., David W. Knowles, Joel A. Chasis, Gloria Lee, Narla Mohandas, and Philip S. Low. "Analysis of Integral Membrane Protein Contributions to the Deformability and Stability of the Human Erythrocyte Membrane." Journal of Biological Chemistry 276, no. 50 (October 10, 2001): 46968–74. http://dx.doi.org/10.1074/jbc.m107855200.

Full text
Abstract:
Three major hypotheses have been proposed to explain the role of membrane-spanning proteins in establishing/maintaining membrane stability. These hypotheses ascribe the essential contribution of integral membrane proteins to (i) their ability to anchor the membrane skeleton to the lipid bilayer, (ii) their capacity to bind and stabilize membrane lipids, and (iii) their ability to influence and regulate local membrane curvature. In an effort to test these hypotheses in greater detail, we have modified both the membrane skeletal and lipid binding interactions of band 3 (the major membrane-spanning and skeletal binding protein of the human erythrocyte membrane) and have examined the impact of these modifications on erythrocyte membrane morphology, deformability, and stability. The desired changes in membrane skeletal and protein-lipid interactions were induced by 1) reaction of the cells with 4,4′-diisothiocyanostilbene-2,2′-disulfonate (DIDS), an inhibitor of band 3-mediated anion transport that dissociates band 3 into dimers (increasing its surface area in contact with lipid) and severs band 3 linkages to the membrane skeleton; 2) a fragment of ankyrin that ruptures the same ankyrin-band 3 bridge to the membrane skeleton, but drives the band 3 subunit equilibrium toward the tetramer (i.e.decreasing the band 3 surface area in contact with lipid); and 3) an antibody to the ankyrin-binding site on band 3 that promotes the same changes in band 3 skeletal and lipid interactions as the ankyrin fragment. We observed that although DIDS induced echinocytic morphological changes in the treated erythrocytes, it had little impact on either membrane deformability or stability. In contrast, resealing of either the ankyrin fragment or anti-band 3 IgG into erythrocytes caused spontaneous membrane fragmentation and loss of deformability/stability. Because these and other new observations cannot all be reconciled with any single hypothesis on membrane stability, we suggest that more than one hypothesis may be operative and provide an explanation of how each might individually contribute to net membrane stability.
APA, Harvard, Vancouver, ISO, and other styles
19

ZIPSER, Yehudit, Adi PIADE, Alexander BARBUL, Rafi KORENSTEIN, and Nechama S. KOSOWER. "Ca2+ promotes erythrocyte band 3 tyrosine phosphorylation via dissociation of phosphotyrosine phosphatase from band 3." Biochemical Journal 368, no. 1 (November 15, 2002): 137–44. http://dx.doi.org/10.1042/bj20020359.

Full text
Abstract:
The anion-exchange band 3 protein is the main erythrocyte protein that is phosphorylated by protein tyrosine kinase (PTK). We have previously identified a band 3-associated phosphotyrosine phosphatase (PTP) that is normally highly active and prevents the accumulation of band 3 phosphotyrosine. Band 3 tyrosine phosphorylation can be induced by inhibition of PTP (vanadate, thiol oxidation), activation of PTK (hypertonic NaCl) or intracellular increased Ca2+ (mechanism unknown). We now show that there is inhibition of dephosphorylation of band 3 in Ca2+/ionophore-treated erythrocytes and in membranes isolated from the treated cells. These membranes exhibit phosphatase activity upon the addition of exogenous substrate. Dephosphorylation of the endogenous substrate (band 3) can be activated in these membranes by the addition of Mg2+. Thus the inability of PTP to dephosphorylate the band 3 phosphotyrosine is not due to inhibition of the enzyme itself. Ca2+ rise in the erythrocyte causes dissociation of PTP from band 3, thus leaving the kinase unopposed. This is shown by a significant diminution in band 3/PTP co-precipitation. Addition of Mg2+ to these membranes leads to reassociation of band 3 with PTP. The Ca2+-induced inhibition of band 3 dephosphorylation may be due to Ca2+-dependent alterations in membrane components and structure, affecting the interaction of band 3 with PTP. The Ca2+-induced tyrosine phosphorylation, involving an apparent PTP inhibition via dissociation from the substrate, may play a role in signal transduction pathways and in certain pathological disorders associated with increased cell Ca2+.
APA, Harvard, Vancouver, ISO, and other styles
20

Pinder, JC, A. Pekrun, AM Maggs, AP Brain, and WB Gratzer. "Association state of human red blood cell band 3 and its interaction with ankyrin." Blood 85, no. 10 (May 15, 1995): 2951–61. http://dx.doi.org/10.1182/blood.v85.10.2951.bloodjournal85102951.

Full text
Abstract:
We have studied the association state of band 3, the anion channel and predominant transmembrane protein of the human red blood cell, and the anomalous stoichiometry and dynamics of its interaction with ankyrin, which acts as a link to the spectrin of the membrane skeletal network. Band 3 exists in benign nonionic detergent solutions as a dimer. Tetramer is formed irreversibly in the course of manipulations, particularly in ion-exchange chromatography. The dimer in solution binds ankyrin without self-associating. In ankyrin-free inside-out membrane vesicles and when incorporated into phosphatidylcholine liposomes, only some 10% to 15% of band 3 chains bind ankyrin at saturation. Moreover, in liposomes this was independent of protein:lipid ratio between 1:2 and 1:40. The bound fraction of band 3 remains with the detergent-extracted membrane cytoskeleton, but is released if the ankyrin has been cleaved with chymotrypsin before detergent treatment; thus, the attachment to the membrane cytoskeleton is entirely through ankyrin and not through other constituents such as protein 4.1. The ratio of band 3 to ankyrin in this complex implies that it consists of two chains of band 3 and one chain of ankyrin, at least after detergent extraction. The bound and free populations of band 3 exchange freely in the membrane. In the artificial liposome membrane binding of ankyrin to band 3 dimers cause association of the band 3 into higher aggregates, as seen in freeze-fracture electron microscopy. Successive manipulations of the red blood cell membrane, which are involved in the preparation of ghosts, of inside-out vesicles, and of inside-out vesicles stripped of peripheral proteins are accompanied by progressive aggregation of intramembrane particles, as judged by freeze-fracture electron microscopy. Thus the intramembrane particles are evidently stabilized in the intact cell by the peripheral protein network and the cytosolic milieu. Aggregation may be expected to limit the number of functional ankyrin binding sites. However, although extraneous ankyrin binds to the unoccupied binding site on the spectrin tetramers in intact ghost membranes, little or no ankyrin can bind to the unoccupied band 3 dimers in situ, perhaps by reason of occlusion of binding sites by the membrane skeletal network.
APA, Harvard, Vancouver, ISO, and other styles
21

Celedón, Gloria, Gustavo González, Carlos P. Sotomayor, and Claus Behn. "Membrane lipid diffusion and band 3 protein changes in human erythrocytes due to acute hypobaric hypoxia." American Journal of Physiology-Cell Physiology 275, no. 6 (December 1, 1998): C1429—C1431. http://dx.doi.org/10.1152/ajpcell.1998.275.6.c1429.

Full text
Abstract:
Because it has been reported that hypoxia in rats may promote lipid peroxidation and other free radical reactions that could modify membrane lipids and proteins, the effect of acute hypobaric hypoxia on human erythrocyte membranes was investigated. 12-(1-Pyrene)dodecanoic acid fluorescent probe was used to assess short-range lateral diffusion status in the membrane bilayer. Membrane protein modification was detected by SDS-PAGE. Healthy young men were exposed for 20 min to the hypobaric hypoxia, simulating an altitude of 4,500 m. Under this condition, erythrocyte membrane lipids reached a state of higher lateral diffusivity with respect to normobaric conditions and membrane band 3 protein was modified, becoming more susceptible to membrane-bound proteinases. These observations suggest that acute hypobaric hypoxia may promote an oxidative stress condition in the erythrocyte membrane.
APA, Harvard, Vancouver, ISO, and other styles
22

Clague, M. J., and R. J. Cherry. "Comparison of p25 presequence peptide and melittin. Red blood cell haemolysis and band 3 aggregation." Biochemical Journal 252, no. 3 (June 15, 1988): 791–94. http://dx.doi.org/10.1042/bj2520791.

Full text
Abstract:
The 25 residue presequence (p25) for subunit IV of yeast cytochrome oxidase had previously been shown to possess structural and behavioural characteristics in common with the bee venom polypeptide, melittin. The present study extends the results of leakage experiments on model-membrane systems to the haemolysis of human erythrocytes, which both peptides are shown to accomplish in a manner sensitive to membrane potential. In addition, the laser flash-induced transient dichroism technique for measuring protein rotational diffusion has been used to show that both peptides aggregate band 3, the major integral membrane protein of the erythrocyte. Aggregation cannot be reversed by high ionic strength; this serves to differentiate these peptides from other positively charged species such as polylysine that aggregate band 3 at low ionic strength. These results suggest that aggregation of membrane proteins may possibly prove to be a feature of the interaction of p25 signal peptide with mitochondrial membranes.
APA, Harvard, Vancouver, ISO, and other styles
23

Bosman, Gieljan J. C. G. M., and Marguerite M. B. Kay. "Alterations of band 3 transport protein by cellular aging and disease: erythrocyte band 3 and glucose transporter share a functional relationship." Biochemistry and Cell Biology 68, no. 12 (December 1, 1990): 1419–27. http://dx.doi.org/10.1139/o90-205.

Full text
Abstract:
Structural changes in human erythrocyte band 3 that affect anion transport are correlated with changes in glucose transport in situ. Breakdown of band 3, observed during normal erythrocyte aging in situ and in some diseases involving erythrocytes, is associated with an increase in Km and a decrease in Vmax of sulfate self-exchange, and with an increase in Km and Vmax of glucose efflux. Erythrocytes containing a high molecular weight form of band 3 exhibit an increase in Vmax of sulfate exchange and a decrease in Vmax of glucose efflux. Identical transport characteristics are observed in abnormal band-3-containing erythrocytes from individuals with familial amyotrophic chorea with acanthocytosis. A third band 3 alteration, fast-aging band 3, exhibits decreased Vmax of sulfate exchange and an increase in Km and decrease in Vmax of glucose efflux. Changes in band 3 structure that are the result of unstable hemoglobin or a deficiency in glucose-6-phosphate dehydrogenase and that do not affect anion transport have no effect on glucose transport characteristics. These data indicate the existence of a functional relationship between the membrane-spanning, anion-transport domain of band 3 and glucose transport in human erythrocytes. Antibodies to synthetic peptides reveal structural changes in membranes from the three inborn band 3 alterations and in band 3 itself in membranes from fast-aging band 3. Thus, immunological data suggests a structural relationship between anion and glucose transporters.Key words: red cell, anion transport, membrane proteins, aging, choreoacanthocytosis, anemia.
APA, Harvard, Vancouver, ISO, and other styles
24

Ercolani, L., D. Brown, A. Stuart-Tilley, and S. L. Alper. "Colocalization of GAPDH and band 3 (AE1) proteins in rat erythrocytes and kidney intercalated cell membranes." American Journal of Physiology-Renal Physiology 262, no. 5 (May 1, 1992): F892—F896. http://dx.doi.org/10.1152/ajprenal.1992.262.5.f892.

Full text
Abstract:
Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.2.12) (GAPDH) is a multifunctional protein that associates with the cytoplasmic face of intact human erythrocyte membranes. This association has been postulated to be critically dependent on the interaction of GAPDH with the highly acidic NH2-terminal domain of the principal integral membrane protein of the erythrocyte plasma membrane, the band 3 anion exchanger (AE1). This domain is not conserved in murine erythrocyte AE1 and is fully deleted in the alternatively spliced AE1 isoform that is expressed in the kidney. The lack of conservation of this domain has been proposed to explain the reported absence of GAPDH association with rodent erythrocyte membranes. To determine whether GAPDH could be associated with AE1 proteins in rodent cell membranes, specific rabbit antibodies to peptide sequences of rat GAPDH and mouse AE1 were used to immunolocalize these proteins in sequential semithin sections of rat erythrocytes and kidney medulla. In rat erythrocytes, GAPDH immunoreactivity was predominantly membrane associated and colocalized with AE1. In the kidney medulla, GAPDH was concentrated in the basolateral membrane of type A intercalated cells, where it colocalized with the alternatively spliced kidney form of AE1. GAPDH immunoreactivity was not detected in the plasma membrane of any other cell type in the kidney, indicating its predominant association with AE1-rich membranes. If this membrane interaction occurs via AE1 binding, then GAPDH must have binding sites in addition to those previously described for such binding in human AE1.
APA, Harvard, Vancouver, ISO, and other styles
25

Zhang, Yuxun, Lois R. Manning, Jill Falcone, Orah Platt, and James M. Manning. "Human Erythrocyte Membrane Band 3 Protein Influences Hemoglobin Cooperativity." Journal of Biological Chemistry 278, no. 41 (July 31, 2003): 39565–71. http://dx.doi.org/10.1074/jbc.m303352200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

MINETTI, Giampaolo, Giampiero PICCININI, Cesare BALDUINI, Claudio SEPPI, and Augusta BROVELLI. "Tyrosine phosphorylation of band 3 protein in Ca2+/A23187-treated human erythrocytes." Biochemical Journal 320, no. 2 (December 1, 1996): 445–50. http://dx.doi.org/10.1042/bj3200445.

Full text
Abstract:
Human erythrocytes were induced to release membrane vesicles by treatment with Ca2+ and ionophore A23187. In addition to the biochemical changes already known to accompany loading of human erythrocytes with Ca2+, the present study reveals that tyrosine phosphorylation of the anion exchanger band 3 protein also occurs. The relationship between tyrosine phosphorylation of band 3 and membrane vesiculation was analysed using quinine (a non-specific inhibitor of the Ca2+-activated K+ channel, and the only known inhibitor of Ca2+-induced vesiculation) and charybdotoxin, a specific inhibitor of the apamin-insensitive K+-channel. Both inhibitors suppressed tyrosine phosphorylation of band 3. In the presence of quinine, membrane vesiculation was also suppressed. In contrast, at the concentration of charybdotoxin required to suppress tyrosine phosphorylation of band 3, membrane vesiculation was only mildly inhibited (16–23% inhibition), suggesting that tyrosine phosphorylation of band 3 is not necessary for membrane vesiculation. Phosphorylation of band 3 was in fact observed when erythrocytes were induced to shrink in a Ca2+-independent manner, e.g. by treatment with the K+ ionophore valinomycin or with hypertonic solutions. These observations suggest that band 3 tyrosine phosphorylation occurs when cell volume regulation is required.
APA, Harvard, Vancouver, ISO, and other styles
27

Tomishige, Michio, Yasushi Sako, and Akihiro Kusumi. "Regulation Mechanism of the Lateral Diffusion of Band 3 in Erythrocyte Membranes by the Membrane Skeleton." Journal of Cell Biology 142, no. 4 (August 24, 1998): 989–1000. http://dx.doi.org/10.1083/jcb.142.4.989.

Full text
Abstract:
Mechanisms that regulate the movement of a membrane spanning protein band 3 in erythrocyte ghosts were investigated at the level of a single or small groups of molecules using single particle tracking with an enhanced time resolution (0.22 ms). Two-thirds of band 3 undergo macroscopic diffusion: a band 3 molecule is temporarily corralled in a mesh of 110 nm in diameter, and hops to an adjacent mesh an average of every 350 ms. The rest (one-third) of band 3 exhibited oscillatory motion similar to that of spectrin, suggesting that these band 3 molecules are bound to spectrin. When the membrane skeletal network was dragged and deformed/translated using optical tweezers, band 3 molecules that were undergoing hop diffusion were displaced toward the same direction as the skeleton. Mild trypsin treatment of ghosts, which cleaves off the cytoplasmic portion of band 3 without affecting spectrin, actin, and protein 4.1, increased the intercompartmental hop rate of band 3 by a factor of 6, whereas it did not change the corral size and the microscopic diffusion rate within a corral. These results indicate that the cytoplasmic portion of band 3 collides with the membrane skeleton, which causes temporal confinement of band 3 inside a mesh of the membrane skeleton.
APA, Harvard, Vancouver, ISO, and other styles
28

Rybicki, AC, RS Schwartz, EJ Hustedt, and CE Cobb. "Increased rotational mobility and extractability of band 3 from protein 4.2-deficient erythrocyte membranes: evidence of a role for protein 4.2 in strengthening the band 3-cytoskeleton linkage." Blood 88, no. 7 (October 1, 1996): 2745–53. http://dx.doi.org/10.1182/blood.v88.7.2745.bloodjournal8872745.

Full text
Abstract:
Band 3 (anion-exchange protein 1-[AE1]) is the major integral membrane protein of human erythrocytes and links the membrane to the underlying cytoskeleton via high-affinity binding to ankyrin. It is unclear whether other cytoskeletal proteins participate in strengthening the ankyrin-band 3 linkage, but a putative role for protein 4.2 (P4.2) has been proposed based on the increased osmotic fragility and spherocytic morphology of P4.2-deficient red blood cells (RBCs). The present study was designed to investigate the hypothesis that P4.2 has a direct role in strengthening the band 3-cytoskeleton linkage in human RBCs, by measuring independent features of this interaction in normal and P4.2-deficient RBCs. The features examined were the rotational mobility of band 3 assayed by time-resolved phosphorescence emission anisotropy (TPA), and the extractability of band 3 by octyl-beta-glucoside, the latter being a nonionic detergent that selectively extracts only band 3 that is not anchored to the cytoskeleton. We find that the amplitude of the most rapidly rotating population of band 3 (correlation time, approximately 30 to 60 microseconds) is increased 81% and 67% in P4.2-deficient ghosts (P4.2NIPPON and band 3MONTEFIORE, respectively) compared with control ghosts. The amplitude of the intermediate speed rotating population of band 3 (correlation time, approximately 200 to 500 microseconds) is increased 23% and 8% in P4.2-deficient ghosts (P4.2NIPPON and band 3MONTEFIORE, respectively) compared with control ghosts, at the expense of the slowly rotating component (correlation time, approximately 2,000 to 3,000 microseconds, amplitude decreased 43% and 39% in P4.2NIPPON and band 3MONTEFIORE, respectively) and immobile component (immobile on this experimental time scale; amplitude decreased 26% and 10% in P4.2NIPPON and band 3MONTEFIORE, respectively) of band 3. These results demonstrate that P4.2 deficiency partially removes band 3 rotational constraints, ie, it increases band 3 rotational mobility. The nonionic detergent octyl-beta-glucoside, which does not disturb band 3-cytoskeleton associations, ie, it extracts only band 3 that is not attached to the cytoskeleton, extracted 30% and 61% more band 3 from P4.2NIPPON and band 3MONTEFIORE ghost membranes, respectively, compared with control ghosts. The octyl-beta-glucoside ghost extracts from both P4.2-deficient phenotypes were enriched in band 3 oligomeric species (tetramers, higher-order oligomers, and aggregates) compared with controls. Since band 3 oligomers selectively associate with the cytoskeleton, these results are consistent with a weakened band 3-cytoskeleton linkage in P4.2-deficient RBC membranes. P4.2 deficiency does not affect band 3 anion transport activity, since uptake of radiolabeled sulfate was similar for control and P4.2-deficient RBCs. Thus, we propose that P4.2 directly participates in strengthening the band 3-cytoskeleton linkage.
APA, Harvard, Vancouver, ISO, and other styles
29

Dluzewski, A. R., P. R. Fryer, S. Griffiths, R. J. Wilson, and W. B. Gratzer. "Red cell membrane protein distribution during malarial invasion." Journal of Cell Science 92, no. 4 (April 1, 1989): 691–99. http://dx.doi.org/10.1242/jcs.92.4.691.

Full text
Abstract:
Immuno-gold labelling electron microscopy of thin sections was used to determine the distribution of red cell membrane and membrane skeleton proteins in the vicinity of internalized malaria parasites. When examined immediately after invasion (young ring-stage parasites), the parasitophorous vacuole membranes of both Plasmodium falciparum and P. knowlesi were found to be characterized by the essentially complete absence of spectrin, ankyrin and the most abundant transmembrane protein, band 3. P. knowlesi merozoites were trapped in the attached but not internalized state by pretreatment with cytochalasin B. In this merozoite-red cell complex antibody labelling showed that band 3 had been eliminated from the region of the host cell membrane in contact with the parasite. Internal vesicles, originating apparently from the site of attachment, were often observed in the red cell. Opposite the attached parasite a cavity was also sometimes seen in the host cell, presumably representing an incipient internal vesicle. The membrane was intact, as judged by the absence of protein (haemoglobin) in the cavity, and, like the membranes surrounding the internal vesicles, was devoid of membrane proteins. A large multilamellar body was sometimes seen in the merozoite close to its point of attachment. The lamellar spacing was about 50 nm. The electron microscope images suggest a diffusion of electron-dense material from the lamellar body into the cavity in the host cell.
APA, Harvard, Vancouver, ISO, and other styles
30

Toye, Ashley M., Sandip Ghosh, Mark T. Young, Graham K. Jones, Richard B. Sessions, Martine Ramaugé, Philippe Leclerc, Joyoti Basu, Jean Delaunay, and Michael J. A. Tanner. "Protein-4.2 association with band 3 (AE1, SLCA4) in Xenopus oocytes: effects of three natural protein-4.2 mutations associated with hemolytic anemia." Blood 105, no. 10 (May 15, 2005): 4088–95. http://dx.doi.org/10.1182/blood-2004-05-1895.

Full text
Abstract:
AbstractWe have investigated the effects of coexpression of protein 4.2 and three protein-4.2 variants with band 3 in the Xenopus oocyte expression system. Normal protein 4.2 increased band-3–specific chloride transport in the oocytes. Protein 4.2 also coimmunoprecipitated with band 3 and colocalized with band 3 at the oocyte plasma membrane. The increase in band-3–mediated chloride transport and coimmunoprecipitation of protein 4.2 required the presence of the N-terminal cytoplasmic domain of band 3. Protein 4.2 also localized to the oocyte plasma membrane in the absence of band 3. The protein-4.2 variants 4.2 Tozeur (R310Q) and 4.2 Komatsu (D175Y) had impaired ability to bind to band 3 and these variants did not localize to the oocyte plasma membrane when expressed on their own or when coexpressed with band 3. Unexpectedly, 4.2 Nippon (A142T) behaved similarly to normal protein 4.2. In the absence of a crystal structure of protein 4.2, we propose a homology model of protein 4.2 based on the structure of the sequence-related protein transglutaminase. Using our results in oocytes and this homology model we speculate how these mutations affect protein 4.2 and result in hereditary spherocytosis.
APA, Harvard, Vancouver, ISO, and other styles
31

von Rückmann, Bogdan, Thomas Jöns, Frank Dölle, Detlev Drenckhahn, and Dieter Schubert. "Cytoskeleton-membrane connections in the human erythrocyte membrane: band 4.1 binds to tetrameric band 3 protein." Biochimica et Biophysica Acta (BBA) - Biomembranes 1325, no. 2 (April 1997): 226–34. http://dx.doi.org/10.1016/s0005-2736(96)00261-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Clari, Giulio, Anna Maria Brunati, and Vittorio Moret. "Membrane-bound phosphotyrosyl-protein phosphatase activity in human erythrocytes. Dephosphorylation of membrane band 3 protein." Biochemical and Biophysical Research Communications 142, no. 2 (January 1987): 587–94. http://dx.doi.org/10.1016/0006-291x(87)90314-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Turrini, F., F. Mannu, P. Arese, J. Yuan, and PS Low. "Characterization of the autologous antibodies that opsonize erythrocytes with clustered integral membrane proteins." Blood 81, no. 11 (June 1, 1993): 3146–52. http://dx.doi.org/10.1182/blood.v81.11.3146.3146.

Full text
Abstract:
Abstract In earlier studies we presented evidence that the clustering of the integral membrane protein, band 3, can serve as a signal for immune recognition and clearance of senescent or abnormal erythrocytes from circulation. In this study, we have exploited the capacity of 1 mmol/L Zn+2 to mildly and reversibly cluster band 3 in situ to characterize the nature of the autologous antibodies specific for the clustered state. We report that the autologous IgG elute almost exclusively in a high molecular weight complex with other proteins when C12E8 detergent extracts of Zn clustered membranes are chromatographed on Sepharose CL- 6B. The complex was also seen to contain complement component C3, hemoglobin, and a cross-linked oligomer of band 3. Autologous IgG and complement were virtually absent from all other fractions. When the band 3 clusters were disaggregated by removal of the Zn+2, the autologous IgG eluted from the erythrocyte surface. Collection of this IgG and use of the antibody in immunoblots of erythrocyte membranes showed that the band 3 monomer, dimer, and oligomers were the major antigenic species. Except for a minor unidentified band at approximately 78,000 d, no other proteins were significantly stained. Curiously, band 3 showed an uneven staining pattern, with oligomers and the leading edge of the monomers appearing more intensely than expected from their abundances in the Coomassie blue-stained gels. Typing of the same autologous IgG with monoclonal antibodies specific for the different subclasses of IgG showed the presence of only subtypes 2 and 3. Taken together, these data suggest that a specific population of autologous IgG recognizes sites of integral membrane protein clustering (a common lesion in senescent and abnormal red blood cells) and that the antigen within these clusters involves an aggregated state of band 3.
APA, Harvard, Vancouver, ISO, and other styles
34

Turrini, F., F. Mannu, P. Arese, J. Yuan, and PS Low. "Characterization of the autologous antibodies that opsonize erythrocytes with clustered integral membrane proteins." Blood 81, no. 11 (June 1, 1993): 3146–52. http://dx.doi.org/10.1182/blood.v81.11.3146.bloodjournal81113146.

Full text
Abstract:
In earlier studies we presented evidence that the clustering of the integral membrane protein, band 3, can serve as a signal for immune recognition and clearance of senescent or abnormal erythrocytes from circulation. In this study, we have exploited the capacity of 1 mmol/L Zn+2 to mildly and reversibly cluster band 3 in situ to characterize the nature of the autologous antibodies specific for the clustered state. We report that the autologous IgG elute almost exclusively in a high molecular weight complex with other proteins when C12E8 detergent extracts of Zn clustered membranes are chromatographed on Sepharose CL- 6B. The complex was also seen to contain complement component C3, hemoglobin, and a cross-linked oligomer of band 3. Autologous IgG and complement were virtually absent from all other fractions. When the band 3 clusters were disaggregated by removal of the Zn+2, the autologous IgG eluted from the erythrocyte surface. Collection of this IgG and use of the antibody in immunoblots of erythrocyte membranes showed that the band 3 monomer, dimer, and oligomers were the major antigenic species. Except for a minor unidentified band at approximately 78,000 d, no other proteins were significantly stained. Curiously, band 3 showed an uneven staining pattern, with oligomers and the leading edge of the monomers appearing more intensely than expected from their abundances in the Coomassie blue-stained gels. Typing of the same autologous IgG with monoclonal antibodies specific for the different subclasses of IgG showed the presence of only subtypes 2 and 3. Taken together, these data suggest that a specific population of autologous IgG recognizes sites of integral membrane protein clustering (a common lesion in senescent and abnormal red blood cells) and that the antigen within these clusters involves an aggregated state of band 3.
APA, Harvard, Vancouver, ISO, and other styles
35

Satchwell, Timothy J., Amanda J. Bell, Stephanie Pellegrin, Sabine Kupzig, Kay Ridgwell, Geoff Daniels, David J. Anstee, Emile van den Akker, and Ashley M. Toye. "Critical band 3 multiprotein complex interactions establish early during human erythropoiesis." Blood 118, no. 1 (July 7, 2011): 182–91. http://dx.doi.org/10.1182/blood-2010-10-314187.

Full text
Abstract:
Abstract Band 3, the major anion transport protein of human erythrocytes, forms the core of a multiprotein complex in the erythrocyte membrane. Here we studied the spatiotemporal mechanisms of band 3 multiprotein complex assembly during erythropoiesis. Significant pools of intracellular band 3 and Rh-associated glycoprotein (RhAG) were found in the basophilic erythroblast. These intracellular pools decreased in the polychromatic erythroblast, whereas surface expression increased and were lowest in the orthochromatic erythroblast and reticulocytes. Protease treatment of intact cells to remove extracellular epitopes recognized by antibodies to band 3 and RhAG was used to study surface delivery kinetics and intracellular complex composition from the proerythroblast stage to the enucleated reticulocyte. Newly synthesized band 3 and protein 4.2 interact initially in the early stages of the secretory pathway and are found associated at the plasma membrane from the basophilic stage of erythropoiesis. Although we could successfully coimmunoprecipitate Rh with RhAG from plasma membrane pools at a similar stage, no intracellular interaction between these proteins was detectable. Knockdown of RhAG during early erythropoiesis was accompanied by a concomitant drop in membrane expression of Rh polypeptides. These data are consistent with assembly of major components of the band 3 macrocomplex at an early stage during erythropoiesis.
APA, Harvard, Vancouver, ISO, and other styles
36

Che, A., R. J. Cherry, L. H. Bannister, and A. R. Dluzewski. "Aggregation of band 3 in hereditary ovalocytic red blood cell membranes. Electron microscopy and protein rotational diffusion studies." Journal of Cell Science 105, no. 3 (July 1, 1993): 655–60. http://dx.doi.org/10.1242/jcs.105.3.655.

Full text
Abstract:
Microaggregation of band 3 proteins in hereditary ovalocytic membranes was investigated by rotational diffusion measurements and by electron microscopy. It was previously shown that band 3 in ovalocytic membranes has decreased rotational mobility compared with band 3 in normal cells (Tilley, L., Nash, G.B., Jones, G.L. and Sawyer, W.L. (1991) J. Membr. Biol. 121, 59–66). This result could arise from either altered interactions with cytoskeletal proteins or from band 3 microaggregation. In the present study it was found that removal of spectrin and actin from the membrane had no effect on the rotational mobility of ovalocytic band 3. Additional removal of ankyrin and band 4.1, as well as cleavage of the cytoplasmic domain of band 3 with trypsin, did enhance band 3 mobility, as is the case in the membranes from normal cells. However, the rotational mobility of ovalocytic band 3 was always considerably less than that of normal band 3 under the same conditions. Scanning electron microscopy and low power electron micrographs of freeze-fracture replicas revealed that the surfaces of ovalocytes were more irregular than those of normal erythrocytes. At higher magnification, numerous linearly arranged intramembranous particles were observed on the P-faces of freeze-fractured ovalocytes but not on normal cells. These clusters consist of straight or slightly curved lines of 10–15 particles in single rows. From these results it is deduced that the reduced rotational mobility of band 3 in ovalocytes is a consequence of the formation of microaggregates, which are very probably induced by the mutation in the membrane-bound domain of ovalocytic band 3.
APA, Harvard, Vancouver, ISO, and other styles
37

Georgatos, S. D., and V. T. Marchesi. "The binding of vimentin to human erythrocyte membranes: a model system for the study of intermediate filament-membrane interactions." Journal of Cell Biology 100, no. 6 (June 1, 1985): 1955–61. http://dx.doi.org/10.1083/jcb.100.6.1955.

Full text
Abstract:
We have characterized the association of the intermediate filament protein, vimentin, with the plasma membrane, using radioiodinated lens vimentin and various preparations of human erythrocyte membrane vesicles. Inside-out membrane vesicles (IOVs), depleted of spectrin and actin, bind I125-vimentin in a saturable manner unlike resealed, right-side-out membranes which bind negligible amounts of vimentin in an unsaturable fashion. The binding of vimentin to IOVs is abolished by trypsin or acid treatment of the vesicles. Extraction of protein 4.1 or reconstitution of the membranes with purified spectrin do not basically affect the association. However, removal of ankyrin (band 2.1) significantly lowers the binding. Upon reconstitution of depleted vesicles with purified ankyrin, the vimentin binding function is restored. If ankyrin is added in excess the binding of vimentin to IOVs is quantitatively inhibited, whereas protein 4.1, the cytoplasmic fragment of band 3, band 6, band 4.5 (catalase), or bovine serum albumin do not influence it. Preincubation of the IOVs with a polyclonal anti-ankyrin antibody blocks 90% of the binding. Preimmune sera and antibodies against spectrin, protein 4.1, glycophorin A, and band 3 exhibit no effect. On the basis of these data, we propose that vimentin is able to associate specifically with the erythrocyte membrane skeleton and that ankyrin constitutes its major attachment site.
APA, Harvard, Vancouver, ISO, and other styles
38

De Franceschi, Lucia, Carlo Tomelleri, Alessandro Matte, Anna Maria Brunati, Petra H. Bovee-Geurts, Mariarita Bertoldi, Edwin Lasonder, et al. "Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity." Blood 118, no. 20 (November 17, 2011): 5652–63. http://dx.doi.org/10.1182/blood-2011-05-355339.

Full text
Abstract:
Abstract Acanthocytic RBCs are a peculiar diagnostic feature of chorea-acanthocytosis (ChAc), a rare autosomal recessive neurodegenerative disorder. Although recent years have witnessed some progress in the molecular characterization of ChAc, the mechanism(s) responsible for generation of acanthocytes in ChAc is largely unknown. As the membrane protein composition of ChAc RBCs is similar to that of normal RBCs, we evaluated the tyrosine (Tyr)–phosphorylation profile of RBCs using comparative proteomics. Increased Tyr phosphorylation state of several membrane proteins, including band 3, β-spectrin, and adducin, was noted in ChAc RBCs. In particular, band 3 was highly phosphorylated on the Tyr-904 residue, a functional target of Lyn, but not on Tyr-8, a functional target of Syk. In ChAc RBCs, band 3 Tyr phosphorylation by Lyn was independent of the canonical Syk-mediated pathway. The ChAc-associated alterations in RBC membrane protein organization appear to be the result of increased Tyr phosphorylation leading to altered linkage of band 3 to the junctional complexes involved in anchoring the membrane to the cytoskeleton as supported by coimmunoprecipitation of β-adducin with band 3 only in ChAc RBC-membrane treated with the Lyn-inhibitor PP2. We propose this altered association between membrane skeleton and membrane proteins as novel mechanism in the generation of acanthocytes in ChAc.
APA, Harvard, Vancouver, ISO, and other styles
39

Jarolim, P., HL Rubin, V. Brabec, L. Chrobak, AS Zolotarev, SL Alper, C. Brugnara, H. Wichterle, and J. Palek. "Mutations of conserved arginines in the membrane domain of erythroid band 3 lead to a decrease in membrane-associated band 3 and to the phenotype of hereditary spherocytosis." Blood 85, no. 3 (February 1, 1995): 634–40. http://dx.doi.org/10.1182/blood.v85.3.634.bloodjournal853634.

Full text
Abstract:
To elucidate the molecular basis of band 3 deficiency in a recently defined subset of patients with autosomal dominant hereditary spherocytosis (HS), we screened band 3 cDNA for single-strand conformation polymorphism (SSCP). In 5 of 17 (29%) unrelated HS subjects with band 3 deficiency, we detected substitutions R760W, R760Q, R808C, and R870W that were all coinherited with the HS phenotype. The involved arginines are highly conserved throughout evolution. To examine whether or not the product of the mutant allele is inserted into the membrane, we studied one HS subject who was doubly heterozygous for the R760Q mutation and the K56E (band 3sMEMPHIS) polymorphism that results in altered electrophoretic mobility of the band 3 Memphis proteolytic fragments. We detected only the band 3MEMPHIS in the erythrocyte membrane indicating that the protein product of the mutant, R760Q, band 3 allele is absent from the red blood cell membrane. These findings suggest that the R760Q substitution, and probably the other arginine subsitutions, produce band 3 deficiency either by precluding incorporation of the mutant protein into the red blood cell membrane or by leading to loss of mutant protein from differentiating erythroid precursors.
APA, Harvard, Vancouver, ISO, and other styles
40

Hazen-Martin, D. J., G. Pasternack, S. S. Spicer, and D. A. Sens. "Immunolocalization of band 3 protein in normal and cystic fibrosis skin." Journal of Histochemistry & Cytochemistry 34, no. 6 (June 1986): 823–26. http://dx.doi.org/10.1177/34.6.3517151.

Full text
Abstract:
Current evidence indicates that the defect in cystic fibrosis (CF) involves chloride transport in various epithelial cells. The sweat gland, one site of altered chloride transport in CF, was examined immunocytochemically for localization of a chloride-channel membrane protein, designated band 3 protein. Immunoreactivity was observed in sweat duct cell membranes of both normal and CF samples, whereas secretory coil regions were entirely unreactive. No difference was observed in the pattern or intensity of immunoreactivity between the two groups at the light microscopic (LM) level of resolution.
APA, Harvard, Vancouver, ISO, and other styles
41

BHATTACHARYYA, Raja, Amit K. DAS, Prasun K. MOITRA, Biswajit PAL, Indranil MANDAL, and Joyoti BASU. "Mapping of a palmitoylatable band 3-binding domain of human erythrocyte membrane protein 4.2." Biochemical Journal 340, no. 2 (May 25, 1999): 505–12. http://dx.doi.org/10.1042/bj3400505.

Full text
Abstract:
Evidence accumulated over the years suggests that human erythrocyte membrane protein 4.2 is one of the proteins involved in strengthening the cytoskeleton-membrane interactions in the red blood cell. Deficiency of protein 4.2 is linked with a variety of hereditary haemolytic anaemia. However, the interactions of protein 4.2 with other proteins of the erythrocyte membrane remain poorly understood. The major membrane-binding site for protein 4.2 resides on the cytoplasmic domain of band 3 (CDB3). In order to carry out an initial characterization of its interaction with the CDB3, protein 4.2 was subjected to proteolytic cleavage and gel renaturation assay, and the 23-kDa N-terminal domain was found to interact with band 3. This domain contained two putative palmitoylatable cysteine residues, of which cysteine 203 was identified as the palmitoylatable cysteine. Recombinant glutathione S-transferase-fusion peptides derived from this domain were characterized with respect to their ability to interact with the CDB3. Whereas these studies do not rule out the involvement of other subsites on protein 4.2 in interaction with the CDB3, the evidence suggests that the region encompassing amino acid residues 187-211 is one of the domains critical for the protein 4.2-CDB3 interaction. This is also the first demonstration that palmitoylation serves as a positive modulator of this interaction.
APA, Harvard, Vancouver, ISO, and other styles
42

Cox, J. V., J. H. Stack, and E. Lazarides. "Erythroid anion transporter assembly is mediated by a developmentally regulated recruitment onto a preassembled membrane cytoskeleton." Journal of Cell Biology 105, no. 3 (September 1, 1987): 1405–16. http://dx.doi.org/10.1083/jcb.105.3.1405.

Full text
Abstract:
Analysis of the expression and assembly of the anion transporter by metabolic pulse-chase and steady-state protein and RNA measurements reveals that the extent of association of band 3 with the membrane cytoskeleton varies during chicken embryonic development. Pulse-chase studies have indicated that band 3 polypeptides do not associate with the membrane cytoskeleton until they have been transported to the plasma membrane. At this time, band 3 polypeptides are slowly recruited, over a period of hours, onto a preassembled membrane cytoskeletal network and the extent of this cytoskeletal assembly is developmentally regulated. Only 3% of the band 3 polypeptides are cytoskeletal-associated in 4-d erythroid cells vs. 93% in 10-d erythroid cells and 36% in 15-d erythroid cells. This observed variation appears to be regulated primarily at the level of recruitment onto the membrane cytoskeleton rather than by different transport kinetics to the membrane or differential turnover of the soluble and insoluble polypeptides and is not dependent upon the lineage or stage of differentiation of the erythroid cells. Steady-state protein and RNA analyses indicate that the low levels of cytoskeletal band 3 very early in development most likely result from limiting amounts of ankyrin and protein 4.1, the membrane cytoskeletal binding sites for band 3. As embryonic development proceeds, ankyrin and protein 4.1 levels increase with a concurrent rise in the level of cytoskeletal band 3 until, on day 10 of development, virtually all of the band 3 polypeptides are cytoskeletal bound. After day 10, the levels of total and cytoskeletal band 3 decline, whereas ankyrin and protein 4.1 continue to accumulate until day 18, indicating that the cytoskeletal association of band 3 is not regulated solely by the availability of membrane cytoskeletal binding sites at later stages of development. Thus, multiple mechanisms appear to regulate the recruitment of band 3 onto the erythroid membrane cytoskeleton during chicken embryonic development.
APA, Harvard, Vancouver, ISO, and other styles
43

Lou, L. L., and S. Clarke. "Carboxyl methylation of human erythrocyte band 3 in intact cells. Relation to anion transport activity." Biochemical Journal 235, no. 1 (April 1, 1986): 183–87. http://dx.doi.org/10.1042/bj2350183.

Full text
Abstract:
The anion transport protein of the human erythrocyte membrane, band 3, is reversibly methylated by an endogenous protein carboxyl methyltransferase. The physiological consequence of this modification was studied by measuring the rate of phosphate transport by intact erythrocytes incubated under conditions where protein methylation reactions are inhibited. No change in phosphate transport was detected when cells were treated with either methionine-free media or cycloleucine, whereas cells incubated with adenosine and homocysteine thiolactone displayed a marginally slower rate of transport, which was not reversed by subsequent remethylation of the membrane proteins. These results suggest that erythrocyte protein carboxyl methylation does not directly regulate this activity of band 3.
APA, Harvard, Vancouver, ISO, and other styles
44

Yuan, J., R. Kannan, E. Shinar, EA Rachmilewitz, and PS Low. "Isolation, characterization, and immunoprecipitation studies of immune complexes from membranes of beta-thalassemic erythrocytes." Blood 79, no. 11 (June 1, 1992): 3007–13. http://dx.doi.org/10.1182/blood.v79.11.3007.3007.

Full text
Abstract:
Abstract beta-Thalassemia, a hemoglobinopathy that results in the precipitation of denatured alpha-globin chains on the membrane, is characterized by erythrocytes with significantly reduced lifespans. We have demonstrated previously that hemoglobin denaturation on the membrane can promote clustering of integral membrane proteins, and that this clustering in turn leads to autologous antibody binding, complement fixation, and rapid removal of the cell by macrophages. To evaluate whether this pathway also occurs in beta-thalassemic cells, we have isolated and characterized the immune complexes from the membranes of these cells. We observe that autologous IgG-containing complexes obtained by either immunoprecipitation or simple centrifugation of nondenaturing detergent extracts of beta-thalassemic cell membranes contain globin, band 3, IgG, and complement as major components. Absorption spectra of these complexes demonstrate that the globin is, indeed, mainly in the form of hemichromes. Immunoblotting studies further show that much of the band 3 protein in the aggregates is covalently cross-linked to a dimeric or tetrameric form, consistent with the preference of the autologous IgG for clustered band 3. Although the insoluble aggregates constitute only approximately 1.6% of the total membrane protein, they still contain 27% of the total IgG and 35% of the total complement C3 on the thalassemic cell surface. Because cell surface IgG and complement component C3 are thought to trigger removal of erythrocytes from circulation, the hemichrome-induced clustering of band 3 may contribute to the beta-thalassemic cell's shortened lifespan.
APA, Harvard, Vancouver, ISO, and other styles
45

Yuan, J., R. Kannan, E. Shinar, EA Rachmilewitz, and PS Low. "Isolation, characterization, and immunoprecipitation studies of immune complexes from membranes of beta-thalassemic erythrocytes." Blood 79, no. 11 (June 1, 1992): 3007–13. http://dx.doi.org/10.1182/blood.v79.11.3007.bloodjournal79113007.

Full text
Abstract:
beta-Thalassemia, a hemoglobinopathy that results in the precipitation of denatured alpha-globin chains on the membrane, is characterized by erythrocytes with significantly reduced lifespans. We have demonstrated previously that hemoglobin denaturation on the membrane can promote clustering of integral membrane proteins, and that this clustering in turn leads to autologous antibody binding, complement fixation, and rapid removal of the cell by macrophages. To evaluate whether this pathway also occurs in beta-thalassemic cells, we have isolated and characterized the immune complexes from the membranes of these cells. We observe that autologous IgG-containing complexes obtained by either immunoprecipitation or simple centrifugation of nondenaturing detergent extracts of beta-thalassemic cell membranes contain globin, band 3, IgG, and complement as major components. Absorption spectra of these complexes demonstrate that the globin is, indeed, mainly in the form of hemichromes. Immunoblotting studies further show that much of the band 3 protein in the aggregates is covalently cross-linked to a dimeric or tetrameric form, consistent with the preference of the autologous IgG for clustered band 3. Although the insoluble aggregates constitute only approximately 1.6% of the total membrane protein, they still contain 27% of the total IgG and 35% of the total complement C3 on the thalassemic cell surface. Because cell surface IgG and complement component C3 are thought to trigger removal of erythrocytes from circulation, the hemichrome-induced clustering of band 3 may contribute to the beta-thalassemic cell's shortened lifespan.
APA, Harvard, Vancouver, ISO, and other styles
46

Altintas, Engin, Serap Yalin, Orhan Sezgin, Enver Ucbilek, Anil Tombak, and Arzu Kanik. "Erythrocyte Membrane Protein Band 3 Predicts Interferon Ribavirin-Induced Anemia." Open Journal of Regenerative Medicine 08, no. 02 (2019): 5–16. http://dx.doi.org/10.4236/ojrm.2019.82002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Casey, Joseph R., and Reinhart A. F. Reithmeier. "Detergent interaction with band 3, a model polytopic membrane protein." Biochemistry 32, no. 4 (February 1993): 1172–79. http://dx.doi.org/10.1021/bi00055a023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wagner, S., R. Vogel, R. Lietzke, R. Koob, and D. Drenckhahn. "Immunochemical characterization of a band 3-like anion exchanger in collecting duct of human kidney." American Journal of Physiology-Renal Physiology 253, no. 2 (August 1, 1987): F213—F221. http://dx.doi.org/10.1152/ajprenal.1987.253.2.f213.

Full text
Abstract:
Poly- and monoclonal antibodies have been prepared against the cytoplasmic domain (43 kDa) and the 17-, 20-, and 35-kDa fragments of the membrane-spanning domain of the human erythrocyte anion exchanger, band 3. The antibodies were used to localize and further characterize analogues of band 3 in the human kidney. We report here that the basolateral membrane of intercalated cells of the connecting tubules and collecting ducts contains an analogue of band 3 that appears to be highly homologous to the erythrocyte anion exchanger. This band 3-like protein is probably important for reabsorption of bicarbonate in the collecting duct system and thus for acidification of the forming urine. The band 3-like protein of the intercalated cells contain immunoreactive sites of both the cytoplasmic domain and the three major fragments of the membrane-spanning domain of erythrocyte band 3. Although no immunological differences were detected between the membrane-spanning domains of band 3 in erythrocytes and intercalated cells, there are at least three sites along the cytoplasmic domain of kidney band 3 that differ from erythrocyte band 3 in either amino acid composition or posttranslational modifications. The main kidney analogue of band 3 that contains epitopes of the cytoplasmic domain as well as the 17- and 35-kDa membrane-spanning domain of erythroid band 3 is a polypeptide with an apparent molecular mass of 100-110 kDa. Further immunoreactive polypeptides at approximately 180, approximately 140, approximately 38, approximately 25-30 kDa that were detected at lower stringency and higher sensitivity of the immunoblotting procedure may be members of a multigene family that encodes a series of related proteins.
APA, Harvard, Vancouver, ISO, and other styles
49

Chow, A., J. W. Dobbins, P. S. Aronson, and P. Igarashi. "cDNA cloning and localization of a band 3-related protein from ileum." American Journal of Physiology-Gastrointestinal and Liver Physiology 263, no. 3 (September 1, 1992): G345—G352. http://dx.doi.org/10.1152/ajpgi.1992.263.3.g345.

Full text
Abstract:
A Cl(-)-HCO3- exchanger in the brush-border membrane mediates active Cl- absorption and regulates intracellular pH in rabbit ileum. The molecular identity of the ileal Cl(-)-HCO3- exchanger has not been established. The best-characterized plasma membrane Cl(-)-HCO3- exchanger is erythroid band 3. Structurally related proteins in nonerythroid tissues comprise an anion exchanger (AE) family. We used the polymerase chain reaction to amplify and clone a cDNA encoding an ileal band 3-related protein (B3RP) from rabbit ileal enterocytes. The composite sequence is 3,909 bp and is predicted to encode a protein of 136 kDa. The deduced amino acid sequence is 95% identical to murine renal AE2, indicating that ileal B3RP is rabbit AE2. Antisera generated against a cytoplasmic fragment of ileal B3RP recognized a 160- to 170-kDa polypeptide in the brush-border membrane, but not the basolateral membrane, of ileal crypt and villus enterocytes. This correlates with previous studies indicating that a Cl(-)-HCO3- exchange is present in brush-border but not basolateral membrane vesicles from rabbit ileal enterocytes. We conclude that ileal B3RP is a product of the AE gene family, and is present in the brush-border of ileal enterocytes, where it may mediate Cl(-)-HCO3- exchange.
APA, Harvard, Vancouver, ISO, and other styles
50

Deryugina, A. V., O. P. Abaeva, S. V. Romanov, M. V. Vedunova, E. N. Ryabova, S. A. Vasenin, and N. A. Titova. "Protein composition and functional parameters of RBC membranes in liver and kidney transplantation." Russian Journal of Transplantology and Artificial Organs 24, no. 1 (February 9, 2022): 107–16. http://dx.doi.org/10.15825/1995-1191-2022-1-107-116.

Full text
Abstract:
Organ transplantation is an effective treatment for many end-stage diseases. However, reperfusion injury constitutes a major complication of transplantation, which is associated with microcirculatory disorders and aggregation of blood corpuscles. Red blood cells (RBC) play an essential role in maintaining hemodynamic and rheological properties of the blood. Moreover, the study of mechanisms of changes in RBC functional indices is an urgent task. The main indicator of RBC functioning is the stability of RBC membrane structure. The issue of RBC membrane modification in organ transplantation has not been studied so far. Objective: to study the protein composition of RBC membranes, their aggregation and electrokinetic parameters in liver and kidney recipients, as well as in related kidney and liver fragment donors before and after operation. Research materials. Blood of 12 kidney recipients and 5 related kidney donors, 8 liver recipients and 4 related liver fragment donors – 1–2 hours before surgery, 1 week, 1, 2, 7, 10, 12 months after surgery. The control group consisted of 8 healthy volunteers. Research methods. Protein separation was done by Laemmli electrophoresis. RBC electrophoretic mobility, which characterizes the electrokinetic properties of cells, was measured by microelectrophoresis. Aggregation was calculated microscopically by counting unaggregated RBCs. Obtained values were compared by Mann-Whitney U test. Results. Examination of the RBC membrane of kidney recipients revealed a significant decrease in the amount of Band 3 protein and glycophorin before and after transplantation. Band 3 protein levels reduced at 1 month, glycophorin reduced at 7 months after surgery, with a maximum decrease in these protein fractions by more than 50% by 7 days compared with control values. There was also a decrease in spectrin content for 2 months after surgery with a maximum decrease of 30% by 1 month. In liver recipients, analysis of RBC membrane proteins revealed a decrease in the amount of glycophorin before surgery and further decrease at 2 months of post-transplant period. The maximum decrease in this index was 72% by 7 days after surgery. In addition, there was a fall in spectrin and Band 3 protein levels at 1 month by more than 60% relative to the control values. In donors, there were changes in the protein fraction of RBC membranes in the long-term post-operative period: spectrin and Band 3 protein levels reduced by 2 times at month 2 in kidney donors, while glycophorin levels reduced by 2.3 times at month 1 after operation in liver donors. Similarly, both groups of donors had increased actin levels at month 1 after surgery. The revealed changes in protein levels in the protein phase of RBC membranes were combined with functional indices of RBCs. In kidney recipients, decreased RBC electrophoretic mobility and increased aggregation were detected at 2 months. In liver recipients, the changes in these indicators were at 1 month. A decrease in RBC electrophoretic mobility was detected in donors of both groups. Conclusion. Changes in RBC membrane electronegativity are associated with changes in glycophorin and Band 3 protein levels, whereas in RBC aggregation process in liver/kidney recipients, the structural and functional disorders in the interrelationships of such membrane proteins as spectrin, Band 3 protein, and glycophorin, are significant factors. Alteration of actin determines inhibition of RBC aggregation growth in donors.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography