Academic literature on the topic 'Membrane nanodomains'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Membrane nanodomains.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Membrane nanodomains"

1

Okamoto, Yukihiro, Kaito Hamaguchi, Mayo Watanabe, Nozomi Watanabe, and Hiroshi Umakoshi. "Characterization of Phase Separated Planar Lipid Bilayer Membrane by Fluorescence Ratio Imaging and Scanning Probe Microscope." Membranes 12, no. 8 (August 9, 2022): 770. http://dx.doi.org/10.3390/membranes12080770.

Full text
Abstract:
The lipid membrane forms nanodomains (rafts) and shows heterogeneous properties. These nanodomains relate to significant roles in various cell functions, and thus the analysis of the nanodomains in phase-separated lipid membranes is important to clarify the function and role of the nanodomains. However, the lipid membrane possesses small-sized nanodomains and shows a small height difference between the nanodomains and their surroundings at certain lipid compositions. In addition, nanodomain analysis sometimes requires highly sensitive and expensive apparatus, such as a two-photon microscope. These have prevented the analysis by the conventional fluorescence microscope and by the topography of the scanning probe microscope (SPM), even though these are promising methods in macroscale and microscale analysis, respectively. Therefore, this study aimed to overcome these problems in nanodomain analysis. We successfully demonstrated that solvatochromic dye, LipiORDER, could analyze the phase state of the lipid membrane at the macroscale with low magnification lenses. Furthermore, we could prove that the phase mode of SPM was effective in the visualization of specific nanodomains by properties difference as well as topographic images of SPM. Hence, this combination method successfully gave much information on the phase state at the micro/macro scale, and thus this would be applied to the analysis of heterogeneous lipid membranes.
APA, Harvard, Vancouver, ISO, and other styles
2

Samhan-Arias, Alejandro K., Joana Poejo, Dorinda Marques-da-Silva, Oscar H. Martínez-Costa, and Carlos Gutierrez-Merino. "Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling?" Molecules 28, no. 23 (December 2, 2023): 7909. http://dx.doi.org/10.3390/molecules28237909.

Full text
Abstract:
Lipid membrane nanodomains or lipid rafts are 10–200 nm diameter size cholesterol- and sphingolipid-enriched domains of the plasma membrane, gathering many proteins with different roles. Isolation and characterization of plasma membrane proteins by differential centrifugation and proteomic studies have revealed a remarkable diversity of proteins in these domains. The limited size of the lipid membrane nanodomain challenges the simple possibility that all of them can coexist within the same lipid membrane domain. As caveolin-1, flotillin isoforms and gangliosides are currently used as neuronal lipid membrane nanodomain markers, we first analyzed the structural features of these components forming nanodomains at the plasma membrane since they are relevant for building supramolecular complexes constituted by these molecular signatures. Among the proteins associated with neuronal lipid membrane nanodomains, there are a large number of proteins that play major roles in calcium signaling, such as ionotropic and metabotropic receptors for neurotransmitters, calcium channels, and calcium pumps. This review highlights a large variation between the calcium signaling proteins that have been reported to be associated with isolated caveolin-1 and flotillin-lipid membrane nanodomains. Since these calcium signaling proteins are scattered in different locations of the neuronal plasma membrane, i.e., in presynapses, postsynapses, axonal or dendritic trees, or in the neuronal soma, our analysis suggests that different lipid membrane-domain subtypes should exist in neurons. Furthermore, we conclude that classification of lipid membrane domains by their content in calcium signaling proteins sheds light on the roles of these domains for neuronal activities that are dependent upon the intracellular calcium concentration. Some examples described in this review include the synaptic and metabolic activity, secretion of neurotransmitters and neuromodulators, neuronal excitability (long-term potentiation and long-term depression), axonal and dendritic growth but also neuronal cell survival and death.
APA, Harvard, Vancouver, ISO, and other styles
3

Silvius, John R. "Membrane Nanodomains." Colloquium Series on Building Blocks of the Cell: Cell Structure and Function 1, no. 1 (February 28, 2013): 1–103. http://dx.doi.org/10.4199/c00076ed1v01y201303bbc001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Liang, Pengbo, Thomas F. Stratil, Claudia Popp, Macarena Marín, Jessica Folgmann, Kirankumar S. Mysore, Jiangqi Wen, and Thomas Ott. "Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains." Proceedings of the National Academy of Sciences 115, no. 20 (April 30, 2018): 5289–94. http://dx.doi.org/10.1073/pnas.1721868115.

Full text
Abstract:
Plant cell infection is tightly controlled by cell surface receptor-like kinases (RLKs). Like other RLKs, the Medicago truncatula entry receptor LYK3 laterally segregates into membrane nanodomains in a stimulus-dependent manner. Although nanodomain localization arises as a generic feature of plant membrane proteins, the molecular mechanisms underlying such dynamic transitions and their functional relevance have remained poorly understood. Here we demonstrate that actin and the flotillin protein FLOT4 form the primary and indispensable core of a specific nanodomain. Infection-dependent induction of the remorin protein and secondary molecular scaffold SYMREM1 results in subsequent recruitment of ligand-activated LYK3 and its stabilization within these membrane subcompartments. Reciprocally, the majority of this LYK3 receptor pool is destabilized at the plasma membrane and undergoes rapid endocytosis in symrem1 mutants on rhizobial inoculation, resulting in premature abortion of host cell infections. These data reveal that receptor recruitment into nanodomains is indispensable for their function during host cell infection.
APA, Harvard, Vancouver, ISO, and other styles
5

Fukata, Yuko, Ariane Dimitrov, Gaelle Boncompain, Ole Vielemeyer, Franck Perez, and Masaki Fukata. "Local palmitoylation cycles define activity-regulated postsynaptic subdomains." Journal of Cell Biology 202, no. 1 (July 8, 2013): 145–61. http://dx.doi.org/10.1083/jcb.201302071.

Full text
Abstract:
Distinct PSD-95 clusters are primary landmarks of postsynaptic densities (PSDs), which are specialized membrane regions for synapses. However, the mechanism that defines the locations of PSD-95 clusters and whether or how they are reorganized inside individual dendritic spines remains controversial. Because palmitoylation regulates PSD-95 membrane targeting, we combined a conformation-specific recombinant antibody against palmitoylated PSD-95 with live-cell super-resolution imaging and discovered subsynaptic nanodomains composed of palmitoylated PSD-95 that serve as elementary units of the PSD. PSD-95 in nanodomains underwent continuous de/repalmitoylation cycles driven by local palmitoylating activity, ensuring the maintenance of compartmentalized PSD-95 clusters within individual spines. Plasma membrane targeting of DHHC2 palmitoyltransferase rapidly recruited PSD-95 to the plasma membrane and proved essential for postsynaptic nanodomain formation. Furthermore, changes in synaptic activity rapidly reorganized PSD-95 nano-architecture through plasma membrane–inserted DHHC2. Thus, the first genetically encoded antibody sensitive to palmitoylation reveals an instructive role of local palmitoylation machinery in creating activity-responsive PSD-95 nanodomains, contributing to the PSD (re)organization.
APA, Harvard, Vancouver, ISO, and other styles
6

Drab, Mitja, David Stopar, Veronika Kralj-Iglič, and Aleš Iglič. "Inception Mechanisms of Tunneling Nanotubes." Cells 8, no. 6 (June 21, 2019): 626. http://dx.doi.org/10.3390/cells8060626.

Full text
Abstract:
Tunneling nanotubes (TNTs) are thin membranous tubes that interconnect cells, representing a novel route of cell-to-cell communication and spreading of pathogens. TNTs form between many cell types, yet their inception mechanisms remain elusive. We review in this study general concepts related to the formation and stability of membranous tubular structures with a focus on a deviatoric elasticity model of membrane nanodomains. We review experimental evidence that tubular structures initiate from local membrane bending facilitated by laterally distributed proteins or anisotropic membrane nanodomains. We further discuss the numerical results of several theoretical and simulation models of nanodomain segregation suggesting the mechanisms of TNT inception and stability. We discuss the coupling of nanodomain segregation with the action of protruding cytoskeletal forces, which are mostly provided in eukaryotic cells by the polymerization of f-actin, and review recent inception mechanisms of TNTs in relation to motor proteins.
APA, Harvard, Vancouver, ISO, and other styles
7

Mesarec, Luka, Mitja Drab, Samo Penič, Veronika Kralj-Iglič, and Aleš Iglič. "On the Role of Curved Membrane Nanodomains and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding." International Journal of Molecular Sciences 22, no. 5 (February 26, 2021): 2348. http://dx.doi.org/10.3390/ijms22052348.

Full text
Abstract:
Biological membranes are composed of isotropic and anisotropic curved nanodomains. Anisotropic membrane components, such as Bin/Amphiphysin/Rvs (BAR) superfamily protein domains, could trigger/facilitate the growth of membrane tubular protrusions, while isotropic curved nanodomains may induce undulated (necklace-like) membrane protrusions. We review the role of isotropic and anisotropic membrane nanodomains in stability of tubular and undulated membrane structures generated or stabilized by cyto- or membrane-skeleton. We also describe the theory of spontaneous self-assembly of isotropic curved membrane nanodomains and derive the critical concentration above which the spontaneous necklace-like membrane protrusion growth is favorable. We show that the actin cytoskeleton growth inside the vesicle or cell can change its equilibrium shape, induce higher degree of segregation of membrane nanodomains or even alter the average orientation angle of anisotropic nanodomains such as BAR domains. These effects may indicate whether the actin cytoskeleton role is only to stabilize membrane protrusions or to generate them by stretching the vesicle membrane. Furthermore, we demonstrate that by taking into account the in-plane orientational ordering of anisotropic membrane nanodomains, direct interactions between them and the extrinsic (deviatoric) curvature elasticity, it is possible to explain the experimentally observed stability of oblate (discocyte) shapes of red blood cells in a broad interval of cell reduced volume. Finally, we present results of numerical calculations and Monte-Carlo simulations which indicate that the active forces of membrane skeleton and cytoskeleton applied to plasma membrane may considerably influence cell shape and membrane budding.
APA, Harvard, Vancouver, ISO, and other styles
8

Cebecauer, Marek, Mariana Amaro, Piotr Jurkiewicz, Maria João Sarmento, Radek Šachl, Lukasz Cwiklik, and Martin Hof. "Membrane Lipid Nanodomains." Chemical Reviews 118, no. 23 (October 26, 2018): 11259–97. http://dx.doi.org/10.1021/acs.chemrev.8b00322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ma, Yuanqing, Elizabeth Hinde, and Katharina Gaus. "Nanodomains in biological membranes." Essays in Biochemistry 57 (February 6, 2015): 93–107. http://dx.doi.org/10.1042/bse0570093.

Full text
Abstract:
Lipid rafts are defined as cholesterol- and sphingomyelin-enriched membrane domains in the plasma membrane of cells that are highly dynamic and cannot be resolved with conventional light microscopy. Membrane proteins that are embedded in the phospholipid matrix can be grouped into raft and non-raft proteins based on their association with detergent-resistant membranes in biochemical assays. Selective lipid–protein interactions not only produce heterogeneity in the membrane, but also cause the spatial compartmentalization of membrane reactions. It has been proposed that lipid rafts function as platforms during cell signalling transduction processes such as T-cell activation (see Chapter 13 (pages 165–175)). It has been proposed that raft association co-localizes specific signalling proteins that may yield the formation of the observed signalling microclusters at the immunological synapses. However, because of the nanometre size and high dynamics of lipid rafts, direct observations have been technically challenging, leading to an ongoing discussion of the lipid raft model and its alternatives. Recent developments in fluorescence imaging techniques have provided new opportunities to investigate the organization of cell membranes with unprecedented spatial resolution. In this chapter, we describe the concept of the lipid raft and alternative models and how new imaging technologies have advanced these concepts.
APA, Harvard, Vancouver, ISO, and other styles
10

Traeger, Jeremiah, Dehong Hu, Mengran Yang, Gary Stacey, and Galya Orr. "Super-Resolution Imaging of Plant Receptor-Like Kinases Uncovers Their Colocalization and Coordination with Nanometer Resolution." Membranes 13, no. 2 (January 21, 2023): 142. http://dx.doi.org/10.3390/membranes13020142.

Full text
Abstract:
Plant cell signaling often relies on the cellular organization of receptor-like kinases (RLKs) within membrane nanodomains to enhance signaling specificity and efficiency. Thus, nanometer-scale quantitative analysis of spatial organizations of RLKs could provide new understanding of mechanisms underlying plant responses to environmental stress. Here, we used stochastic optical reconstruction fluorescence microscopy (STORM) to quantify the colocalization of the flagellin-sensitive-2 (FLS2) receptor and the nanodomain marker, remorin, within Arabidopsis thaliana root hair cells. We found that recovery of FLS2 and remorin in the plasma membrane, following ligand-induced internalization by bacterial-flagellin-peptide (flg22), reached ~85% of their original membrane density after ~90 min. The pairs colocalized at the membrane at greater frequencies, compared with simulated randomly distributed pairs, except for directly after recovery, suggesting initial uncoordinated recovery followed by remorin and FLS2 pairing in the membrane. The purinergic receptor, P2K1, colocalized with remorin at similar frequencies as FLS2, while FLS2 and P2K1 colocalization occurred at significantly lower frequencies, suggesting that these RLKs mostly occupy distinct nanodomains. The chitin elicitor receptor, CERK1, colocalized with FLS2 and remorin at much lower frequencies, suggesting little coordination between CERK1 and FLS2. These findings emphasize STORM’s capacity to observe distinct nanodomains and degrees of coordination between plant cell receptors, and their respective immune pathways.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Membrane nanodomains"

1

Legrand, Anthony. "Anchoring mechanism of the plant protein remorin to membrane nanodomains." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0285.

Full text
Abstract:
La rémorine du groupe 1 isoforme 3 de Solanum tuberosum (StREM1.3) est une protéine membranaire de la famille multigénique de protéines de plante appelée rémorines (REMs), impliquées dans l’immunité des plantes, la symbiose, la résistance aux stress abiotiques et la signalisation hormonale. La caractéristique la plus connue des REMs est leur capacité à se ségréger en nanodomaines au feuillet interne de la membrane plasmique (MP). Pour StREM1.3, ceci se fait via une interaction entre deux lysines de l’ancre C-terminale de la rémorine (RemCA) et le phosphatidylinositol 4-phosphate (PI4P) négativement chargé. Ainsi, RemCA modifie sa conformation et s’enfonce partiellement dans la MP, résultant en un accrochage membranaire intrinsèque. Capitalisant sur les données structurales déjà disponibles concernant cet isoforme, nous investiguons StREM1.3 davantage quant à ses propriétés d’interaction membranaire, en utilisant un large éventail de techniques, allant de la microscopie de fluorescence et de la RMN à l’état solide (ssNMR) à la microscopie de force atomique (AFM), la cryo-microscopie électronique (cryoEM) et la modélisation informatique. Nous souhaitons découvrir l’impact de l’oligomérisation et de la phosphorylation de StREM1.3 sur ses interactions membranaires et son activité biologique, ainsi que d’examiner son influence sur la dynamique des lipides et les lipides requis pour l’accrochage à la membrane et le regroupement en nanodomaines. Enfin, forts de toutes les données structurales disponibles, nous entreprendrons la reconstruction in vitro et la caractérisation de nanodomaines minimaux de StREM1.3
Group 1 isoform 3 remorin from Solanum tuberosum (StREM1.3) is a membrane protein belonging to the multigenic family of plant proteins called remorins (REMs), involved in plant immunity, symbiosis, abiotic stress resistance and hormone signalling. REMs’ most well known feature is their ability to segregate into nanodomains at the plasma membrane’s (PM) inner leaflet. For StREM1.3, this is achieved by an interaction between two lysines of the remorin C-terminal anchor (RemCA) and negatively charged phosphatidylinositol 4-phosphate (PI4P). Thus, RemCA undergoes conformational changes and partially buries itself in the PM, resulting in an intrinsic membrane anchoring. Capitalising on pre-existing structural data about this isoform, we investigate StREM1.3’s membrane-interacting properties further, using a wide array of techniques, ranging from fluorescence microscopy and solid-state nuclear magnetic resonance (ssNMR) to atomic force microscopy (AFM), cryo-electron microscopy (cryoEM) and computational modelling. We aim to discover the impact of StREM1.3’s oligomerisation and phosphorylation on its membrane interactions and biological activity, and to assess its influence on lipid dynamics as well as its lipid requirements for membrane binding and nanoclustering. Finally, based on all available structural data, we will undertake the in vitro reconstruction and characterisation of minimal nanodomains of StREM1.3
APA, Harvard, Vancouver, ISO, and other styles
2

Hebisch, Elke [Verfasser], and Stefan W. [Akademischer Betreuer] Hell. "STED microscopy of cardiac membrane nanodomains / Elke Hebisch ; Betreuer: Stefan W. Hell." Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://d-nb.info/1180740068/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hebisch, Elke [Verfasser], and Stefan [Akademischer Betreuer] Hell. "STED microscopy of cardiac membrane nanodomains / Elke Hebisch ; Betreuer: Stefan W. Hell." Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-227475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deroubaix, Anne-Flore. "Rôle de la rémorine et des nanodomaines membranaires dans la signalisation de la réponse aux phytovirus." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0292.

Full text
Abstract:
Dans la lutte contre les virus, les plantes ont mis au point divers mécanismes de défenses pour se protéger contre les agents pathogènes. Les protéines végétales localisées à la membrane plasmique telles que les rémorines (REM) peuvent limiter l’infection virale. Les REM appartiennent à une famille de protéines multigéniques spécifiques à la plante, classées en six groupes phylogénétiques localisées dans les nanodomaines de la membrane plasmique et, dans certains cas, au niveau des plasmodesmes. Notre équipe avait précédemment montré que chez la tomate et Nicotiana benthamiana, la surexpression de l’isoforme 3 du groupe 1 de Solanum tuberosum (StREM1.3) limitait la propagation de cellule-à-cellule du Potato Virus X, un Potexvirus sans affecter la réplication virale. Au cours de ma thèse, nos données ont permis de construire un modèle de travail dans lequel une protéine kinase dépendante du calcium (AtCPK3) d’Arabidopsis thaliana est capable d’interagir in vivo avec StREM1.3, de phosphoryler le domaine N-terminal de StREM1.3 et, enfin, avec l'aide de protéines non caractérisées à ce jour, conduire à la restriction du mouvement de cellule à cellule de PVX chez N.benthamiana. N.benthamiana , parfaite pour l'expérimentation virale, est allo-tétraploïde, rendant de ce fait difficiles les études génétiques. Sachant qu’il existe 34 isoformes de CPKs, avec une redondance fonctionnelle probable entre elles, nous avons basculé sur un autre pathosystème : nous avons choisi Arabidopsis thaliana profitant de la « boîte à outils » génétiques que cette plante offre et nous avons choisi une autre espèce de virus, de la famille des potexvirus capable d'infecter A. thaliana : le Plantago Asiatica Mosaic Virus (PlAMV). Les objectifs sont 1 / d’étudier la contribution des différents clades de REM dans le mouvement intercellulaire des potexvirus 2 / comprendre quels CPK sont impliquées dans ce processus en utilisant les mutants simples et double de REM mais aussi de CPK, ainsi que les surexpresseurs AtCPK 3 / Etudier la contribution du groupe 1 de REM et de CPK3 dans le mouvement systémique du potexvirus. Nous avions précédemment montré que, comme le PVX, le mouvement local du PlAMV est limité par StREM1.3 et AtCPK3 dans N.benthamiana. Nous avons optimisé les conditions expérimentales pour suivre et comparer le PlAMV marqué GFP dans différents fonds génétiques d'Arabidopsis. En utilisant cette méthode, nous avons pu suivre à la fois le mouvement de cellule à cellule du virus localement, puis l’infection systémique à travers la plante entière. Les mutants knock-out simples et multiples du groupe 1 de REM, ainsi que les surexpresseurs CPK ont été utilisés. Fait intéressant, nous n'avons pas détecté de différence de propagation par rapport au contrôle sur divers mutants de CPK, sauf dans le mutant cpk3KO. En effet, tant au niveau local que systémique, la propagation du PlAMV est améliorée sur le mutant cpk3KO alors que les lignées surexprimant CPK3 présentent un effet opposé, démontrant la grande implication de CPK3 dans la propagation du potexvirus. De même, nous démontrons la redondance de chaque isoforme du groupe 1 de REM sur la restriction du mouvement intercellulaire du PlAMV. Il est intéressant de noter que REM favorise la propagation intercellulaire d’un autre genre viral, le genre Potyvirus, ce qui suggère que les fonctions de REM ne sont pas généralisables pour tous les genres. Globalement, nos résultats classifient les groupes 1 de REM et CPK3 en tant que protéines de défenses antivirales dans les infections aux potexvirus, que ce soit au niveau local ou systémique, et suggèrent que la fonction de REM est dépendante du genre viral. Cette recherche ouvrira la voie sur de nouvelles clés thérapeutiques, pour in fine, lutter contre les infections virales
In the battle against viruses, plants have evolved various defence mechanisms to protect themselves against pathogens. Membrane-bound plant proteins such as Remorin (REM) may restrict viral infection. REMs belong to a plant-specific multigene family, classified in six phylogenetic groups that are localized in plasma membrane nanodomains and for some of them in plasmodesmata. Our team previously showed that in tomato and Nicotiana benthamiana, overexpression of Solanum tuberosum group 1 isoform 3 (StREM1.3) limits the cell-to-cell spread of the potexvirus Potato virus X (PVX) without affecting viral replication. During my thesis, our data allowed to built a working model in which the Arabidopsis thaliana CALCIUM-DEPENDENT PROTEIN KINASE 3 (AtCPK3) is able to interact with group 1 REM in vivo, phosphorylates the N-terminal domain of StREM1.3 and, finally, with the help of uncharacterized proteins lead to the restriction of PVX cell-to-cell movement in N.benthamiana. N.benthamiana is perfect for viral experimentation, but is allo-tetraploid, making it difficult for genetic studies. Because of CPKs have 34 isoforms with likely functional redundancy between them, we switched to another pathosystem using the genetic toolbox of Arabidopsis thaliana and a potexvirus species able to infect A. thaliana, the Plantago Asiatica Mosaic Virus (PlAMV). The objectives are 1/ to study the contribution of different REM clades in potexvirus intercellular movement; 2/ to understand which CPKs are involved in this process using REM and CPKs single and multiple mutants, as well as AtCPKs over-expressors; 3/ To study the contribution of Group 1 REM and CPK3 on systemic potexvirus movement. We previously showed that, like PVX, PlAMV local movement is restricted by StREM1.3 and AtCPK3 in N.benthamiana. We optimized the experimental conditions to track and compare GFP-tagged PlAMV in different Arabidopsis genetic backgrounds. By using this method, we were able to track both local virus cell-to-cell movement and systemic infection through the whole plant. Group 1 REM and CPK single and multiple knock out mutants, as well as CPK over-expressors wereused. Interestingly, we did not detect any difference in propagation compared with control on various CPKs KO, except in cpk3 mutant. Indeed, both in local and systemic, PlAMV propagation is enhanced on cpk3 mutant while CPK3 overexpressing lines display an opposite effect, demonstrating the great involvement of CPK3 in potexvirus propagation. Similarly, we demonstrate the redundancy of each isoform from group 1 REM on the restriction of the intercellular movement of PlAMV. Interestingly, REM promotes intercellular propagation of another viral genus, the potyvirus genus, suggesting that REM functions are not general for all genera. Globally, our results classify group 1 REM and CPK3 as antiviral defence protein both in local and systemic potexvirus infection, and suggest that REM function is viral genus dependent. This research will pave the way toward new host targets to fight phytovirus infection
APA, Harvard, Vancouver, ISO, and other styles
5

Gronnier, Julien. "Function of Plant Plasma Membrane Nanodomains : Study of Group 1 REMORINs during Plant-Virus Interactions." Electronic Thesis or Diss., Bordeaux, 2016. http://www.theses.fr/2016BORD0327.

Full text
Abstract:
L’organisation par compartimentalisation est une propriété générale des systèmes naturels coordonnant les évènements biologiques dans l’espace et le temps. Au cours des trente dernières années, il a pu être démontré qu’à l’échelle d’une membrane de nombreux sous-compartiments coexistent. Une telle organisation semble cruciale pour l’ensemble des activités biologiques cellulaires et par conséquent prépondérante pour le développement et la survie des organismes vivants. La membrane plasmique présente une grande diversité de compartiments, néanmoins leurs fonctions et les mécanismes moléculaires régissant leur organisation ne sont pas très bien compris. Afin d’apporter de nouvelles informations sur comment et pourquoi la membrane plasmique des plantes est souscompartimentée, nous étudions les nanodomaines des REMORINEs du groupe 1 au cours de l’infection de N. benthamiana par le Potato Virus X (PVX). En menant une approche multidisciplinaire, nous avons décortiqué un mécanisme moléculaire impliqué dans l’organisation en nanodomaine de REMORIN à la membrane plasmique. Via la génération de mutants nous présentons des liens fonctionnels entre l’organisation en domaine de REMORIN, son statut de phosphorylation, sa capacité à réguler la perméabilité des plasmodesmes et la propagation de cellule à cellule du PVX. Nous présentons également des éléments montrant qu’au cours de la perception de PVX par N. benthamiana, l’organisation de la membrane plasmique est cruciale pour la mise en place des mécanismes de défense de la plante. Cette étude met en avant pour la première fois chez les plantes l’importance de la régulation spatio-temporelle des protéines à la membrane plasmique dans l’identité et la fonction de domaines membranaires
Organization by compartmentalization is a general property of natural systems coordinating biological events in space and time. Over the past three decades, it has been demonstrated that multiple micrometric to nano-metric sub-compartments co-exist at a single membrane level. Such membrane organization seems critical for most all cell bioactivities and therefore critical for development and survival of potentially all living organisms. Plants respond to pathogens by activating highly regulated plasma membrane-bound signalling pathways. Plant plasma membrane (PM) displays a great diversity of compartments, but underlying functions and molecular mechanisms governing such organization are not well understood. To get insight in how and why plant PM is compartmentalized, we choose to study the plant PM nanodomain goup 1 REMORIN during the interaction between N. benthamiana and the Potato Virus X (PVX). Using a multidisciplinary approach we decipher a molecular mechanism involved in defining REMORIN PM domains localization. Making mutants we provide a functional link between REMORIN PM organization at single molecule level, its phosphostatus, regulation of plasmodesmata permeability and PVX cell-to-cell movement restriction. We then provide evidences that during N.benthamiana PVX sensing, PM organization appears critical for the modulation plant defence mechanisms and cell signaling. This study provides a unique mechanistic insight into how tight control of protein spatio-temporal organization at PM level is crucial to confer membrane domains identity and functionality
APA, Harvard, Vancouver, ISO, and other styles
6

Liang, Pengbo [Verfasser], and Thomas [Akademischer Betreuer] Ott. "The role of membrane nanodomains and the cell wall-plasma membrane-cytoskeleton continuum during symbiotic infection in Medicago truncatula." Freiburg : Universität, 2020. http://d-nb.info/1220631760/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kirsch, Sonja [Verfasser], Rainer [Akademischer Betreuer] Böckmann, and Rainer [Gutachter] Böckmann. "The Role of Membrane Nanodomains in Permeation / Sonja Kirsch ; Gutachter: Rainer Böckmann ; Betreuer: Rainer Böckmann." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1196875901/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yandrapalli, Naresh. "Role of HIV-1 Gag protein multimerization in the generation of nanodomains in lipid membranes." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT097/document.

Full text
Abstract:
La polyprotéine Gag du VIH-1 qui contient quatre principaux domaines (Matrix (MA), capside (CA), nucléocapside (NC), et P6) est l’orchestrateur privilégié de l'assemblage du virus HIV-1, assemblage qui a lieu pendant la phase tardive de la réplication. Il est bien connu que Gag interagit avec les lipides de la membrane plasmique de la cellule hôte et s’auto-assemble sur le feuillet interne de cette dernière afin de générer de nouvelles particules virales. Le bourgeonnement de ces particules virales hors de la cellule hôte est décrit comme étant dépendant de la machinerie cellulaire ESCRT. Différentes études structurales, fonctionnelles ainsi que des simulations de dynamique gros grain ont montré que la liaison de Gag à la membrane est médiée par une interaction duale. Une spécifique de nature éléctrostatique, qui associe une région hautement basique (HBR) du domaine MA de Gag au lipide acide,phosphatidyl inositol biphosphate (PI(4,5)P2) du feuillet interne de la membrane plasmique. Une de type hydrophobe, qui consiste en l’insertion du myristate de Gag dans la membrane plasmique. Savoir si Gag reconnait spécifiquement des domaines lipidiques pré-existants de type « rafts » ou si, au contraire, Gag tri ses lipides et les réorganise latéralement afin d’optimiser sa multimérisation et son bourgeonnement est une question à la fois fondamentale et d’actualité en virologie.Durant ma thèse, j’ai vérifié l’existence de la seconde hypothèse en utilisant des membranes modèles contenant du PI (4,5) P2 marqué de façon fluorescente et différent mutants et produits de la protéine Gag non-myristoylée. Ces expériences ont montré de fortes affinités de ces protéines pour les membranes contenant du PI (4,5) P2. S’appuyant sur les propriétés d’auto-extinction de fluorescence du marqueur choisit et à l’aide des différents variants de la protéine Gag, j'ai pu montré que la multimérisation de Gag génère l’existence de nanodomaines contenant du PI (4, 5) P2 et du cholestérol, la sphingomyéline étant au contraire exclue de ces domaines. En marquant la protéine Gag par un autre fluorophore, j’ai pu montrer par microscopie optique sur des vésicules lipidiques géantes (GUVs) que la protéine Gag partitionnait préférablement dans des microdomaines lipidiques de type liquide désordonnés (Ld). Par la suite, j’ai testé la capacité de la protéine Gag d’induire la formation de vésicules sur des membranes modèles (Bicouches supportés et GUVs) contenant du PI(4,5) P2 et de la phosphatidyl sérine (PS). En utilisant une microbalance à cristal de quartz (QCM-D) et des techniques de microscopie de fluorescence, j’ai suivi l'auto-assemblage de Gag dans le temps et ai montré que la protéine Gag était suffisante pour générer une courbure de la membrane et libérer des vésicules lipidiques. Grâce à différents produits de maturation de cette protéine, j’ai montré que la présence des domaines MA et CA est suffisante pour produire ces vésicules.L’ensemble de ces résultats suggèrent que la liaison et la multimérisation de la protéine Gag ne se produit pas dans des domaines lipidiques préexistants de type « raft », mais, au contraire, que la liaison et multimérisation de la protéine Gag génère l’existence de domaines lipidiques enrichis en PI (4,5) P2 et en cholestérol. La générescence de ces domaines lipidiques pourrait participer à la courbure de la membrane plasmique nécessaire au bourgeonnement du virus
Gag polyprotein of HIV-1 is made of four main domains Matrix (MA), Capsid (CA), Nucleocapsid (NC), and P6 and is the prime orchestrator of virus assembly that occurs during the late phase of replication. It is well known that Gag interacts with host cell lipids and self-assemble along the inner-leaflet of the plasma membrane in order to generate virus like particles (VLPs). Budding of these VLPs out of the living cell is described to be ESCRT dependent. Structural, functional and simulation based studies has shown that Gag membrane binding is mediated by a bipartite interaction. One specific electrostatic interaction, between the highly basic region (HBR) of its MA domain and the host cell acidic lipid phosphatidyl inositol bisphophate (PI(4,5)P2), plus a hydrophobic interaction through Gag’s myristate insertion in the plasma membrane. It is still an opened question whether Gag would specifically recognize pre-existing lipid domains such as rafts to optimize its multimerization or, on the contrary, would reorganize lipids during its multimerization. During my Ph.D. I explored the second hypothesis using purified myr(-) Gag protein and model membranes containing fluorescently labelled PI(4,5)P2.Bonding experiments have shown strong affinities of these purified proteins towards PI(4,5)P2 containing lipid bilayers. Using PI(4,5)P2 fluorescence self-quenching properties, I found that multimerization Gag generates PI(4,5)P2/Cholesterol enriched nanoclusters. On the opposite, sphingomyelin was excluded from these nanoclusters. In addition to this, using a fluorescently labelled myr(-) Gag, I have observed its preferable partitioning into lipid disordered (Ld) phases of giant unilamellar vesicles (GUVs). Further, possibility of whether HIV-1 Gag alone, as a minimal system, can induce the formation of vesicles on PI(4,5)P2/PS containing supported lipid bilayers (SLBs) & GUVs was tested. Using quartz crystal microbalance (QCM-D) and fluorescence microscopy techniques, I monitored the self-assembly of HIV-1 Gag with time and found that Gag was sufficient to generate membrane curvature and vesicle release. Moreover, using mutants of this protein, I found that having MA and CA domain is enough for Gag to produce vesicle like structures. Taken together, these results suggest that binding and multimerization of Gag protein does not occur in pre-existing lipid domains (such as “rafts”) but this multimerization is more likely to induce PI(4,5)P2/Cholesterol nanoclusters. This nanophase separation could locally play a role in the membrane curvature needed for the budding of the virus
APA, Harvard, Vancouver, ISO, and other styles
9

Yu, Chao. "Quantitative Study of Membrane Nano-organization by Single Nanoparticle Imaging." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX054.

Full text
Abstract:
La nano-organisation de la membrane cellulaire est essentielle à la régulation de certaines fonctions cellulaires. Dans cette thèse, les récepteurs EGF, CPεT et de la transferrine ont été marqués avec des nanoparticules luminescentes et ont été suivis à la fois dans leur environnement local dans la membrane cellulaire vivantes pour de longues durées et sous un flux hydrodynamique. Nous avons alors appliqué des techniques d'inférence bayésienne, d’arbre de décision et de clustering de données extraire des informations quantitatives sur les paramètres caractéristiques du mouvement des récepteurs, notamment la forme de leur confinement dans des microdomaines. L’application d’une force hydrodynamique sur les nanoparticules nous a alors permis de sonder les interactions auxquelles ces récepteurs sont soumis. Nous avons appliqué cette approche in vitro pour favoriser et mesurer la dissociation in vitro de paires récepteur / ligand à haute affinité entre des récepteurs membranaires et leurs ligands pharmaceutiques, telles que HB-EGF et DTR et l’avons ensuite appliqué à l’étude d’interactions à la membrane cellulaire. Nous avons ainsi mis en évidence trois modes différents d'organisation de la membrane et de confinement des récepteurs: le confinement de CPεTR est déterminé par l'interaction entre les récepteurs et les constituants lipidiques / protéiques des microdomaines, le potentiel de confinement de l'EGFR résulte de l'interaction avec les lipides et les protéines de l’environnement du radeau et de l’interaction avec la F-actine; les récepteurs de la transferrine diffusent librement dans la membrane, uniquement limités stériquement par des barrières d’actine, selon le modèle ‘picket-and-fence’. Nous avons de plus montré que les nanodomaines de type radeau sont rattachés au cytoskelette d’actine. Ce travail présente donc à la fois un aperçu quantitatif du récepteur membranaire, des mécanismes d’organisation à l’échelle nanométrique, et établit un cadre méthodologique avec lequel différents types de propriétés membranaires peuvent être étudiés
In this thesis, EGF, CPεT and transferrin receptors were labeled with luminescent nanoparticles, , and were tracked both in their local environment in the cell membrane and under a hydrodynamic flow. Bayesian inference, Bayesian decision tree, and data clustering techniques can then be applied to obtain quantitative information on the receptor motion parameters. Furthermore, we introduced hydrodynamic force application in vitro to study biomolecule dissociation between membrane receptors and their pharmaceutical ligands in high affinity receptor- ligand pairs, such as HB-EGF and DTR. Finally, three different modes of membrane organization and receptor confinement were revealed: the confinement of CPεTR is determined by the interaction between the receptors and the lipid/protein constituents of the raft; the confining potential of EGFR results from the interaction with lipids and proteins of the raft environment and from the interaction with F-actin; transferrin receptors diffuse freely in the membrane, only sterically limited by actin barriers, according to the “picket-and-fence” model. We moreover showed that all raft nanodomains are attached to the actin cytoskeleton
APA, Harvard, Vancouver, ISO, and other styles
10

Noack, Lise. "Rôle du complexe AtPI4Kalpha1 dans l’établissement de l’identité de la membrane plasmique et le développement chez Arabidopsis thaliana." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN066.

Full text
Abstract:
Les cellules sont composées de compartiments délimités par une membrane. Pour permettre aux protéines d’être associées aux membranes du bon compartiment, chaque membrane a une identité qui lui ait propre. Elle se définit par ses caractéristiques physiques et chimiques. Cependant, les compartiments d’une cellule échangent du matériel en permanence. Comment l’identité des membranes est maintenue malgré le flux constant d’échanges de protéines et de lipides lors des transports vésiculaires et non-vésiculaires ? Les phosphoinositides (PIPs) sont des lipides anioniques présents en faible quantité dans les membranes. Chaque PIP se localise différemment dans la cellule. Parmis les PIPs, le PI4P est présent à la membrane plasmique et au Golgi/trans-Golgi Network (TGN). Chez les plantes, PI4P est majoritairement trouvé à la membrane plasmique, contrairement aux animaux ou à la levure chez qui le PI4P se trouve principalement au niveau du TGN. Ainsi le gradient de PI4P le long de la voie d’endocytose est inversé chez les plantes par rapport aux autres eucaryotes. Chez les plantes, l’accumulation de PI4P à la membrane plasmique confère un champ électrostatique important qui recrute des protéines spécifiquement à cette membrane. Comment le gradient de PI4P est établi chez les plantes ? PI4Kα1 est capable de produire du PI4P à partir de phosphatidylinositol. PI4Kα1 se localise à la MP. Par ailleurs, PI4Kα1 est la sous-unité catalytique d’un complexe comprenant 3 autres protéines : NO POLLEN GERMINATION (NPG), EFR3 OF PLANTS (EFOP) et HYCCIN. Le complexe est ciblé à la membrane plasmique via une ancre lipidique au niveau de EFOP. Les orthologues de PI4Kα1 chez la levure et les animaux sont localisés à la membrane plasmique par des complexes protéiques similaires, démontrant une conservation des mécanismes de production des PIP chez l’ensemble des eucaryotes. L’absence du complexe PI4Kα1 entraine une létalité de la plantes au niveau du grain de pollen ou de l’embryon. Ainsi PI4Kα1 est essentiel à l’identité de la membrane plasmique et par conséquent au développement de la plante
Eukaryotic cells are composed of several membrane-surrounded compartments. Each compartment has a unique physicochemical environment delimited by a membrane with a specific biochemical and biophysical identity. The membrane identity includes the nature of the lipids, the curvature, the electrostaticity and the density of lipids at the membrane. The identity of each membrane allows the proper localization of membrane-associated proteins. Phosphoinositides are rare anionic lipids present in membranes. Five types of phosphoinositides exist in plants - PI3P, PI4P, PI5P, PI(4,5)P2 and PI(3,5)P2 - depending of the number and the position of phosphates around the inositol ring. They accumulate differently at the plasma membrane and in intracellular compartments and interact with proteins through stereo-specific or electrostatic interactions. Recent work uncovered that PI4P concentrates according to an inverted gradient by comparison to their yeast and animal counterpart. In plants, PI4P massively accumulates at the plasma membrane and is present in fewer amounts at the trans-Golgi Network (TGN). This PI4P accumulation at the cell surface drives the plasma membrane electrostatic field, which in turn recruits a host of signalling proteins to this compartment. Moreover the plant TGN is the place of vesicular secretion but is also involved in endocytic sorting and recycling, which might imply regulatory mechanisms of lipid exchanges or membrane identity maintenance between the plasma membrane and the TGN. Here, we characterized PI4Kα1 mutants and showed that pi4kα1 loss-of-function leads to pollen grain lethality and distortion in the allele transmission via the female gametophyte, while its knockdown displayed strong developmental phenotypes. Using yeast two hybrid screening and mass spectrometry, we identified that PI4Kα1 is part of an heterotetrameric complex composed of NO POLLEN GERMINATION (NPG), EFR3 OF PLANTS (EFOP) and HYCCIN (HYC). The interaction between PI4Kα1 and the structural subunits of the complex is essential to target PI4Kα1 at the plasma membrane. In addition, we showed that PI4Kα1 complex is anchored in immobile and predefined subdomains of the plasma membrane. This work opens new perspectives on the role of the PI4Kα1 complex in plasma membrane suborganization
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Membrane nanodomains"

1

Silvius, John R. Membrane Nanodomains. Morgan & Claypool Life Science Publishers, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Silvius, John R. Membrane Nanodomains. Morgan & Claypool Life Science Publishers, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cambi, Alessandra, and Diane Lidke. Cell Membrane Nanodomains. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cambi, Alessandra, and Diane Lidke. Cell Membrane Nanodomains. Taylor & Francis Group, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cell Membrane Nanodomains: From Biochemistry to Nanoscopy. Taylor & Francis Group, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cambi, Alessandra, and Diane S. Lidke. Cell Membrane Nanodomains: From Biochemistry to Nanoscopy. Taylor & Francis Group, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cambi, Alessandra, and Diane S. Lidke. Cell Membrane Nanodomains: From Biochemistry to Nanoscopy. Taylor & Francis Group, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Membrane nanodomains"

1

Senapati, Subhadip, and Paul S. H. Park. "Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy." In Methods in Molecular Biology, 61–74. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8894-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Membrane Nanodomains." In Nanostructures in Biological Systems, 171–96. Jenny Stanford Publishing, 2015. http://dx.doi.org/10.1201/b18607-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Protein and Lipid Nanodomains." In Cell Membrane Nanodomains, 1–2. CRC Press, 2014. http://dx.doi.org/10.1201/b17634-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van den Bogaart, Geert, and Martin ter Beest. "Domains of Phosphoinositides in the Plasma Membrane." In Cell Membrane Nanodomains, 173–98. CRC Press, 2014. http://dx.doi.org/10.1201/b17634-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eisenberg, Sharon, and Sergio Grinstein. "Signaling Phagocytosis: Role of Specialized Lipid Domains." In Cell Membrane Nanodomains, 199–212. CRC Press, 2014. http://dx.doi.org/10.1201/b17634-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Advanced Ensemble Imaging Techniques." In Cell Membrane Nanodomains, 213–14. CRC Press, 2014. http://dx.doi.org/10.1201/b17634-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Digman, Michelle. "Fluctuation Spectroscopy Methods for the Analysis of Membrane Processes." In Cell Membrane Nanodomains, 215–38. CRC Press, 2014. http://dx.doi.org/10.1201/b17634-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Godin, Antoine, Benjamin Rappaz, Laurent Potvin-Trottier, Yves De Koninck, and Paul Wiseman. "Spatial Intensity Distribution Analysis (SpIDA): A Method to Probe Membrane Receptor Organization in Intact Cells." In Cell Membrane Nanodomains, 239–60. CRC Press, 2014. http://dx.doi.org/10.1201/b17634-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hoppe, Adam, and Shalini Low-Nam. "Live-Cell TIRF Imaging of Molecular Assembly and Plasma Membrane Topography." In Cell Membrane Nanodomains, 261–80. CRC Press, 2014. http://dx.doi.org/10.1201/b17634-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Expanding the Fluorescence Toolbox." In Cell Membrane Nanodomains, 281–82. CRC Press, 2014. http://dx.doi.org/10.1201/b17634-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Membrane nanodomains"

1

Rong, Xi, Kenneth M. Pryse, Jordan A. Whisler, Yanfei Jiang, William B. McConnaughey, Artem Melnykov, Guy M. Genin, and Elliot L. Elson. "Confidence Intervals for Estimation of the Concentration and Brightness of Multiple Diffusing Species." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80921.

Full text
Abstract:
Lipid nanodomains in cell membranes are believed to play a significant role in replication of enveloped viruses such as bird flu and HIV and signaling mechanisms underlying pathological conditions such as cancer. However, the forces that govern the formation and availability of these “membrane rafts” are uncertain, and even their existence is questioned. The central challenge is that no suitable imaging modalities exist (Elson, et al., 2010). We are developing tools to characterize and visualize dynamics of lipid nanodomains on idealized systems called giant unilamellar vesicles (GUVs) using fluorescence correlation spectroscopy (FCS) (Figure 1).
APA, Harvard, Vancouver, ISO, and other styles
2

Jiang, Yanfei, Guy M. Genin, Srikanth Singamaneni, and Elliot L. Elson. "Interfacial Phases on Giant Unilamellar Vesicles." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80942.

Full text
Abstract:
Lipid nanodomains in cell membranes are believed to play a significant role in a number of critical cellular processes (Elson, et al., 2010). These include, for example, replication processes in enveloped viruses such as bird flu and HIV and signaling mechanisms underlying pathological conditions such as cancer. Due to the potential for developing new disease treatments through the control of these membrane rafts, the biophysics underlying their formation has been the subject of intense study, much of this focused on domain formation in giant unilamellar lipid vesicles (GUVs), a simplified model system.
APA, Harvard, Vancouver, ISO, and other styles
3

Parmryd, Ingela. "The Importance of Plasma Membrane Nanodomains in Signal Transduction and Drug Repurposing." In RExPO23. REPO4EU, 2023. http://dx.doi.org/10.58647/rexpo.23011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Yerim, Kai Tao, Carey Phelps, Tao Huang, Barmak Mostofian, Daniel Zuckerman, and Xiaolin Nan. "Probing the spatiotemporal dynamics of Ras-associated membrane nanodomains with high-throughput single particle tracking via photoactivated localization microscopy (spt-PALM)." In High-Speed Biomedical Imaging and Spectroscopy V, edited by Keisuke Goda and Kevin K. Tsia. SPIE, 2020. http://dx.doi.org/10.1117/12.2547699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Xia, Yixiong Wang, Wonshik Choi, and Roseline Godbout. "Abstract 2886: The mechanistic effect of DHA on FABP7 associated membrane lipid order & nanodomain distribution in glioblastoma migration." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-2886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography