Academic literature on the topic 'Membrane protein band 3'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Membrane protein band 3.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Membrane protein band 3"

1

van den Akker, Emile, Timothy J. Satchwell, Geoff Daniels, and Ashley M. Toye. "Mapping the Assembly of Band 3 and Rhesus Multi-Protein Complexes During Erythropoiesis." Blood 116, no. 21 (November 19, 2010): 812. http://dx.doi.org/10.1182/blood.v116.21.812.812.

Full text
Abstract:
Abstract Abstract 812 Band 3 forms the core of a large multiprotein complex in the erythrocyte membrane, the Band 3 macrocomplex, which also includes proteins of the Rhesus complex (Rh and RhAG). Mutations in genes encoding proteins within this complex can result in hereditary spherocytosis with varying severity. The effect of distinct mutations and deficiencies in proteins of the Band 3 macrocomplex has been studied in detail in mature erythrocytes. This revealed important functional and structural properties of individual proteins and their relationships with other proteins within the Band 3 macrocomplex. Nevertheless, considerably less is know about the spatio-temporal mechanisms that direct the formation of the Band 3 macrocomplex, and that may explain the aberrations in the complex observed in spherocytosis. Therefore, we studied expression and mutual interactions of proteins of the band3 macrocomplex during development of proerythroblasts to reticulocytes. Using confocal microscopy and western blotting, significant pools of intracellular Band 3 and RhAG were found in the basophilic normoblast. These intracellular pools gradually decreased in the polychromatic normoblast and were absent or low in the orthochromatic normoblast and reticulocytes, while surface expression increased. We used pronase treatment of intact cells to remove extracellular epitopes of BRIC 6 (Band 3 antibody) and LA1818 (RhAG antibody) to study the mechanism by which the intracellular pool of Band 3 and RhAG contributes to formation of the Band 3 complex on the cell surface. Pronase treatment of cells incubated with cycloheximide to block protein synthesis resulted in a reduced but still significant reappearance of BRIC6 (Band 3) and LA1818 (RhAG) epitopes on the plasma membrane confirming the presence of intracellular Band 3 and RhAG pools. It also showed that the bulk of Band 3 and RhAG is synthesized and trafficked to the membrane between the early basophilic and polychromatic stage. Immuneprecipitation of Band 3 from cell lysates of pronase treated cells pre-treated with brefeldin A to collapse the Golgi showed no increase in co-immuneprecipitated protein 4.2 albeit an increase in intracellular Band 3 expression. This suggests that protein 4.2 and Band 3 interact in the first Golgi compartment or late ER. In addition, pre-treatment of cells with cycloheximide prior to pronase treatment resulted in depletion of the intracellular Band 3 and co-immuneprecipitated protein 4.2 pool indicating that Band 3 and protein 4.2 traffic as a complex to the plasma-membrane. We were unable to co-immuneprecipitate Rh or Band 3 with intracellular pools of RhAG, whereas Rh was co-immuneprecipitated with RhAG from the plasma-membrane and from total cell lysates. Knockdown of RhAG in differentiating erythroblasts revealed a concomitant drop in membrane expression of Rh, leaving Band 3 unaffected, indicating that plasma-membrane expression of Rh but not Band 3 is dependent on RhAG. In conclusion, despite the described association between the RhAG complex and the Band 3 complex in erythrocytes, the data suggest that the Band 3-protein 4.2 complex traffics and assembles independently from Rh and RhAG during erythroid differentiation. The experiments suggest that Rh and RhAG do not traffic as a complex to the plasma-membrane but probably assemble in the plasma-membrane. The RhAG knockdown experiments suggest that the dependency of Rh on RhAG as observed in Rhnull syndrome erythrocytes (“Rh regulator type”) originates early during erythropoiesis. Band3 surface expression was not affected upon RhAG knock down, which re-produced the unperturbed Band 3 levels seen in these patients. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
2

Perrotta, Silverio, Borriello Adriana, Lucia De Franceschi, Bruno Nobili, Achille Iolascon, Anna Maria Brunati, Francesca Rossi, et al. "New Insights into the Function of N-Terminal 11 Amino Acids of Band 3 from Structural and Functional Study of a Naturally Occuring Band 3 Variant." Blood 104, no. 11 (November 16, 2004): 577. http://dx.doi.org/10.1182/blood.v104.11.577.577.

Full text
Abstract:
Abstract The 911 amino acid human erythroid AE1 (eAE1) Cl-/HCO3- exchanger SLC4A1 (usually called band 3) is the major intrinsic membrane protein of red cells. The N-terminal cytoplasmic domain of AE1 represents the anchoring site for membrane-associated proteins such as ankyrin, protein 4.2, protein 4.1, glycolytic enzymes (including aldolase and glyceraldeyde-3-phosphate dehydrogenase (GAPDH) and hemoglobin. We identified marked band 3 deficiency in the second son of a consanguineous marriage with a life-threatening nonimmune hemolytic anemia. The patient was transfusion-dependent prior to splenectomy. SDS-PAGE and immunoblotting analysis of the proband red cell membrane proteins showed approximately 12±4% of band 3 and protein 4.2 compared to controls. Direct nucleotide sequence of SLC4A1 gene showed a single base substitution (T->C) at position +2 in the donor splice site of intron 2 (Band 3 Neapolis). Functionally, the mutation causes an altered splicing with the consequent formation of two different mature mRNAs, one including intron 2 and one skipping exon 2. While intron 2 retention leads to premature translation termination, exon 2 skipping causes the loss of the normal start site of eAE1 protein translation. The purification of mutant band 3 and its characterization by MALDI mass spectrometry demonstrated the lack of the first 11 amino acids due to the usage of second in frame start site. Real-time RT-PCR analyses of reticulocyte mRNA showed a marked decrement in band 3 transcription accounting for protein deficiency. The lack of the 11 N-terminal amino acids resulted in complete absence of membrane bound aldolase while other glycolitic enzymes (for example GAPDH) were membrane bound. Syk tyrosine kinase recognized the truncated band 3 as a substrate in vitro. In spite of this ability to be phosphorylated by Syk and to recruit Lyn tyrosine kinase in vitro, we were unable to demonstrate Tyr-phosphorylation of mutant band 3 in intact erythrocytes following stimulation by oxidative stress. This finding implies a requirement for the 11 N-terminal amino acids for the sequential Tyr-phosphorylation of band 3 in intact red cell membranes. The mutant band 3 was largely present in the high molecular weight aggregate fraction (about 5.2 fold higher than control), indicating its increased tendency to cluster in the membrane. The spontaneous clustering of truncated band 3 strongly suggests that the negatively charged N-terminal domain may regulate oligomeric state of band 3 in the membrane. Biophysical characterization showed that band 3 deficiency resulted in decreased cohesion between lipid bilyer and spectrin based membrane skeleton accounting for membrane loss. The structural and functional characterization of the naturally occuring mutant band 3 has enabled us to identify a significant role for the 11 N-terminal amino acids in band 3 function and in red cell membrane physiology.
APA, Harvard, Vancouver, ISO, and other styles
3

Satchwell, Timothy J., Bethan R. Hawley, Amanda J. Bell, Maria Leticia Ribeiro, and Ashley M. Toye. "The Cytoskeletal Binding Domain of Band 3 Is Required for Multiprotein Complex Formation and Retention during Erythropoiesis." Blood 124, no. 21 (December 6, 2014): 4003. http://dx.doi.org/10.1182/blood.v124.21.4003.4003.

Full text
Abstract:
Abstract The bicarbonate/chloride exchanger protein band 3 is the most abundant protein in the erythrocyte membrane and forms the core of a major multiprotein complex required for vertical association between the plasma membrane and the underlying spectrin cytoskeleton. A wealth of knowledge, derived from a host of varied studies including in vitro binding assays, work on mature erythrocytes and in other cellular systems have identified a number of binding partners including ankyrin, adducin and protein 4.2 amongst others. However, studies of the role that band 3 and the establishment of its connectivity with the cytoskeleton play both in assembly of multiprotein complexes during erythropoiesis and in particular in protein retention during enucleation have been understandably limited by the technical challenges associated with study of this protein within its unique native cellular context. The complete absence of band 3 in human erythrocytes has only been reported once, in a Portuguese patient with severe hereditary spherocytosis and distal renal tubular acidosis resulting from homozygosity for a V488M band 3 mutation (band 3 Coimbra). In this study, we used in vitro culture of erythroblasts derived from this patient as well as shRNA mediated depletion of band 3 to investigate the development of a band 3 deficient erythrocyte membrane and to specifically assess the formation, stability and retention of band 3 dependent protein complexes in the absence of this core protein during erythropoiesis and erythroblast enucleation. We demonstrate that the mutant band 3 Coimbra protein is expressed at very low but detectable levels during erythropoiesis but does not reach the cell surface and is not rescued by interaction with wild type protein. Failure to traffic to the plasma membrane and rapid degradation during erythropoiesis accounts for the absence of band 3 in Coimbra erythrocytes. The absence of plasma membrane expression of band 3 results in secondary deficiencies of a host of band 3 associated membrane proteins that we quantitatively show result predominantly from reduced plasma membrane expression during erythropoiesis compounded by impaired retention in the nascent reticulocyte membrane during erythroblast enucleation. In order to explore the importance of the capacity of band 3 to associate with the cytoskeleton for surface expression of this protein and its associated multiprotein complex binding proteins, immature band 3 Coimbra patient erythroblasts were lentivirally transduced with N terminally GFP-tagged wild type band 3 or band 3 mutants with absent or impaired ability to associate with the cytoskeleton. We demonstrate for the first time the ability to restore expression of band 3 to normal levels in this uniquely compromised patient and to rescue key secondary protein deficiencies arising from the absence of band 3 in reticulocytes. Exogenous expression levels of band 3, monitored by GFP intensity, correlate directly with degree of rescue of a variety of band 3 associated proteins. When expressed in band 3 deficient Coimbra erythroblasts, the band 3 membrane domain, which is unable to associate with the cytoskeleton, exhibits an increased partitioning to the plasma membrane surrounding the extruded nuclei compared to wild type band 3 and fails to rescue reticulocyte membrane retention of band 3 associated proteins. Expression of the kidney isoform of band 3, which is unable to bind ankyrin but retains the binding site for the cytoskeletal accessory protein, protein 4.2 results in partial rescue of the protein 4.2 dependent CD47 only. This demonstrates the importance of band 3 association with the cytoskeleton for efficient retention of band 3 associated proteins during erythroblast enucleation. Interestingly, whilst both exhibit reduced reticulocyte membrane retention relative to wild type, a significant proportion of both band 3 membrane domain and kidney band 3 is retained in the reticulocyte membrane following erythroblast enucleation indicating that cytoskeletal attachment of band 3 is not the sole determinant of partitioning during this complex process. This study advances our understanding of the mechanisms by which the properties of band 3 influence the sculpting and composition of the erythrocyte membrane and highlights the role of this protein as a core for assembly and stabilisation of key membrane proteins in both the early and late stages of terminal erythroid differentiation. Disclosures No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
4

Kodippili, Gayani C., Jeff Spector, Caitlin Sullivan, Frans A. Kuypers, Richard Labotka, Patrick G. Gallagher, Ken Ritchie, and Philip S. Low. "Imaging of the diffusion of single band 3 molecules on normal and mutant erythrocytes." Blood 113, no. 24 (June 11, 2009): 6237–45. http://dx.doi.org/10.1182/blood-2009-02-205450.

Full text
Abstract:
Abstract Membrane-spanning proteins may interact with a variety of other integral and peripheral membrane proteins via a diversity of protein-protein interactions. Not surprisingly, defects or mutations in any one of these interacting components can impact the physical and biological properties on the entire complex. Here we use quantum dots to image the diffusion of individual band 3 molecules in the plasma membranes of intact human erythrocytes from healthy volunteers and patients with defects in one of their membrane components, leading to well-known red cell pathologies (hereditary spherocytosis, hereditary elliptocytosis, hereditary hydrocytosis, Southeast Asian ovalocytosis, and hereditary pyropoikilocytosis). After characterizing the motile properties of the major subpopulations of band 3 in intact normal erythrocytes, we demonstrate that the properties of these subpopulations of band 3 change significantly in diseased cells, as evidenced by changes in the microscopic and macroscopic diffusion coefficients of band 3 and in the compartment sizes in which the different band 3 populations can diffuse. Because the above membrane abnormalities largely arise from defects in other membrane components (eg, spectrin, ankyrin), these data suggest that single particle tracking of band 3 might constitute a useful tool for characterizing the general structural integrity of the human erythrocyte membrane.
APA, Harvard, Vancouver, ISO, and other styles
5

ZIPSER, Yehudit, and Nechama S. KOSOWER. "Phosphotyrosine phosphatase associated with band 3 protein in the human erythrocyte membrane." Biochemical Journal 314, no. 3 (March 15, 1996): 881–87. http://dx.doi.org/10.1042/bj3140881.

Full text
Abstract:
The anion-exchange band 3 protein is the main erythrocyte protein that is phosphorylated by tyrosine kinase. To study the regulation of band 3 phosphorylation, we examined phosphotyrosine phosphatase (PTP) activity in the human erythrocyte. We show that the human erythrocyte membrane contains a band 3-associated neutral PTP which is activated by Mg2+ and inhibited by Mn2+ and vanadate. The PTP is active in the intact cell and in the isolated membrane. A major fraction of the PTP is tightly bound to the membrane and can be extracted from it by Triton X-100; a minor part is associated with the Triton X-100-insoluble cytoskeleton. The behaviour of the PTP parallels that of band 3, the major fraction of which is extractable by detergents with a minor fraction being anchored to the cytoskeleton. Moreover, band 3 is co-precipitated when the PTP is immunoprecipitated from solubilized membranes, and PTP is co-precipitated when band 3 is immunoprecipitated. The PTP appears to be related to PTP1B (identified using an antibody to an epitope in its catalytic domain and by molecular mass). The system described here has a unique advantage for PTP research, since it allows the study of the interaction of a PTP with an endogenous physiological substrate that is present in substantial amounts in the cell membrane. The membrane-bound, band 3-associated, PTP may play a role in band 3 function in the erythrocyte and in other cells which have proteins analogous to band 3.
APA, Harvard, Vancouver, ISO, and other styles
6

Schwarz-Ben Meir, N., T. Glaser, and N. S. Kosower. "Band 3 protein degradation by calpain is enhanced in erythrocytes of old people." Biochemical Journal 275, no. 1 (April 1, 1991): 47–52. http://dx.doi.org/10.1042/bj2750047.

Full text
Abstract:
Band 3 protein is a major erythrocyte transmembrane glycoprotein. We compared the degradation of band 3 protein by calpain I (a cytoplasmic, micromolar-Ca2(+)-requiring thiol proteinase) in the cells from old individuals (greater than 70 years old) to that in the cells from young ones (20-30 years old). In the young, little degradation of band 3 protein occurred in calpain-treated erythrocyte ghosts. In the old, significant band 3 protein degradation was found in erythrocyte ghosts treated similarly. The difference between young and old in the susceptibility of band 3 protein to calpain was retained in membrane vesicles (membranes stripped of peripheral proteins by NaOH) and in chymotrypsin-generated 60 kDa fragment (CH-60). The isolated N-terminal cytoplasmic 43 kDa fragment was degraded by calpain to a similar extent in old and in young. The separated 17 kDa membrane domain of the CH-60 and the trypsin-generated C-terminal 55 kDa membrane-spanning fragment were not degraded by calpain I in the young, nor in the old. Thus the N-terminal cytoplasmic domain is the domain degraded by calpain I. Enhanced sensitivity in the old is observed in intact band 3 protein and in CH-60, the isolated cytoplasmic domain being equally susceptible in young and old. The observed age-related enhanced sensitivity to calpain is consistent with the presence of modifications in band 3 protein and alterations in the association with the calpain-calpastatin system. Band 3 protein has several important functions, with modifications in the protein having implications for altered cell behaviour in the old individual.
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, SC, J. Palek, SJ Yi, PE Nichols, LH Derick, SS Chiou, D. Amato, JD Corbett, MR Cho, and DE Golan. "Molecular basis of altered red blood cell membrane properties in Southeast Asian ovalocytosis: role of the mutant band 3 protein in band 3 oligomerization and retention by the membrane skeleton." Blood 86, no. 1 (July 1, 1995): 349–58. http://dx.doi.org/10.1182/blood.v86.1.349.bloodjournal861349.

Full text
Abstract:
Southeast Asian ovalocytosis (SAO) is an asymptomatic trait characterized by rigid, poorly deformable red cells that resist invasion by several strains of malaria parasites. The underlying molecular genetic defect involves simple heterozygous state for a mutant band 3 protein, which contains a deletion of amino acids 400 through 408, linked with a Lys 56-to-Glu substitution (band 3-Memphis polymorphism). To elucidate the contribution of the mutant SAO band 3 protein to increased SAO red blood cell (RBC) rigidity, we examined the participation of the mutant SAO band 3 protein in increased band 3 attachment to the skeleton and band 3 oligomerization. We found first that SAO RBC skeletons retained more band 3 than normal cells and that this increased retention preferentially involved the mutant SAO band 3 protein. Second, SAO RBCs contained a higher percentage of band 3 oligomer-ankyrin complexes than normal cells, and these oligomers were preferentially enriched by the mutant SAO protein. At the ultrastructural level, the increased oligomer formation of SAO RBCs was reflected by stacking of band 3-containing intramembrane particles (IMP) into longitudinal strands. The IMP stacking was not reversed by treating SAO RBCs in alkaline pH (pH 11), which is known to weaken ankyrin-band 3 interactions, or by removing the cytoplasmic domain of band 3 from SAO membranes with trypsin. Finally, we found that band 3 protein in intact SAO RBCs exhibited a markedly decreased rotational mobility, presumably reflecting the increased oligomerization and the membrane skeletal association of the SAO band 3 protein. We propose that the mutant SAO band 3 has an increased propensity to form oligomers, which appear as longitudinal strands of IMP and exhibit increased association with membrane skeleton. This band 3 oligomerization underlies the increase in membrane rigidity by precluding membrane skeletal extension, which is necessary for membrane deformation.
APA, Harvard, Vancouver, ISO, and other styles
8

Hanspal, Manjit, David E. Golan, Yva Smockova, Scott J. Yi, Michael R. Cho, Shih-Chun Liu, and Jiri Palek. "Temporal Synthesis of Band 3 Oligomers During Terminal Maturation of Mouse Erythroblasts. Dimers and Tetramers Exist in the Membrane as Preformed Stable Species." Blood 92, no. 1 (July 1, 1998): 329–38. http://dx.doi.org/10.1182/blood.v92.1.329.413k20_329_338.

Full text
Abstract:
Band 3, the anion transport protein of the erythrocyte membrane, exists in the membrane as a mixture of dimers (B3D) and tetramers (B3T). The dimers are not linked to the skeleton and constitute the free mobile band 3 fraction. The tetramers are linked to the skeleton by their interaction with ankyrin. In this report we have examined the temporal synthesis and assembly of band 3 oligomers into the plasma membrane during red cell maturation. The oligomeric state of newly synthesized band 3 in early and late erythroblasts was analyzed by size-exclusion high-pressure liquid chromatography of band 3 extracts derived by mild extraction of plasma membranes with the nonionic detergent C12E8 (octaethylene glycol n-dodecyl monoether). This analysis revealed that at the early erythroblast stage, the newly synthesized band 3 is present predominantly as tetramers, whereas at the late stages of erythroid maturation, it is present exclusively as dimers. To examine whether the dimers and tetramers exist in the membrane as preformed stable species or whether they are interconvertible, the fate of band 3 species synthesized during erythroblast maturation was examined by pulse-chase analysis. We showed that the newly synthesized band 3 dimers and tetramers are stable and that there is no interconversion between these species in erythroblast membranes. Pulse-chase analysis followed by cellular fractionation showed that, in early erythroblasts, the newly synthesized band 3 tetramers are initially present in the microsomal fraction and later incorporated stably into the plasma membrane fraction. In contrast, in late erythroblasts the newly synthesized band 3 dimers move rapidly to the plasma membrane fraction but then recycle between the plasma membrane and microsomal fractions. Fluorescence photobleaching recovery studies showed that significant fractions of B3T and B3D are laterally mobile in early and late erythroblast plasma membranes, respectively, suggesting that many B3T-ankyrin complexes are unattached to the membrane skeleton in early erythroblasts and that the membrane skeleton has yet to become tightly organized in late erythroblasts. We postulate that in early erythroblasts, band 3 tetramers are transported through microsomes and stably incorporated into the plasma membrane. However, when ankyrin synthesis is downregulated in late erythroblasts, it appears that B3D are rapidly transported to the plasma membrane but then recycled between the plasma membrane and microsomal compartments. These observations may suggest novel roles for membrane skeletal proteins in stabilizing integral membrane protein oligomers at the plasma membrane and in regulating the endocytosis of such proteins.
APA, Harvard, Vancouver, ISO, and other styles
9

Campanella, M. Estela, Haiyan Chu, Nancy J. Wandersee, Luanne L. Peters, Narla Mohandas, Diana M. Gilligan, and Philip S. Low. "Characterization of glycolytic enzyme interactions with murine erythrocyte membranes in wild-type and membrane protein knockout mice." Blood 112, no. 9 (November 1, 2008): 3900–3906. http://dx.doi.org/10.1182/blood-2008-03-146159.

Full text
Abstract:
Previous research has shown that glycolytic enzymes (GEs) exist as multienzyme complexes on the inner surface of human erythrocyte membranes. Because GE binding sites have been mapped to sequences on the membrane protein, band 3, that are not conserved in other mammalian homologs, the question arose whether GEs can organize into complexes on other mammalian erythrocyte membranes. To address this, murine erythrocytes were stained with antibodies to glyceraldehyde-3-phosphate dehydrogenase, aldolase, phosphofructokinase, lactate dehydrogenase, and pyruvate kinase and analyzed by confocal microscopy. GEs were found to localize to the membrane in oxygenated erythrocytes but redistributed to the cytoplasm upon deoxygenation, as seen in human erythrocytes. To identify membrane proteins involved in GE assembly, erythrocytes from mice lacking each of the major erythrocyte membrane proteins were examined for GE localization. GEs from band 3 knockout mice were not membrane associated but distributed throughout the cytoplasm, regardless of erythrocyte oxygenation state. In contrast, erythrocytes from mice lacking α-spectrin, ankyrin, protein 4.2, protein 4.1, β-adducin, or dematin headpiece exhibited GEs bound to the membrane. These data suggest that oxygenation-dependent assembly of GEs on the membrane could be a general phenomenon of mammalian erythrocytes and that stability of these interactions depends primarily on band 3.
APA, Harvard, Vancouver, ISO, and other styles
10

Puchulu-Campanella, Estela, Francesco M. Turrini, Yen-Hsing Li, and Philip S. Low. "Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3." Proceedings of the National Academy of Sciences 113, no. 48 (November 15, 2016): 13732–37. http://dx.doi.org/10.1073/pnas.1611904113.

Full text
Abstract:
Src homology 2 (SH2) domains are composed of weakly conserved sequences of ∼100 aa that bind phosphotyrosines in signaling proteins and thereby mediate intra- and intermolecular protein–protein interactions. In exploring the mechanism whereby tyrosine phosphorylation of the erythrocyte anion transporter, band 3, triggers membrane destabilization, vesiculation, and fragmentation, we discovered a SH2 signature motif positioned between membrane-spanning helices 4 and 5. Evidence that this exposed cytoplasmic sequence contributes to a functional SH2-like domain is provided by observations that: (i) it contains the most conserved sequence of SH2 domains, GSFLVR; (ii) it binds the tyrosine phosphorylated cytoplasmic domain of band 3 (cdb3-PO4) withKd= 14 nM; (iii) binding of cdb3-PO4to erythrocyte membranes is inhibited both by antibodies against the SH2 signature sequence and dephosphorylation of cdb3-PO4; (iv) label transfer experiments demonstrate the covalent transfer of photoactivatable biotin from isolated cdb3-PO4(but not cdb3) to band 3 in erythrocyte membranes; and (v) phosphorylation-induced binding of cdb3-PO4to the membrane-spanning domain of band 3 in intact cells causes global changes in membrane properties, including (i) displacement of a glycolytic enzyme complex from the membrane, (ii) inhibition of anion transport, and (iii) rupture of the band 3–ankyrin bridge connecting the spectrin-based cytoskeleton to the membrane. Because SH2-like motifs are not retrieved by normal homology searches for SH2 domains, but can be found in many tyrosine kinase-regulated transport proteins using modified search programs, we suggest that related cases of membrane transport proteins containing similar motifs are widespread in nature where they participate in regulation of cell properties.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Membrane protein band 3"

1

Boulter, Jonathan Michael. "Structural and functional studies of the erythrocyte anion exchanger, band 3." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Young, Mark. "Studies of the transmembrane domain of the human erythrocyte anion exchanger (band 3)." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Malik, Saira. "Protein-protein and protein-lipid interactions of band 3 in native and model membranes." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parker, Mark D. "Expression and anion transport studies on the human erythrocyte anion exchange protein (AE1, band 3) in the yeast Saccharomyces cerevisiae." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stauffer, Kathrin. "On the structure and function of membrane-integrated segments of the human erythrocyte band 3 protein /." [S.l : s.n.], 1986. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Taylor, Andrew Mark. "Biophysical studies on the human erythrocyte anion transporter, band 3." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Clague, M. J. "A rotational dynamic study of Erythrocyte membrane proteins : Cytoskeletal restraints on band 3 and its aggregation by positively charged species." Thesis, University of Essex, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Che, Alexis Pun Kit. "Studies of band 3 rotational mobility in normal and ovalocytic human red blood cell membranes by transient dichroism." Thesis, University of Essex, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bruce, Lesley J. "A study of human erythrocyte band 3 variants." Thesis, University of Bristol, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Lin. "Complementation and membrane assembly studies of human erythrocyte anion exchanger (AE1, band 3)." Thesis, University of Bristol, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388102.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Membrane protein band 3"

1

Erythrocyte band 3 protein. Boca Raton, FL: CRC Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bobone, Sara. Peptide and Protein Interaction with Membrane Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06434-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moraes, Isabel, ed. The Next Generation in Membrane Protein Structure Determination. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35072-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borrell, Jordi H., Òscar Domènech, and Kevin M. W. Keough. Membrane Protein – Lipid Interactions: Physics and Chemistry in the Bilayer. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30277-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guseva, Ksenia. Formation and Cooperative Behaviour of Protein Complexes on the Cell Membrane. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23988-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

International, Meeting on Anion Transport Protein of the Red Blood Cell Membrane as well as Kidney and Diverse Cells (1989 Fukuoka-shi Japan). Anion transport protein of the red blood cell membrane: Proceedings of the International Meeting on Anion Transport Protein of the Red Blood Cell Membrane as well as Kidney and Diverse Cells, Fukuoka, 1-3 May 1989. Amsterdam: Elsevier, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

The Band 3 proteins: Anion transporters, binding proteins, and senescent antigens. Amsterdam: Elsevier, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Casey, Joseph Roman. Structural and functional studies of human band 3, the anion transport protein of the erythrocyte membrane. 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Passow, Hermann, and Ernst Bamberg. The Band 3 Proteins: Anion Transporters, Binding Proteins, and Senescent Antigenes (Progress in Cell Research). Elsevier Publishing Company, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rothman, S. S. Membrane Protein Transport, Volume 3 (Membrane Protein Transport). Elsevier Science, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Membrane protein band 3"

1

Rothstein, Aser. "Anion Exchanges and Band 3 Protein." In Membrane Transport, 203–35. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4614-7516-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lepke, Sigrid, Joachim Heberle, and Hermann Passow. "The Band 3 Protein: Anion Exchanger and Anion-Proton Cotransporter." In Red Cell Membrane Transport in Health and Disease, 221–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05181-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gunn, R. B. "Anion Exchange Mechanism of Band 3 and Related Proteins." In Membrane Transport in Biology, 233–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76983-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Passow, Hermann. "Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane." In Reviews of Physiology, Biochemistry and Pharmacology, Volume 103, 61–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3540153330_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crooke, Elliott, and William Wickner. "Bacterial Protein Translocation." In Membrane Biogenesis, 395–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73184-6_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Groves, Matthew R., and Irmgard Sinning. "Protein-Protein Interactions." In Peptide Arrays on Membrane Supports, 83–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-09229-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carroll, Marilyn E., Peter A. Santi, Joseph Zohar, Thomas R. E. Barnes, Peter Verheart, Per Svenningsson, Per E. Andrén, et al. "Integral Membrane Protein." In Encyclopedia of Psychopharmacology, 649. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_1896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Punta, Marco, and Edda Kloppmann. "Membrane Protein Structure." In Encyclopedia of Biophysics, 1457–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goddard, Alan, Joanne Oates, and Anthony Watts. "Membrane Protein Function." In Encyclopedia of Biophysics, 1452–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Becker, Jan. "Protein-Membrane Interaction." In Springer Theses, 81–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31241-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Membrane protein band 3"

1

Li, He, and George Lykotrafitis. "Modeling Diffusion and Vesiculation in Defective Human Erythrocyte Membrane." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14203.

Full text
Abstract:
The hemolytic disorders of hereditary spherocytosis (HS) and hereditary elliptocytosis (HE) affect the lives of millions of individuals worldwide. In HS and HE, connections in the vertical and horizontal directions between components of the RBC membrane (see Fig. 1(a)), are disrupted due to defective proteins, leading to loss of the structural and functional integrity of the membrane (1–2). Moreover, disruptions of either the vertical interactions or horizontal interactions affect the lateral diffusivity of the mobile band 3 proteins, as the motion of band 3 in the RBC membrane is confined by the cytoskeleton (3). Although a number of coarse-grained molecular dynamics (CGMD) RBC membrane models have been developed in the past two decades, very few RBC membrane models have been used to study the disordered band 3 diffusion and membrane vesiculation in HS and HE. The implicit representations of either the lipid bilayer or the cytoskeleton in these membrane models limit their applications in the membrane instability problems in HS and HE. In this extended abstract, we develop a two-component CGMD human RBC membrane model that explicitly comprises both the lipid bilayer and the cytoskeleton. In this way, the interactions between the cytoskeleton and the proteins embedded in the lipid bilayer can be simulated. The proposed model allows us to measure the band 3 lateral mobility and simulate the process of membrane vesiculation in the membrane with protein defects.
APA, Harvard, Vancouver, ISO, and other styles
2

Caffrey, Martin. "Lipid Phase Behavior: Databases, Rational Design and Membrane Protein Crystallization." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192724.

Full text
Abstract:
The relationship that exists between structure and function is a unifying theme in my varied biomembrane-based research activities. It applies equally well to the lipid as to the protein component of membranes. With a view to exploiting information that has been and that is currently being generated in my laboratory, as well as that which exists in the literature, a number of web-accessible, relational databases have been established over the years. These include databases dealing with lipids, detergents and membrane proteins. Those catering to lipids include i) LIPIDAT, a database of thermodynamic information on lipid phases and phase transitions, ii) LIPIDAG, a database of phase diagrams concerning lipid miscibility, and iii) LMSD, a lipid molecular structures database. CMCD is the detergent-based database. It houses critical micelle concentration information on a wide assortment of surfactants under different conditions. The membrane protein data bank (MPDB) was established to provide convenient access to the 3-D structure and related properties of membrane proteins and peptides. The utility and current status of these assorted databases will be described and recommendations will be made for extending their range and usefulness.
APA, Harvard, Vancouver, ISO, and other styles
3

Lykotrafitis, George, and He Li. "Two-Component Coarse-Grain Model for Erythrocyte Membrane." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62133.

Full text
Abstract:
Biological membranes are vital components of living cells as they function to maintain the structural integrity of the cells. Red blood cell (RBC) membrane comprises the lipid bilayer and the cytoskeleton network. The lipid bilayer consists of phospholipids, integral membrane proteins, peripheral proteins and cholesterol. It behaves as a 2D fluid. The cytoskeleton is a network of spectrin tetramers linked at the actin junctions. It is connected to the lipid bilayer primarily via Band-3 and ankyrin proteins. In this paper, we introduce a coarse-grained model with high computational efficiency for simulating a variety of dynamic and topological problems involving erythrocyte membranes. Coarse-grained agents are used to represent a cluster of lipid molecules and proteins with a diameter on the order of lipid bilayer thickness and carry both translational and rotational freedom. The membrane cytoskeleton is modeled as a canonical exagonal network of entropic springs that behave as Worm-Like-Chains (WLC). By simultaneously invoking these characteristics, the proposed model facilitates simulations that span large length-scales (∼ μm) and time-scales (∼ ms). The behavior of the model under shearing at different rates is studied. At low strain rates, the resulted shear stress is mainly due to the spectrin network and it shows the characteristic non-linear behavior of entropic networks, while the viscosity of the fluid-like lipid bilayer contributes to the resulting shear stress at higher strain rates. The apparent ease of this model in combining the spectrin network with the lipid bilayer presents a major advantage over conventional continuum methods such as finite element or finite difference methods for cell membranes.
APA, Harvard, Vancouver, ISO, and other styles
4

Schick, B. P., C. J. Walsh, and T. Jenkins-West. "CHANGES IN PROTEOGLYCAN AND SULFATED PROTEIN SYNTHESIS DURING MEGAKARYOCYTE MATURATION IN VIVO." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644620.

Full text
Abstract:
We investigated changes in sulfated proteoglycan (PG) and sulfated protein synthesis during megakaryocyte (MK) maturation in vivo by characterizing the (35S)-labeled molecules in MKs and platelets (PLTs) obtained daily from 3 hr to 5 days after injection of guinea pigs with (35S)sulfate. Radioactivity in macromolecules was maximal in MKs 3 hr and in PLTs 3 days after the injection. The cells were solubilized in 8M urea/50mM Tris/0.2% Triton X-100/0.1M NaCl, and PGs and sulfoproteins were separated by DEAE-Sephacel chromatography. PGs (65% of cell 35s) were eluted as two fractions, one (PG-1, 87%) with 4M Gdn HC1 and another (PG-2, 13%) with 4M Gdn HCl/2% TX-100. The Kav of PLT PG-1 on Sepharose CL-6B shifted gradually from 0.18 to 0.10 from 1-5 days after (35S) injection, and the smaller and larger PG-1 species were resolved on SDS-PAGE by fluorography. The size of PG-1 molecules was a function of glycosaminoglycan (GAG) chain length. The appearance of the different size PG-1 molecules in PLTs was accounted for by their disappearance from MKs over the same time period. Thus the size of the PG-1 synthesized by MKs decreased with MK maturation. The (35S)-PG-2 appeared in PLTs only 2-3 days after (35S) injection, had Kav 0.07 on CL-6B, but had GAGs of the same average size as those of PG-1. The hydrophobic character of PG-2 suggests that it might be the membrane PG. PG-1 and PG-2 were separated by SDS-PAGE and identified by fluorography. The core proteins of PG-1 and PG-2 were obtained by chondroitinase digestion and identified by SDS-PAGE and fluorography. The GAGs of PG-1 and PG-2 were almost entirely chondroitin-6-sulfate. The average size of PG-1 was 200,000 and its GAGs about 45,000.The sulfated proteins (20-25% of total cell 35S) eluted in the wash-through of the DEAE-Sephacel column and with 0.23M NaCl. Their isoelectric points were 4.0-6.5. They eluted as a small peak near the V0 and a major broad peak from Kav 0.3-0.6 on CL-6B columns, and could be identified as at least 8 distinct bands on SDS-PAGE by fluorography. Digestion with NaOH/NaBH4, Pronase or papain released small (35S)-labeled fragments, and the (35S) appeared to be associated with oligosaccharides. The sulfoproteins appeared in PLTs primarily 2-4 days after (35S) injection, and different proteins were labeled at different time points.
APA, Harvard, Vancouver, ISO, and other styles
5

Kawasaki, Kazunori, Hellmut Merkle, and Akihiro Kusumi. "Association And Anchorage Of Band 3 Protein In Compartmentalized Red Blood Cell Membranes As Observed By Rotational Diffusion Measurement Using Time-Resolved Phosphorescence Anisotropy Decay." In 1988 Los Angeles Symposium--O-E/LASE '88, edited by Joseph R. Lakowicz. SPIE, 1988. http://dx.doi.org/10.1117/12.945427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Piotrowicz, Randolph S., Kenneth M. Yamada, and Kunicki J. Kunicki. "HUMAN PLATELET GLYCOPROTEIN Ic-IIa IS AN ACTIVATION-INDEPENDENT FIBRONECTIN RECEPTOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643911.

Full text
Abstract:
Human platelets express the membrane glycoprotein (GP) heterodimer GPIIb-IIIa, which functions as an activation-dependent fibronectin (Fn) receptor. We have immunopurified the components of an activation-independent Fn receptor (FR) from human platelets employing a well-characterized rabbit polyclonal antibody raised against the beta chain of the chicken embryo fibroblast (CEF) FR (anti-band 3). This antibody crossreacts with antigen(s) expressed on both chicken thrombocytes and human platelets and inhibits the binding of both normal and thrombasthenic platelets (lacking GPIIb-IIIa) to Fn-coated surfaces in the absence of platelet activation.A monoclonal antibody directed against GPIIb-IIIa (AP2) partially inhibits the adhesion of normal platelets to Fn, but the combination of AP2 and anti-band 3 results in a level of inhibition greater than that obtained with either antibody alone. Thus, the presence of the FR alone is sufficient for the observed normal to enhanced binding of thrombasthenic platelets to Fn, whereas adhesion of normal platelets involves the synergistic action of the FR and GPIIb-IIIa. The adhesion of platelets to Fn mediated by the FR is inhibited by the tetrapeptide RGDS.Immunopurified FR appears to be a complex of two proteins: an alpha chain with an apparent molecular weight of 155/130 KD (nonreduced/reduced) and a beta chain with an apparent molecular weight of 125/147 KD. The alpha chain is composed of two subunits, dissociated by reduction, with electrophoretic mobilities identical to platelet glycoproteins previously designated lea and IcB. The beta chain comigrates with that platelet glycoprotein known as GPIIa. In an immunoblot assay, anti-band 3 binds to GPIIa but not to GPIc. The fact that anti-band 3 iramunoprecipitates both GP therefore suggests that they exist in a complex.Our findings establish GPIc-IIa as yet another platelet glycoprotein receptor complex and pave the way for future studies of the relative role of GPIIb-IIIa and GPIc-IIa in the adhesion of platelets to physiologic surfaces.
APA, Harvard, Vancouver, ISO, and other styles
7

Belloc, F., P. Hourdille, M. Boisseau, and A. T. Nurden. "FIBRINOGEN SYNTHESIS BUT DEFECTIVE STORAGE IN THE PLATELETS OF A PATIENT WITH GLANZMANN’S THROMBASTHENIA." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644739.

Full text
Abstract:
Patient A.M. has a lifelong history of bleeding episodes and platelet function defects typical of type I Glanzmann's thrombasthenia. Analysis of platelet membrane glycoproteins (GP) by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) or by studying the binding of monoclonal antibodies to intact platelets, confirmed the presence of only trace amounts of GP lib and GP Ilia. SDS-PAGE also revealed a severe deficiency of the alpha-granule pool of platelet fibrinogen although an immunoblot performed using a monospecific rabbit anti-fibrinogen antibody showed the presence of residual amounts of fibrinogen. This was estimated to be approximately 10 % of the normal range by an ELISA procedure. Incubation of washed platelets from A.M. with (35S) methionine for 3 h at 37°C resulted in the incorporation of radioactivity into multiple protein bands as revealed by SDS-PAGE followed by fluorography. Immunoprecipitation experiments with affinity purified anti-fibrinogen IgG bound to ultrogel confirmed the synthesis of fibrinogen. The amounts of radioactivity obtained were similar to those immunoprecipitated from control platelet extracts under the same conditions. However, unlike for control platelets, the neosynthesized fibrinogen in A.M. platelets was no longer detected after a 18 h cold chase. In contrast, neosynthesized thrombospondin of the patient was normally preserved during the same chase period. When the fate of the neosynthesized fibrinogen in A.M. platelets was studied it was found to be lost at a faster rate than in normal platelets. Immunoblotting experiments confirmed that cytoplasmic proteases may degrade fibrinogen when exposed to the protein. Our results suggest that the fibrinogen deficiency in the platelets of patients with type I thrombasthenia may be related to a storage abnormality in megakaryocytes or platelets and not from a synthesis defect.
APA, Harvard, Vancouver, ISO, and other styles
8

Sundaresan, Vishnu Baba, and Donald J. Leo. "Modeling and Characterization of a Chemomechanical Actuator Based on Protein Transporters." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43712.

Full text
Abstract:
Plants and animal cells are naturally occurring actuators that exhibit force and motion driven by fluid transport through the cell membrane. The protein transporters embedded in the cell membrane serve as the selective gateway for ion and fluid transport. The actuator presented in this work generates force and deformation from mass transport through an artificial membrane with protein transporters extracted from plant cell membranes. The artificial membrane is formed from purified 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L-Serine] (Sodium Salt) (POPS), 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphoethanolamine (POPE) lipids and supported on a porous substrate. The protein transporter used in the actuator membrane is a proton-sucrose cotransporter, SUT4, extracted from yeast cells that genetically modified to grow the cotransporter in their cell membranes. The SUT4 transporter conducts proton and sucrose from the side of the membrane with higher concentration and carries water molecules across the membrane. It is observed from transport characterization experiments that fluid flux through the membrane varies with the applied sucrose concentration and hence is chosen as the control stimulus in the actuator. A modified four-state facilitated diffusion model is applied to the transport characterization data to compute the two characteristic parameters for fluid transport, saturation concentration and translocation rate, through the membrane. The flux rate through the membrane is observed to increase with the concentration till a particular value and saturates at a higher concentration. The concentration at which the flux rate through the membrane saturates is referred to as the saturation concentration. The saturation concentration for the actuator is experimentally found to be 6±0.6mM sucrose on the side with lower pH. The corresponding maximum translocation rate is found to be 9.6±1.2 nl/μ.cm2.min. The maximum steady state deformation produced by the actuator is observed at 30 mM sucrose that corresponds to a force of 0.89 mN.
APA, Harvard, Vancouver, ISO, and other styles
9

Verduci, Ivan, Valentina Carlini, Federica Barbieri, Antonio Daga, Tullio Florio, and Michele Mazzanti. "Abstract 2549: Allostatic conditions in human glioblastoma stem cells are maintained with the contribution of CLIC1 membrane protein functional expression." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-2549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Verduci, Ivan, Valentina Carlini, Federica Barbieri, Antonio Daga, Tullio Florio, and Michele Mazzanti. "Abstract 2549: Allostatic conditions in human glioblastoma stem cells are maintained with the contribution of CLIC1 membrane protein functional expression." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-2549.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Membrane protein band 3"

1

Palmer, Guy H., Eugene Pipano, Terry F. McElwain, Varda Shkap, and Donald P. Knowles, Jr. Development of a Multivalent ISCOM Vaccine against Anaplasmosis. United States Department of Agriculture, July 1993. http://dx.doi.org/10.32747/1993.7568763.bard.

Full text
Abstract:
Anaplasmosis is an arthropod+borne disease of cattle caused by the rickettsia Anaplasma marginale and an impediment to efficient production of healthy livestock in both Israel and the United States. Our research focuses on development of a recombinant membrane surface protein (MSP) immunogen to replace current vaccines derived from the blood of infected cattle. The risk of widespread transmission of both known and newly emergent pathogens has prevented licensure of live blood-based vaccines in the U.S. and is a major concern for their continued use in Israel. Briefly, we accomplished the following in our BARD supported research: i) characterization of the intramolecular and intermolecular relationships of the native Major Surface Proteins (MSP) in the outer membrane; ii) expression, purification, and epitope characterization of the recombinant MSP-2, MSP-3, MSP-4, and MSP-5 proteins required to construct the recombinant ISCOM; iii) demonstration that the outer membrane-Quil A induces CD4+ T lymphocytes specific for the outer membrane polypeptides; iv) identification of CD4+ T lymphocytes that recognize outer membrane polypeptide epitopes conserved among other wise antigenically distinct strains; v) determination that immunization with the outer membrane-Quil A construct does not affect the ability of ticks to acquire or transmit A. marginale; and vi) demonstration that the outer membrane-Quil A construct induces complete protection against rickettsemia upon homologous challenge and significant protection against challenge with antigenically distinct strains, including tick transmission. Importantly, the level of protection against homologous challenge in the MSP vaccinates was comparable to that induced by live blood-based vaccines and demonstrates that development of a new generation of vaccines is feasible.
APA, Harvard, Vancouver, ISO, and other styles
2

Evans, Donald L., Avigdor Eldar, Liliana Jaso-Friedmann, and Herve Bercovier. Streptococcus Iniae Infection in Trout and Tilapia: Host-Pathogen Interactions, the Immune Response Towards the Pathogen and Vaccine Formulation. United States Department of Agriculture, February 2005. http://dx.doi.org/10.32747/2005.7586538.bard.

Full text
Abstract:
The objectives of the BARD proposal were to determine the mechanisms of nonspecific cytotoxic cells (NCC) that are necessary to provide heightened innate resistance to infection and to identify the antigenic determinants in Streptococcus iniae that are best suited for vaccine development. Our central hypothesis was that anti-bacterial immunity in trout and tilapia can only be acquired by combining "innate" NCC responses with antibody responses to polysaccharide antigens. These Objectives were accomplished by experiments delineated by the following Specific Aims: Specific aim (SA) #1 (USA) "Clone and Identify the Apoptosis Regulatory Genes in NCC"; Specific aim #2 (USA)"Identify Regulatory Factors that Control NCC Responses to S. iniae"; Specific aim #3 (Israel) "Characterize the Biological Properties of the S. iniae Capsular Polysaccharide"; and Specific aim #4 (Israel) "Development of an Acellular Vaccine". Our model of S. iniae pathogenesis encompassed two approaches, identify apoptosis regulatory genes and proteins in tilapia that affected NCC activities (USA group) and determine the participation of S.iniae capsular polysaccharides as potential immunogens for the development of an acellular vaccine (Israel group). We previously established that it was possible to immunize tilapia and trout against experimental S. difficile/iniaeinfections. However these studies indicated that antibody responses in protected fish were short lived (3-4 months). Thus available vaccines were useful for short-term protection only. To address the issues of regulation of pathogenesis and immunogens of S. iniae, we have emphasized the role of the innate immune response regarding activation of NCC and mechanisms of invasiveness. Considerable progress was made toward accomplishing SA #1. We have cloned the cDNA of the following tilapia genes: cellular apoptosis susceptibility (CAS/AF547173»; tumor necrosis factor alpha (TNF / A Y 428948); and nascent polypeptide-associated complex alpha polypeptide (NACA/ A Y168640). Similar attempts were made to sequence the tilapia FasLgene/cDNA, however these experiments were not successful. Aim #2 was to "Identify Regulatory Factors that Control NCC Responses to S. iniae." To accomplish this, a new membrane receptor has been identified that may control innate responses (including apoptosis) of NCC to S. iniae. The receptor is a membrane protein on teleost NCC. This protein (NCC cationic antimicrobial protein-1/ncamp-1/AAQ99138) has been sequenced and the cDNA cloned (A Y324398). In recombinant form, ncamp-l kills S. iniae in vitro. Specific aim 3 ("Characterize the Biological Properties of the S.iniae Capsular Polysaccharide") utilized an in- vitro model using rainbow trout primary skin epithelial cell mono layers. These experiments demonstrated colonization into epithelial cells followed by a rapid decline of viable intracellular bacteria and translocation out of the cell. This pathogenesis model suggested that the bacterium escapes the endosome and translocates through the rainbow trout skin barrier to further invade and infect the host. Specific aim #4 ("Development of an Acellular Vaccine") was not specifically addressed. These studies demonstrated that several different apoptotic regulatory genes/proteins are expressed by tilapia NCC. These are the first studies demonstrating that such factors exist in tilapia. Because tilapia NCC bind to and are activated by S. iniae bacterial DNA, we predict that the apoptotic regulatory activity of S. iniae previously demonstrated by our group may be associated with innate antibacterial responses in tilapia.
APA, Harvard, Vancouver, ISO, and other styles
3

Shen, B. W. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/10114973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eyal, Yoram, and Sheila McCormick. Molecular Mechanisms of Pollen-Pistil Interactions in Interspecific Crossing Barriers in the Tomato Family. United States Department of Agriculture, May 2000. http://dx.doi.org/10.32747/2000.7573076.bard.

Full text
Abstract:
During the evolutionary process of speciation in plants, naturally occurring barriers to reproduction have developed that affect the transfer of genes within and between related species. These barriers can occur at several different levels beginning with pollination-barriers and ending with hybrid-breakdown. The interaction between pollen and pistils presents one of the major barriers to intra- and inter-specific crosses and is the focus of this research project. Our long-term goal in this research proposal was defined to resolve questions on recognition and communication during pollen-pistil interactions in the extended tomato family. In this context, this work was initiated and planned to study the potential involvement of tomato pollen-specific receptor-like kinases (RLK's) in the interaction between pollen and pistils. By special permission from BARD the objectives of this research were extended to include studies on pollen-pistil interactions and pollination barriers in horticultural crops with an emphasis on citrus. Functional characterization of 2 pollen-specific RLK's from tomato was carried out. The data shows that both encode functional kinases that were active as recombinant proteins. One of the kinases was shown to accumulate mainly after pollen germination and to be phosphorylated in-vitro in pollen membranes as well as in-vivo. The presence of style extract resulted in dephosphorylation of the RLK, although no species specificity was observed. This data implies a role for at least one RLK in pollination events following pollen germination. However, a transgenic plant analysis of the RLK's comprising overexpression, dominant-negative and anti-sense constructs failed to provide answers on their role in pollination. While genetic effects on some of the plants were observed in both the Israeli and American labs, no clear functional answers were obtained. An alternative approach to addressing function was pursued by screening for an artificial ligand for the receptor domain using a peptide phage display library. An enriched peptide sequence was obtained and will be used to design a peptide-ligand to be tested for its effect o pollen germination and tube growth. Self-incompatibility (SI) in citrus was studied on 3 varieties of pummelo. SI was observed using fluorescence microscopy in each of the 3 varieties and compatibility relations between varieties was determined. An initial screen for an S-RNase SI mechanism yielded only a cDNA homologous to the group of S-like RNases, suggesting that SI results from an as yet unknown mechanism. 2D gel electrophoresis was applied to compare pollen and style profiles of different compatibility groups. A "polymorphic" protein band from style extracts was observed, isolated and micro-sequenced. Degenerate primers designed based on the peptide sequence date will be used to isolate the relevant genes i order to study their potential involvement in SI. A study on SI in the apple cultivar Top red was initiated. SI was found, as previously shown, to be complete thus requiring a compatible pollinator variety. A new S-RNase allele was discovered fro Top red styles and was found to be highly homologous to pear S-RNases, suggesting that evolution of these genes pre-dated speciation into apples and pears but not to other Rosaceae species. The new allele provides molecular-genetic tools to determine potential pollinators for the variety Top red as well as a tool to break-down SI in this important variety.
APA, Harvard, Vancouver, ISO, and other styles
5

Kirchhoff, Helmut, and Ziv Reich. Protection of the photosynthetic apparatus during desiccation in resurrection plants. United States Department of Agriculture, February 2014. http://dx.doi.org/10.32747/2014.7699861.bard.

Full text
Abstract:
In this project, we studied the photosynthetic apparatus during dehydration and rehydration of the homoiochlorophyllous resurrection plant Craterostigmapumilum (retains most of the photosynthetic components during desiccation). Resurrection plants have the remarkable capability to withstand desiccation, being able to revive after prolonged severe water deficit in a few days upon rehydration. Homoiochlorophyllous resurrection plants are very efficient in protecting the photosynthetic machinery against damage by reactive oxygen production under drought. The main purpose of this BARD project was to unravel these largely unknown protection strategies for C. pumilum. In detail, the specific objectives were: (1) To determine the distribution and local organization of photosynthetic protein complexes and formation of inverted hexagonal phases within the thylakoid membranes at different dehydration/rehydration states. (2) To determine the 3D structure and characterize the geometry, topology, and mechanics of the thylakoid network at the different states. (3) Generation of molecular models for thylakoids at the different states and study the implications for diffusion within the thylakoid lumen. (4) Characterization of inter-system electron transport, quantum efficiencies, photosystem antenna sizes and distribution, NPQ, and photoinhibition at different hydration states. (5) Measuring the partition of photosynthetic reducing equivalents between the Calvin cycle, photorespiration, and the water-water cycle. At the beginning of the project, we decided to use C. pumilum instead of C. wilmsii because the former species was available from our collaborator Dr. Farrant. In addition to the original two dehydration states (40 relative water content=RWC and 5% RWC), we characterized a third state (15-20%) because some interesting changes occurs at this RWC. Furthermore, it was not possible to detect D1 protein levels by Western blot analysis because antibodies against other higher plants failed to detect D1 in C. pumilum. We developed growth conditions that allow reproducible generation of different dehydration and rehydration states for C. pumilum. Furthermore, advanced spectroscopy and microscopy for C. pumilum were established to obtain a detailed picture of structural and functional changes of the photosynthetic apparatus in different hydrated states. Main findings of our study are: 1. Anthocyan accumulation during desiccation alleviates the light pressure within the leaves (Fig. 1). 2. During desiccation, stomatal closure leads to drastic reductions in CO2 fixation and photorespiration. We could not identify alternative electron sinks as a solution to reduce ROS production. 3. On the supramolecular level, semicrystalline protein arrays were identified in thylakoid membranes in the desiccated state (see Fig. 3). On the electron transport level, a specific series of shut downs occur (summarized in Fig. 2). The main events include: Early shutdown of the ATPase activity, cessation of electron transport between cyt. bf complex and PSI (can reduce ROS formation at PSI); at higher dehydration levels uncoupling of LHCII from PSII and cessation of electron flow from PSII accompanied by crystal formation. The later could severe as a swift PSII reservoir during rehydration. The specific order of events in the course of dehydration and rehydration discovered in this project is indicative for regulated structural transitions specifically realized in resurrection plants. This detailed knowledge can serve as an interesting starting point for rationale genetic engineering of drought-tolerant crops.
APA, Harvard, Vancouver, ISO, and other styles
6

Splitter, Gary, and Menachem Banai. Microarray Analysis of Brucella melitensis Pathogenesis. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709884.bard.

Full text
Abstract:
Original Objectives 1. To determine the Brucella genes that lead to chronic macrophage infection. 2. To identify Brucella genes that contribute to infection. 3. To confirm the importance of Brucella genes in macrophages and placental cells by mutational analysis. Background Brucella spp. is a Gram-negative facultative intracellular bacterium that infects ruminants causing abortion or birth of severely debilitated animals. Brucellosis continues in Israel, caused by B. melitensis despite an intensive eradication campaign. Problems with the Rev1 vaccine emphasize the need for a greater understanding of Brucella pathogenesis that could improve vaccine designs. Virulent Brucella has developed a successful strategy for survival in its host and transmission to other hosts. To invade the host, virulent Brucella establishes an intracellular niche within macrophages avoiding macrophage killing, ensuring its long-term survival. Then, to exit the host, Brucella uses placenta where it replicates to high numbers resulting in abortion. Also, Brucella traffics to the mammary gland where it is secreted in milk. Missing from our understanding of brucellosis is the surprisingly lillie basic information detailing the mechanisms that permit bacterial persistence in infected macrophages (chronic infection) and dissemination to other animals from infected placental cells and milk (acute infection). Microarray analysis is a powerful approach to determine global gene expression in bacteria. The close genomic similarities of Brucella species and our recent comparative genomic studies of Brucella species using our B. melitensis microarray, suqqests that the data obtained from studying B. melitensis 16M would enable understanding the pathogenicity of other Brucella organisms, particularly the diverse B. melitensis variants that confound Brucella eradication in Israel. Conclusions Results from our BARD studies have identified previously unknown mechanisms of Brucella melitensis pathogenesis- i.e., response to blue light, quorum sensing, second messenger signaling by cyclic di-GMP, the importance of genomic island 2 for lipopolysaccharide in the outer bacterial membrane, and the role of a TIR domain containing protein that mimics a host intracellular signaling molecule. Each one of these pathogenic mechanisms offers major steps in our understanding of Brucella pathogenesis. Strikingly, our molecular results have correlated well to the pathognomonic profile of the disease. We have shown that infected cattle do not elicit antibodies to the organisms at the onset of infection, in correlation to the stealth pathogenesis shown by a molecular approach. Moreover, our field studies have shown that Brucella exploit this time frame to transmit in nature by synchronizing their life cycle to the gestation cycle of their host succumbing to abortion in the last trimester of pregnancy that spreads massive numbers of organisms in the environment. Knowing the bacterial mechanisms that contribute to the virulence of Brucella in its host has initiated the agricultural opportunities for developing new vaccines and diagnostic assays as well as improving control and eradication campaigns based on herd management and linking diagnosis to the pregnancy status of the animals. Scientific and Agricultural Implications Our BARD funded studies have revealed important Brucella virulence mechanisms of pathogenesis. Our publication in Science has identified a highly novel concept where Brucella utilizes blue light to increase its virulence similar to some plant bacterial pathogens. Further, our studies have revealed bacterial second messengers that regulate virulence, quorum sensing mechanisms permitting bacteria to evaluate their environment, and a genomic island that controls synthesis of its lipopolysaccharide surface. Discussions are ongoing with a vaccine company for application of this genomic island knowledge in a Brucella vaccine by the U.S. lab. Also, our new technology of bioengineering bioluminescent Brucella has resulted in a spin-off application for diagnosis of Brucella infected animals by the Israeli lab by prioritizing bacterial diagnosis over serological diagnosis.
APA, Harvard, Vancouver, ISO, and other styles
7

Elbaum, Michael, and Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, March 2013. http://dx.doi.org/10.32747/2013.7699848.bard.

Full text
Abstract:
Objectives: The overall goal of the project was to build an ultrastructural model of the Agrobacterium tumefaciens type IV secretion system (T4SS) based on electron microscopy, genetics, and immunolocalization of its components. There were four original aims: Aim 1: Define the contributions of contact-dependent and -independent plant signals to formation of novel morphological changes at the A. tumefaciens polar membrane. Aim 2: Genetic basis for morphological changes at the A. tumefaciens polar membrane. Aim 3: Immuno-localization of VirB proteins Aim 4: Structural definition of the substrate translocation route. There were no major revisions to the aims, and the work focused on the above questions. Background: Agrobacterium presents a unique example of inter-kingdom gene transfer. The process involves cell to cell transfer of both protein and DNA substrates via a contact-dependent mechanism akin to bacterial conjugation. Transfer is mediated by a T4SS. Intensive study of the Agrobacterium T4SS has made it an archetypal model for the genetics and biochemistry. The channel is assembled from eleven protein components encoded on the B operon in the virulence region of the tumor-inducing plasmid, plus an additional coupling protein, VirD4. During the course of our project two structural studies were published presenting X-ray crystallography and three-dimensional reconstruction from electron microscopy of a core complex of the channel assembled in vitro from homologous proteins of E. coli, representing VirB7, VirB9, and VirB10. Another study was published claiming that the secretion channels in Agrobacterium appear on helical arrays around the membrane perimeter and along the entire length of the bacterium. Helical arrangements in bacterial membranes have since fallen from favor however, and that finding was partially retracted in a second publication. Overall, the localization of the T4SS within the bacterial membranes remains enigmatic in the literature, and we believe that our results from this project make a significant advance. Summary of achievements : We found that polar inflations and other membrane disturbances relate to the activation conditions rather than to virulence protein expression. Activation requires low pH and nutrient-poor medium. These stress conditions are also reflected in DNA condensation to varying degrees. Nonetheless, they must be considered in modeling the T4SS as they represent the relevant conditions for its expression and activity. We identified the T4SS core component VirB7 at native expression levels using state of the art super-resolution light microscopy. This marker of the secretion system was found almost exclusively at the cell poles, and typically one pole. Immuno-electron microscopy identified the protein at the inner membrane, rather than at bridges across the inner and outer membranes. This suggests a rare or transient assembly of the secretion-competent channel, or alternatively a two-step secretion involving an intermediate step in the periplasmic space. We followed the expression of the major secreted effector, VirE2. This is a single-stranded DNA binding protein that forms a capsid around the transferred oligonucleotide, adapting the bacterial conjugation to the eukaryotic host. We found that over-expressed VirE2 forms filamentous complexes in the bacterial cytoplasm that could be observed both by conventional fluorescence microscopy and by correlative electron cryo-tomography. Using a non-retentive mutant we observed secretion of VirE2 from bacterial poles. We labeled the secreted substrates in vivo in order detect their secretion and appearance in the plant cells. However the low transfer efficiency and significant background signal have so far hampered this approach.
APA, Harvard, Vancouver, ISO, and other styles
8

Barefoot, Susan F., Bonita A. Glatz, Nathan Gollop, and Thomas A. Hughes. Bacteriocin Markers for Propionibacteria Gene Transfer Systems. United States Department of Agriculture, June 2000. http://dx.doi.org/10.32747/2000.7573993.bard.

Full text
Abstract:
The antibotulinal baceriocins, propionicin PLG-1 and jenseniin G., were the first to be identified, purified and characterized for the dairy propionibaceria and are produced by Propionibacterium thoenii P127 and P. thoenii/jensenii P126, respectively. Objectives of this project were to (a) produce polyclonal antibodies for detection, comparison and monitoring of propionicin PLG-1; (b) identify, clone and characterize the propionicin PLG-1 (plg-1) and jenseniin G (jnG) genes; and (3) develop gene transfer systems for dairy propionibacteria using them as models. Polyclonal antibodies for detection, comparison and monitoring of propionicin PLG-1 were produced in rabbits. Anti-PLG-1 antiserum had high titers (256,000 to 512,000), neutralized PLG-1 activity, and detected purified PLG-1 at 0.10 mg/ml (indirect ELISA) and 0.033 mg/ml (competitive indirect ELISA). Thirty-nine of 158 strains (most P. thoenii or P. jensenii) yielded cross-reacting material; four strains of P. thoenii, including two previously unidentified bacteriocin producers, showed biological activity. Eight propionicin-negative P127 mutants produced neither ELISA response nor biological activity. Western blot analyses of supernates detected a PLG-1 band at 9.1 kDa and two additional protein bands with apparent molecular weights of 16.2 and 27.5 kDa. PLG-1 polyclonal antibodies were used for detection of jenseniin G. PLG-1 antibodies neutralized jenseniin G activity and detected a jenseniin G-sized, 3.5 kDa peptide. Preliminary immunoprecipitation of crude preparations with PLG-1 antibodies yielded three proteins including an active 3-4 kDa band. Propionicin PLG-1 antibodies were used to screen a P. jensenii/thoenii P126 genomic expression library. Complete sequencing of a cloned insert identified by PLG-1 antibodies revealed a putative response regulator, transport protein, transmembrane protein and an open reading frame (ORF) potentially encoding jenseniin G. PCR cloning of the putative plg-1 gene yielded a 1,100 bp fragment with a 355 bp ORF encoding 118 amino acids; the deduced N-terminus was similar to the known PLG-1 N-terminus. The 118 amino acid sequence deduced from the putative plg-1 gene was larger than PLG-1 possibly due to post-translational processing. The product of the putative plg-1 gene had a calculated molecular weight of 12.8 kDa, a pI of 11.7, 14 negatively charged residues (Asp+Glu) and 24 positively charged residues (Arg+Lys). The putative plg-1 gene was expressed as an inducible fusion protein with a six-histidine residue tag. Metal affinity chromatography of the fused protein yielded a homogeneous product. The fused purified protein sequence matched the deduced putative plg-1 gene sequence. The data preliminarily suggest that both the plg-1 and jnG genes have been identified and cloned. Demonstrating that antibodies can be produced for propionicin PLG-1 and that those antibodies can be used to detect, monitor and compare activity throughout growth and purification was an important step towards monitoring PLG-1 concentrations in food systems. The unexpected but fortunate cross-reactivity of PLG-1 antibodies with jenseniin G led to selective recovery of jenseniin G by immunoprecipitation. Further refinement of this separation technique could lead to powerful affinity methods for rapid, specific separation of the two bacteriocins and thus facilitate their availability for industrial or pharmaceutical uses. Preliminary identification of genes encoding the two dairy propionibacteria bacteriocins must be confirmed; further analysis will provide means for understanding how they work, for increasing their production and for manipulating the peptides to increase their target species. Further development of these systems would contribute to basic knowledge about dairy propionibacteria and has potential for improving other industrially significant characteristics.
APA, Harvard, Vancouver, ISO, and other styles
9

Kanner, Joseph, Edwin Frankel, Stella Harel, and Bruce German. Grapes, Wines and By-products as Potential Sources of Antioxidants. United States Department of Agriculture, January 1995. http://dx.doi.org/10.32747/1995.7568767.bard.

Full text
Abstract:
Several grape varieties and red wines were found to contain large concentration of phenolic compounds which work as antioxidant in-vitro and in-vivo. Wastes from wine production contain antioxidants in large amounts, between 2-6% on dry material basis. Red wines but also white wines were found to prevent lipid peroxidation of turkey muscle tissues stored at 5oC. The antioxidant reaction of flavonoids found in red wines against lipid peroxidation were found to depend on the structure of the molecule. Red wine flavonoids containing an orthodihydroxy structure around the B ring were found highly active against LDL and membrane lipid peroxidation. The antioxidant activity of red wine polyphenols were also found to be dependent on the catalyzer used. In the presence of H2O2-activated myoglobin, the inhibition efficiency was malvidin 3-glucoside>catechin>malvidin>resveratol. However, in the presence of an iron redox cycle catalyzer, the order of effectiveness was resveratol>malvidin 3-glucoside = malvidin>catechin. Differences in protein binding were found to affect antioxidant activity in inhibiting LDL oxidation. A model protein such as BSA, was investigated on the antioxidant activity of phenolic compounds, grape extracts, and red wines in a lecithin-liposome model system. Ferulic acid followed by malvidin and rutin were the most efficient in inhibiting both lipid and protein oxidation. Catechin, a flavonal found in red-wines in relatively high concentration was found to inhibit myoglobin catalyzed linoleate membrane lipid peroxidation at a relatively very low concentration. This effect was studied by the determination of the by-products generated from linoleate during oxidation. The study showed that hydroperoxides are catalytically broken down, not to an alcohol but most probably to a non-radical adduct. The ability of wine-phenolics to reduce iron and from complexes with metals were also demonstrated. Low concentration of wine phenolics were found to inhibit lipoxygenase type II activity. An attempt to understand the bioavailability in humans of antocyanins from red wine showed that two antocyanins from red wine were found unchanged in human urine. Other antocyanins seems to undergo molecular modification. In hypercholesterolemic hamsters, aortic lipid deposition was significantly less in animals fed diets supplemented with either catechin or vitamin E. The rate of LDL accumulation in the carotid arteries was also significantly lower in the catechin and vitamin E animal groups. These results suggested a novel mechanism by which wine phenolics are associated with decreased risk of coronary heart diseases. This study proves in part our hypothesis that the "French Paradox" could be explained by the action of the antioxidant effects of phenolic compounds found at high concentration in red wines. The results of this study argue that it is in the interest of public health to increase the consumption of dietary plant falvonoids. Our results and these from others, show that the consumption of red wine or plant derived polyphenolics can change the antioxidant tone of animal and human plasma and its isolated components towards oxidative reactions. However, we need more research to better understand bioavailability and the mechanism of how polyphenolics affect health and disease.
APA, Harvard, Vancouver, ISO, and other styles
10

Delmer, Deborah P., Douglas Johnson, and Alex Levine. The Role of Small Signal Transducing Gtpases in the Regulation of Cell Wall Deposition Patterns in Plants. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7570571.bard.

Full text
Abstract:
The combined research of the groups of Delmer, Levine and Johnson has led to a number of interesting findings with respect to the function of the small GTPase Rac in plants and also opened up new leads for future research. The results have shown: 1) The Rac13 protein undergoes geranylgeranlyation and is also translocated to the plasma membrane as found for Rac in mammals; 2) When cotton Rac13 is highly- expressed in yeast, it leads to an aberrant phenotype reminiscent of mutants impaired in actin function, supporting a role for Rac13 in cytoskeletal organization; 3) From our searches, there is no strong evidence that plants contain homologs of the related CDC42 genes found in yeast and mammals; 4) We have identified a rather unique Rac gene in Arabidopsis that has unusual extensions at both the N- and C-terminal portions of the protein; 5) New evidence was obtained that an oxidative burst characterized by substantial and sustained production of H202 occurs coincident with the onset of secondary wall synthesis in cotton fibers. Further work indicates that the H202 produced may be a signal for the onset of this phase of development and also strongly suggests that Rac plays an important role in signaling for event. Since the secondary walls of plants that contain high levels of lignin and cellulose are the major source of biomass on earth, understanding what signals control this process may well in the future have important implications for manipulating the timing and extent of secondary wall deposition. 6) When the cotton Rac13 promoter is fused to the reporter gene GUS, expression patterns in Arabidopsis indicate very strong and specific expression in developing trichomes and in developing xyelm. Since both of these cell types are engaged in secondary wall synthesis, this further supports a role for Rac in signaling for onset of this process. Since cotton fibers are anatomically defined as trichomes, these data may also be quite useful for future studies in which the trichomes of Arabidopsis may serve as a model for cotton fiber development; the Rac promoter can therefore be useful to drive expression of other genes proposed to affect fiber development and study the effects on the process; 7) The Rac promoter has also been shown to be the best so far tested for use in development of a system for transient transformation of developing cotton fibers, a technique that should have many applications in the field of cotton biotechnology; 8) One candidate protein that may interact with Rac13 to be characterized further in the future is a protein kinase that may be analogous to the PAK kinase that is known to interact with Rac in mammals.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography