Journal articles on the topic 'Membrane échangeuse de proton'

To see the other types of publications on this topic, follow the link: Membrane échangeuse de proton.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Membrane échangeuse de proton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Amrouche, Fethia, Bouziane Mahmah, Maiouf Belhamel, and Hocine Benmoussa. "Modélisation d’une pile à combustible PEMFC alimentée directement en hydrogène-oxygène et validation expérimentale." Journal of Renewable Energies 8, no. 2 (December 31, 2005): 109–21. http://dx.doi.org/10.54966/jreen.v8i2.856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La pile à combustible (PAC) est connue depuis longtemps comme un convertisseur d’hydrogène en énergie (électrique + thermique) possédant de très bons rendements, les recherches sur cette technologie se développent partout dans le monde de manière considérable. Les raisons sont bien connues: la réponse aux contraintes environnementales, aux problèmes posés par la production centralisée d’électricité, la nécessité d’avoir des alternatives énergétiques (vecteur hydrogène) et certaines exigences technologiques spécifiques telles que les applications spatiales, sous-marines, électroniques portables, alimentation électrique de sites isolés et de microsystèmes. Il est certain que nous assisterons dans les prochaines décennies à l’émergence de la filière hydrogène dans notre vie quotidienne comme vecteur énergétique. Le choix de la technologie des piles à combustible à membrane échangeuse de protons (PEMFC) est implicite vu les performances intéressantes (faible poids, robuste, électrolyte solide, démarrage rapide, large gamme de puissance de 1 W à10 MW, etc.). Il est donc important de pousser encore plus loin les efforts de recherche/développement autour de cette technologie pour pouvoir la maîtriser et étendre son application. Cet article présente les résultats de la modélisation de la cinétique électrochimique et la production électrique des piles à combustible PEMFC alimentée directement en gaz pur (hydrogène et oxygène) et la validation expérimentale grâce à une base de données établie au niveau du ‘’Laboratoire d’Hydrogène en Réseau – CDER‘’, dans le but d’exploiter et d’améliorer les modèles électrochimiques existants.
2

Rigo, A., and SA Sartorius. "Sartobind®: membrane échangeuse d'ions." Biofutur 1997, no. 169 (July 1997): 16. http://dx.doi.org/10.1016/s0294-3506(97)84155-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bessière, C., L. Dammak, C. Larchet, and B. Auclair. "Détermination du coefficient d'affinité d'une membrane échangeuse de cations." European Polymer Journal 35, no. 5 (May 1999): 899–907. http://dx.doi.org/10.1016/s0014-3057(98)00058-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amoury, Bilal, Tien Dung Le, Jérôme Dillet, Sébastien Leclerc, Gael Maranzana, and Sophie Didierjean. "Two-Phase Flow Through the PTL of PEM Water Electrolyzer: MRI Experiments and Numerical Modeling Using Phase-Field Theory." ECS Meeting Abstracts MA2023-02, no. 37 (December 22, 2023): 1807. http://dx.doi.org/10.1149/ma2023-02371807mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In 2021, estimation shows that the worldwide annual hydrogen production is around 94 Mt. Exploitation of native hydrogen being not mature, it is obtained by its separation from other elements by different methods such as steam methane reforming, and electrolysis of water. The latter supplied by a renewable power source will take part in the development of a green hydrogen economy [1]. In this context, Proton Exchange Membrane (PEM) Electrolyzer is a promising technology due to its flexibility and very quick adaptation to load variations. However, its current development still confronts some limitations at a large industrial scale. For instance, efficiency and durability are directly impacted by the mass transport and electrical transfer within the porous materials at the anode side. Limitation of the water supply to the catalyst layer happens once there is a poor oxygen evacuation which decreases the performance of the device by inducing high overpotential. Furthermore, the PTL has an important role as an electrical conductor for charge transfer from the catalyst layer [1]. The efficiency of all the transport phenomena through the PTL and porous electrode assembly depends on their transport properties which are related to their microstructure and operating conditions. For instance, PTL with a large pore size allows good water and gas transport, while produced electrons choose a long-distance path generating an electrical resistance higher than that in the case of PTL with a small pore size [1]. So, controlled and optimum porosity and pore size could contribute to efficient water, gas, and electron transport. To define the best porous layers morphologies, a deep and accurate understanding of the phenomena is developed in this work by combining modeling and experiments. The magnetic resonance imaging (MRI) technique was used to quantify the water content within the porous layer during the two-phase flow. Instead of the real PTL made of titanium which is paramagnetic and cannot be used in the MRI, borosilicate filters with thickness, porosity, and pore size similar to the PTL were used. After positioning the sample in the 600 MHz vertical imager (Figure 1-A), a constant water flow rate is introduced while the gas flow rate is varied. The saturation profiles measured through the porous material depend on the gas flow rate and a semi-dryness of the sample occurs (Figure 1-B) with a residual quantity trapped between pores (minimum stable water content). The water flow rate variation in the channel does not affect saturation, but a higher gas flow rate is needed to reach a minimum stable water content for higher water flow rate.The gas pressure drop through the porous medium was measured and bubble formation in the channel was also analyzed. The results show that the pressure drops and types of flow (slug, annular, and bubble flow) depend on orientation of the water channel (horizontally and vertically) and flow direction (up or downward), and on the water and gas flow rates. To reach a better understanding of the dynamic characteristics of water and oxygen transport over the PTL, the phase-field model based on the Cahn-Hilliard theory was used to simulate the two-phase flow through a porous medium [2]. In this model, the modified Navier-Stokes equations for two phases are coupled with a phase-field equation for describing the diffuse interface. Numerical simulations performed in the COMSOL® multiphysics software were carried on 2D geometries composed of spherical solid grains of different sizes, having properties similar to the PTL used in the MRI experiments. Gas is injected on one side of the sample and flows through the porous medium initially saturated and evacuated on another side in contact with the water channel (Figure 1-C). Gas flow in the porous medium and bubble formation in the water channel are studied while varying the gas and water flow rates. The simulation results give information about the gas pathways within the porous medium and the saturation profiles over time, depending on the gas/water flow rates, which will be compared with experimental results. [1] J. Parra-Restrepo, “Caractérisation des hétérogénéités de fonctionnement et de dégradation au sein d’un électrolyseur à membrane échangeuse de protons (PEM),” Université de Lorraine, 2020. [2] J. W. Cahn and J. E. Hilliard, “Free Energy of a Nonuniform System. I. Interfacial Free Energy,” The Journal of Chemical Physics, vol. 28, no. 2, pp. 258–267, Feb. 1958. Figure 1
5

Teepakorn, Chalore, Catherine Charcosset, and Koffi Fiaty. "Sorption de biomolécules par membrane échangeuse d’ions : étude expérimentale et modélisation." Comptes Rendus Chimie 19, no. 7 (July 2016): 812–19. http://dx.doi.org/10.1016/j.crci.2015.11.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Poilbout, K., S. Mokrani, L. Dammak, G. Bulvestre, and B. Auclair. "Détermination du coefficient d’affinité d’une membrane échangeuse de cations à différentes forces ioniques." European Polymer Journal 36, no. 8 (August 2000): 1555–61. http://dx.doi.org/10.1016/s0014-3057(99)00238-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

DELMAS, F. "Production de chlore et de soude par le procédé à membrane échangeuse d'ions." Le Journal de Physique IV 04, no. C1 (January 1994): C1–223—C1–232. http://dx.doi.org/10.1051/jp4:1994116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mendy, Jean-Pierre, Christian Larchet, Pierre Schaetzel, and Bernard Auclair. "Méthode de détermination de l'exclusion d'un electrolyte fort par une membrane échangeuse d'ions." European Polymer Journal 23, no. 7 (January 1987): 533–40. http://dx.doi.org/10.1016/0014-3057(87)90108-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nasser, B., S. Poussard, P. Cottin, and M. S. Istab, Laboratoire de biochimie et toxic El Kebbaj. "Purification et caractérisation de la D-bêta-hydroxybutyrate déshydrogenase de mitochondries de foie de chamelon." Revue d’élevage et de médecine vétérinaire des pays tropicaux 53, no. 2 (February 1, 2000): 122. http://dx.doi.org/10.19182/remvt.9735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La D-bêta-hydroxybutyrate déshydrogénase (BDH) est une protéine membranaire mitochondriale. Elle est située sur la face interne de la membrane interne, fortement liée à la membrane. C'est une oxydoréductase à NAD+ (H). Elle intervient dans le métabolisme des corps cétoniques en catalysant la transformation du D-bêta-hydroxybutyrate et de l'acétoacétate. Une nouvelle technique a été mise au point pour extraire et purifier cette enzyme à partir de mitochondries de foie de chamelon. Elle consiste en une chromatographie sur colonne en deux étapes : la première sur matrice échangeuse d'ions (DEAE-sephacel) la seconde sur matrice hydrophobe (phényl Sépharose CL 4B). Les résultats obtenus ont montré que la BDH délipidée est inactive ; elle ne retrouve son activité qu'en présence de phospholipides contenant des lécithines. La BDH a été reconnue par un anticorps polyclonal anti BDH mitochondriale de foie de rat. La masse moléculaire de l'enzyme a été estimée à 70 000, par électrophorèse sur gel de polyacrylamide en présence de sulfate de dodécyl de sodium. La masse moléculaire et les conditions optimales de réactivation de la BDH sont différentes par rapport à celles déjà obtenues chez d'autres espèces.
10

Dilley, R. A., S. M. Theg, and W. A. Beard. "Membrane-Proton Interactions in Chloroplast Bioenergetics:Localized Proton Domains." Annual Review of Plant Physiology 38, no. 1 (June 1987): 347–89. http://dx.doi.org/10.1146/annurev.pp.38.060187.002023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Öjemyr, Linda Näsvik, Tor Sandén, Jerker Widengren, and Peter Brzezinski. "Membrane-facilitated proton transfer to the surface of a membrane-spanning proton transporter." Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797 (July 2010): 98. http://dx.doi.org/10.1016/j.bbabio.2010.04.296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Sun, Baoying, Huanqiao Song, Xinping Qiu, and Wentao Zhu. "New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells." ChemPhysChem 12, no. 6 (April 5, 2011): 1196–201. http://dx.doi.org/10.1002/cphc.201000848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tourreuil, V., N. Rossignol, G. Bulvestre, C. Larchet, and B. Auclair. "Détermination de la séléctivité d'une membrane échangeuse d'ions: confrontation entre le flux de diffusion et le nombre de transport." European Polymer Journal 34, no. 10 (October 1998): 1415–21. http://dx.doi.org/10.1016/s0014-3057(97)00288-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Schaetzel, Pierre, and Bernard Auclair. "Étude d'une membrane échangeuse d'ions faiblement acide. Comparaison entre les modèles de spiegler homogène, hétérogène et de stefan-maxwell." European Polymer Journal 24, no. 7 (January 1988): 623–32. http://dx.doi.org/10.1016/0014-3057(88)90025-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Vishnyakov, V. M. "Proton exchange membrane fuel cells." Vacuum 80, no. 10 (August 2006): 1053–65. http://dx.doi.org/10.1016/j.vacuum.2006.03.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Peled, E. "A Novel Proton-Conducting Membrane." Electrochemical and Solid-State Letters 1, no. 5 (1999): 210. http://dx.doi.org/10.1149/1.1390687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Allen, R. D. "Membrane tubulation and proton pumps." Protoplasma 189, no. 1-2 (March 1995): 1–8. http://dx.doi.org/10.1007/bf01280286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ralph, T. R. "Proton Exchange Membrane Fuel Cells." Platinum Metals Review 41, no. 3 (July 1, 1997): 102–13. http://dx.doi.org/10.1595/003214097x413102113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Proton exchange membrane fuel cells operating on hydrogen/air are being considered as high efficiency, low pollution power generators for stationary and transportation applications. There have been many successful demonstrations of this technology in recent years. However, to penetrate these markets the cost of the fuel cell stack must be reduced. This report details the progress made on reductions in the stack cost by lowered platinum catalyst loadings in the latest stack designs, the development of lower cost membrane electrolytes, the design of alternative bipolar flow field plates, and the introduction of mass production technology. Despite such advances, there is still a need for further reductions in the stack cost, through improvements in the performance of the membrane electrode assembly. However, improved stack performance must be demonstrated not only with pure hydrogen fuel but also, more particularly, with reformate fuel, where tolerance to poisoning by carbon monoxide and carbon dioxide needs to be improved. Advances that are required in the ancillary sub-systems are also briefly considered here.
19

Sun, Baoying, Huanqiao Song, Xinping Qiu, and Wentao Zhu. "Corrigendum: New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells." ChemPhysChem 12, no. 13 (September 6, 2011): 2366. http://dx.doi.org/10.1002/cphc.201190067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sun, Zhe, Hong Sun, Yu Lan Tang, Jia Ji Zuo, and Yu Hou Wu. "Proton Transfer in Proton Exchange Membrane Based on RDF." Advanced Materials Research 295-297 (July 2011): 1742–46. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.1742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
PEM fuel cell is the most promising application as an automotive power. Proton transfer in PEM is one of important factors to understand the performance of PEM fuel cell. In this paper, the proton transfer mechanisms are analyzed by the molecular simulation based on the basic principle of molecular dynamics. Effects of water content in the proton exchange membrane and cell temperature on the proton transfer in the membrane are studied by the radial distribution function (RDF). Results show that proton transfers in the Nafion polymer by water bridges between two sulfonic groups of adjacent side chains. There are more water bridges supporting proton transfer with the increase of water content in membrane. The increase of cell temperature speeds up the form and break of O-H bond, which promotes the proton transfer. The research results are very helpful to understanding the proton transfer mechanism in proton exchange membrane and promoting the applications of PEM fuel cell.
21

Bedet, Jérôme, Pierre Mutzenhardt, Daniel Canet, Gaël Maranzana, Sébastien Leclerc, Olivier Lottin, Christian Moyne, and Didier Stemmelen. "Étude du comportement de l'eau dans une pile à combustible à membrane échangeuse d'ions (PEMFC): étude par RMN et IRM." Comptes Rendus Chimie 11, no. 4-5 (April 2008): 465–73. http://dx.doi.org/10.1016/j.crci.2007.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Zhi Jie, Fang Hui Zhang, Hong Sun, and Ye Wan. "Hydrated Proton Transfer in Nafion117 Membrane." Applied Mechanics and Materials 672-674 (October 2014): 634–37. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The proton transfer impedance in the proton exchange membrane is the main impedance of PEM fuel cells. In this paper, the molecular model of the hydrated proton transfer in the Nafion117 membrane is established based on the basic principle of molecular dynamics; the effects of temperature and water content on the proton transfer are analyzed. The results reveal that the hydronium ion clusters H5O2+ is the main structure style of the hydrated proton transfer in the proton exchange membrane; with the increase of the temperature, the thermal motion of particles accelerates, which leads to the hydrated proton diffusion speed up; when the water content increases, the hydrated proton diffusion coefficient increases. The results are very helpful to understand the proton transfer in the membrane.
23

Sanden, T., L. Salomonsson, P. Brzezinski, and J. Widengren. "Surface-coupled proton exchange of a membrane-bound proton acceptor." Proceedings of the National Academy of Sciences 107, no. 9 (February 16, 2010): 4129–34. http://dx.doi.org/10.1073/pnas.0908671107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Savage, John, and Gregory A. Voth. "Proton Solvation and Transport in Realistic Proton Exchange Membrane Morphologies." Journal of Physical Chemistry C 120, no. 6 (February 8, 2016): 3176–86. http://dx.doi.org/10.1021/acs.jpcc.5b11168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Buch-Pedersen, M. J., and M. G. Palmgren. "Mechanism of proton transport by plant plasma membrane proton ATPases." Journal of Plant Research 116, no. 6 (December 1, 2003): 507–15. http://dx.doi.org/10.1007/s10265-003-0111-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Thimmappa, Ravikumar, Mruthyunjayachari Chattanahalli Devendrachari, Alagar Raja Kottaichamy, Omshanker Tiwari, Pramod Gaikwad, Bhuneshwar Paswan, and Musthafa Ottakam Thotiyl. "Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells." Langmuir 32, no. 1 (December 22, 2015): 359–65. http://dx.doi.org/10.1021/acs.langmuir.5b03984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Schlichting, Gregory J., James L. Horan, and Andrew M. Herring. "Phosphonic Acid Based Proton Exchange Membrane." ECS Transactions 33, no. 1 (December 17, 2019): 777–81. http://dx.doi.org/10.1149/1.3484572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Peled, E. "A Novel Proton Conductive Membrane (PCM)." ECS Proceedings Volumes 1998-27, no. 1 (January 1998): 66–70. http://dx.doi.org/10.1149/199827.0066pv.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Banerjee, S., D. N. Prugh, and S. Frisk. "Advances in Proton Exchange Membrane Technology." ECS Transactions 50, no. 2 (March 15, 2013): 887–95. http://dx.doi.org/10.1149/05002.0887ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kluka, Ľubomír, Ernest Šturdík, Štefan Baláž, Dušan Kordík, Michal Rosenberg, Marián Antalík, and Jozef Augustín. "Membrane proton transport mediated by phenylhydrazonopropanedinitriles." Collection of Czechoslovak Chemical Communications 53, no. 1 (1988): 186–97. http://dx.doi.org/10.1135/cccc19880186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Some fundamental physicochemical characteristics as stability in solutions, solubility in various solvents and association constants describing equilibria with protons and potassium ions in aqueous solutions were determined for phenylhydrazonopropanedinitriles (PHPD). The effect of pH and sodium, potassium, calcium, and magnesium cations on the distribution of PHPD were examined in a two-compartment system 1-octanol-water. The transmembrane transfer of protons by PHPD causing a disturbance of the pH-gradient was verified in vitro using a model three-compartment system water-octanol-water, imitating the in vivo intracristal space-inner mitochondrial membrane – matrix system. Transfer of H+ ions mediated by PHPD in the system under study was found to be considerably faster when an exchange with K+ ions (ion-exchanging antiport H+/K+) was possible. A model was described indicating the reality of ion-exchanging antiport H+/Me+ mediated by PHPD on biomembranes which is in line with the chemiosmotic theory.
31

Son, D. N., and H. Kasai. "Proton transport through aqueous Nafion membrane." European Physical Journal E 29, no. 4 (July 31, 2009): 351–61. http://dx.doi.org/10.1140/epje/i2009-10500-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Brzezinski, Peter. "Redox-driven membrane-bound proton pumps." Trends in Biochemical Sciences 29, no. 7 (July 2004): 380–87. http://dx.doi.org/10.1016/j.tibs.2004.05.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Noack, Jens, Nataliya Roznyatovskaya, Karsten Pinkwart, and Jens Tübke. "Vanadium proton exchange membrane water electrolyser." Journal of Power Sources 349 (May 2017): 144–51. http://dx.doi.org/10.1016/j.jpowsour.2017.03.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Biloti, Débora Nakai, Maria Helena Andrade Santana, and Francisco Benedito Teixeira Pessine. "Lipid membrane with low proton permeability." Biochimica et Biophysica Acta (BBA) - Biomembranes 1611, no. 1-2 (April 2003): 1–4. http://dx.doi.org/10.1016/s0005-2736(03)00035-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Swette, Larry L., Anthony B. LaConti, and Stephen A. McCatty. "Proton-exchange membrane regenerative fuel cells." Journal of Power Sources 47, no. 3 (January 1994): 343–51. http://dx.doi.org/10.1016/0378-7753(94)87013-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Gennis, Robert B. "Proton Dynamics at the Membrane Surface." Biophysical Journal 110, no. 9 (May 2016): 1909–11. http://dx.doi.org/10.1016/j.bpj.2016.04.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Scarborough, G. A. "The plasma membrane proton-translocating ATPase." Cellular and Molecular Life Sciences 57, no. 6 (June 2000): 871–83. http://dx.doi.org/10.1007/pl00000730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Georgievskii, Yuri, Emile S. Medvedev, and Alexei A. Stuchebrukhov. "Proton Transport via the Membrane Surface." Biophysical Journal 82, no. 6 (June 2002): 2833–46. http://dx.doi.org/10.1016/s0006-3495(02)75626-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Nelson, Nathan, and William R. Harvey. "Vacuolar and Plasma Membrane Proton-Adenosinetriphosphatases." Physiological Reviews 79, no. 2 (April 1, 1999): 361–85. http://dx.doi.org/10.1152/physrev.1999.79.2.361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPases have similar structure and mechanism of action with F-ATPase and several of their subunits evolved from common ancestors. In eukaryotic cells, F-ATPases are confined to the semi-autonomous organelles, chloroplasts, and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. The mechanistic and structural relations between the two enzymes prompted us to suggest similar functional units in V-ATPase as was proposed to F-ATPase and to assign some of the V-ATPase subunit to one of four parts of a mechanochemical machine: a catalytic unit, a shaft, a hook, and a proton turbine. It was the yeast genetics that allowed the identification of special properties of individual subunits and the discovery of factors that are involved in the enzyme biogenesis and assembly. The V-ATPases play a major role as energizers of animal plasma membranes, especially apical plasma membranes of epithelial cells. This role was first recognized in plasma membranes of lepidopteran midgut and vertebrate kidney. The list of animals with plasma membranes that are energized by V-ATPases now includes members of most, if not all, animal phyla. This includes the classical Na+absorption by frog skin, male fertility through acidification of the sperm acrosome and the male reproductive tract, bone resorption by mammalian osteoclasts, and regulation of eye pressure. V-ATPase may function in Na+uptake by trout gills and energizes water secretion by contractile vacuoles in Dictyostelium. V-ATPase was first detected in organelles connected with the vacuolar system. It is the main if not the only primary energy source for numerous transport systems in these organelles. The driving force for the accumulation of neurotransmitters into synaptic vesicles is pmf generated by V-ATPase. The acidification of lysosomes, which are required for the proper function of most of their enzymes, is provided by V-ATPase. The enzyme is also vital for the proper function of endosomes and the Golgi apparatus. In contrast to yeast vacuoles that maintain an internal pH of ∼5.5, it is believed that the vacuoles of lemon fruit may have a pH as low as 2. Similarly, some brown and red alga maintain internal pH as low as 0.1 in their vacuoles. One of the outstanding questions in the field is how such a conserved enzyme as the V-ATPase can fulfill such diverse functions.
40

Weichselbaum, Ewald, Denis Knyazev, and Peter Pohl. "Energetics of Lateral Membrane Proton Diffusion." Biophysical Journal 108, no. 2 (January 2015): 603a—604a. http://dx.doi.org/10.1016/j.bpj.2014.11.3287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

De Almeida, N. E., and G. R. Goward. "Proton dynamics in sulfonated ionic salt composites: Alternative membrane materials for proton exchange membrane fuel cells." Journal of Power Sources 268 (December 2014): 853–60. http://dx.doi.org/10.1016/j.jpowsour.2014.05.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Qiu, Diankai, Linfa Peng, Peng Liang, Peiyun Yi, and Xinmin Lai. "Mechanical degradation of proton exchange membrane along the MEA frame in proton exchange membrane fuel cells." Energy 165 (December 2018): 210–22. http://dx.doi.org/10.1016/j.energy.2018.09.136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhai, Zhen Yu, Ying Gang Shen, Bin Jia, and Yan Yin. "Surface Morphology Studies on PBI Membrane Materials of High Temperature for Proton Exchange Membrane Fuel Cells." Advanced Materials Research 625 (December 2012): 239–42. http://dx.doi.org/10.4028/www.scientific.net/amr.625.239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Compare with the conventional proton exchange membrane fuel cells (PEMFCs), high temperature proton exchange membrane fuel cells (HT-PEMFCs) have more advantages such as higher CO tolerance of catalyst, easier water management and higher catalyst activity. As the core component of the HT-PEMFC, proton exchange membrane should have excellent flexibility , thermal stability and high proton conductivity at high operation temperature and anhydrous environments. By atomic force microscope (AFM) technology, the surface topography image and lateral force image of the untreated and treated polybenzimidazole (PBI) membrane are investigated.
44

Cheng, Wang, Zong Qiang Mao, Jing Ming Xu, and Xiao Feng Xie. "Study of Novel Self-Humidifying PEMFC with Nano-TiO2-Based Membrane." Key Engineering Materials 280-283 (February 2007): 899–902. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We propose self-humidifying polymer electrolyte membranes with highly dispersed nanometer-sized Titanium dioxides for proton exchange membrane fuel cells operated with dry H2 and O2. The nanosized TiO2 particles that have hygroscopic property are expected to adsorb the water produced from the cathode reaction and to release the water once the proton exchange membrane needs water. The preparation technology of nano-TiO2 particles in a commercial Nafion 112 membrane via novel in situ sol-gel reactions was developed, resulting in a semitransparent membrane with uniform distribution of TiO2 in the proton exchange membrane. It is found that Proton conductivity increases observably by dispersing 3 wt % nano-TiO2 in the Proton exchange membrane at low humidity condition, and the newly prepared TiO2-PEM improve the self-humidifying performance of Proton exchange membrane fuel cell.
45

Kuanchaitrakul, Tanita, S. Chirachanchai, and H. Manuspiya. "Inorganic Mesoporous Membrane for Potentially Used in Proton Exchange Membrane." Advances in Science and Technology 54 (September 2008): 311–16. http://dx.doi.org/10.4028/www.scientific.net/ast.54.311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Inorganic Mesoporous Membrane is a new alternative to improve high-temperature fuel cell performance in proton exchange membrane fuel cells (PEMFCs) to substitute for Nafion. It possess high porosity and high specific surface areas, resulting in high proton conductivity. In this study, niobium-modified titania and antimony/niobium-modified titania ceramic were prepared via the sol-gel technique. The various contents of antimony, 0 to 3 wt%, and 3% niobium are incorporated into titania to improve the porous surface condition of the ceramic particles. The xerogels were heated at about 500°C. Inorganic membranes were prepared by using the spin-coating technique using epoxy resin as a binder. The physical, chemical, and electrical properties of these membranes were investigated. The XRD and Raman results showed that pure TiO2 and doped TiO2 nanoparticles obtained possess an anatase structure with mesoporosity. The specific surface area of the doped TiO2 was higher than that of pure TiO2 and it is worth pointing out that the doping of antimony affected the surface areas more than the doping of niobium in TiO2. Moreover, these membranes were also tested to evaluate their potential use as an electrolyte in PEMFC by using impedance spectroscopy, TGA, mechanical properties and water uptake.
46

Hwang, Byungchan, Hoi-Bum Chung, Moo-Seok Lee, Dong-Hoon Lee, and Kwonpil Park. "Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell." Korean Chemical Engineering Research 54, no. 5 (October 1, 2016): 593–97. http://dx.doi.org/10.9713/kcer.2016.54.5.593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Öjemyr, Linda, Tor Sandén, Jerker Widengren, and Peter Brzezinski. "Lateral Proton Transfer between the Membrane and a Membrane Protein†." Biochemistry 48, no. 10 (March 17, 2009): 2173–79. http://dx.doi.org/10.1021/bi8022152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Rosli, Nur Adiera Hanna, Kee Shyuan Loh, Wai Yin Wong, Tian Khoon Lee, and Azizan Ahmad. "Hybrid Composite Membrane of Phosphorylated Chitosan/Poly (Vinyl Alcohol)/Silica as a Proton Exchange Membrane." Membranes 11, no. 9 (August 31, 2021): 675. http://dx.doi.org/10.3390/membranes11090675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Chitosan is one of the natural biopolymers that has been studied as an alternative material to replace Nafion membranes as proton change membranes. Nevertheless, unmodified chitosan membranes have limitations including low proton conductivity and mechanical stability. The aim of this work is to study the effect of modifying chitosan through polymer blending with different compositions and the addition of inorganic filler on the microstructure and physical properties of N-methylene phosphonic chitosan/poly (vinyl alcohol) (NMPC/PVA) composite membranes. In this work, the NMPC biopolymer and PVA polymer are used as host polymers to produce NMPC/PVA composite membranes with different compositions (30–70% NMPC content). Increasing NMPC content in the membranes increases their proton conductivity, and as NMPC/PVA-50 composite membrane demonstrates the highest conductivity (8.76 × 10−5 S cm−1 at room temperature), it is chosen to be the base membrane for modification by adding hygroscopic silicon dioxide (SiO2) filler into its membrane matrix. The loading of SiO2 filler is varied (0.5–10 wt.%) to study the influence of filler concentration on temperature-dependent proton conductivity of membranes. NMPC/PVA-SiO2 (4 wt.%) exhibits the highest proton conductivity of 5.08 × 10−4 S cm−1 at 100 °C. In conclusion, the study shows that chitosan can be modified to produce proton exchange membranes that demonstrate enhanced properties and performance with the addition of PVA and SiO2.
49

Richter, Michael, Jens Daufenbach, Stefanie Drebing, Verena Vucetic, and Duc Tung Nguyen. "Light-induced proton slip and proton leak at the thylakoid membrane." Journal of Plant Physiology 161, no. 12 (December 2004): 1325–37. http://dx.doi.org/10.1016/j.jplph.2004.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Thimmappa, Ravikumar, Mohammed Fawaz, Mruthyunjayachari Chattanahalli Devendrachari, Manu Gautam, Alagar Raja Kottaichamy, Shahid Pottachola Shafi, and Musthafa Ottakam Thotiyl. "Anisotropic amplification of proton transport in proton exchange membrane fuel cells." Chemical Physics Letters 679 (July 2017): 1–5. http://dx.doi.org/10.1016/j.cplett.2017.04.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography