Academic literature on the topic 'Membrane échangeuse de proton'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Membrane échangeuse de proton.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Membrane échangeuse de proton":

1

Amrouche, Fethia, Bouziane Mahmah, Maiouf Belhamel, and Hocine Benmoussa. "Modélisation d’une pile à combustible PEMFC alimentée directement en hydrogène-oxygène et validation expérimentale." Journal of Renewable Energies 8, no. 2 (December 31, 2005): 109–21. http://dx.doi.org/10.54966/jreen.v8i2.856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La pile à combustible (PAC) est connue depuis longtemps comme un convertisseur d’hydrogène en énergie (électrique + thermique) possédant de très bons rendements, les recherches sur cette technologie se développent partout dans le monde de manière considérable. Les raisons sont bien connues: la réponse aux contraintes environnementales, aux problèmes posés par la production centralisée d’électricité, la nécessité d’avoir des alternatives énergétiques (vecteur hydrogène) et certaines exigences technologiques spécifiques telles que les applications spatiales, sous-marines, électroniques portables, alimentation électrique de sites isolés et de microsystèmes. Il est certain que nous assisterons dans les prochaines décennies à l’émergence de la filière hydrogène dans notre vie quotidienne comme vecteur énergétique. Le choix de la technologie des piles à combustible à membrane échangeuse de protons (PEMFC) est implicite vu les performances intéressantes (faible poids, robuste, électrolyte solide, démarrage rapide, large gamme de puissance de 1 W à10 MW, etc.). Il est donc important de pousser encore plus loin les efforts de recherche/développement autour de cette technologie pour pouvoir la maîtriser et étendre son application. Cet article présente les résultats de la modélisation de la cinétique électrochimique et la production électrique des piles à combustible PEMFC alimentée directement en gaz pur (hydrogène et oxygène) et la validation expérimentale grâce à une base de données établie au niveau du ‘’Laboratoire d’Hydrogène en Réseau – CDER‘’, dans le but d’exploiter et d’améliorer les modèles électrochimiques existants.
2

Rigo, A., and SA Sartorius. "Sartobind®: membrane échangeuse d'ions." Biofutur 1997, no. 169 (July 1997): 16. http://dx.doi.org/10.1016/s0294-3506(97)84155-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bessière, C., L. Dammak, C. Larchet, and B. Auclair. "Détermination du coefficient d'affinité d'une membrane échangeuse de cations." European Polymer Journal 35, no. 5 (May 1999): 899–907. http://dx.doi.org/10.1016/s0014-3057(98)00058-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amoury, Bilal, Tien Dung Le, Jérôme Dillet, Sébastien Leclerc, Gael Maranzana, and Sophie Didierjean. "Two-Phase Flow Through the PTL of PEM Water Electrolyzer: MRI Experiments and Numerical Modeling Using Phase-Field Theory." ECS Meeting Abstracts MA2023-02, no. 37 (December 22, 2023): 1807. http://dx.doi.org/10.1149/ma2023-02371807mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In 2021, estimation shows that the worldwide annual hydrogen production is around 94 Mt. Exploitation of native hydrogen being not mature, it is obtained by its separation from other elements by different methods such as steam methane reforming, and electrolysis of water. The latter supplied by a renewable power source will take part in the development of a green hydrogen economy [1]. In this context, Proton Exchange Membrane (PEM) Electrolyzer is a promising technology due to its flexibility and very quick adaptation to load variations. However, its current development still confronts some limitations at a large industrial scale. For instance, efficiency and durability are directly impacted by the mass transport and electrical transfer within the porous materials at the anode side. Limitation of the water supply to the catalyst layer happens once there is a poor oxygen evacuation which decreases the performance of the device by inducing high overpotential. Furthermore, the PTL has an important role as an electrical conductor for charge transfer from the catalyst layer [1]. The efficiency of all the transport phenomena through the PTL and porous electrode assembly depends on their transport properties which are related to their microstructure and operating conditions. For instance, PTL with a large pore size allows good water and gas transport, while produced electrons choose a long-distance path generating an electrical resistance higher than that in the case of PTL with a small pore size [1]. So, controlled and optimum porosity and pore size could contribute to efficient water, gas, and electron transport. To define the best porous layers morphologies, a deep and accurate understanding of the phenomena is developed in this work by combining modeling and experiments. The magnetic resonance imaging (MRI) technique was used to quantify the water content within the porous layer during the two-phase flow. Instead of the real PTL made of titanium which is paramagnetic and cannot be used in the MRI, borosilicate filters with thickness, porosity, and pore size similar to the PTL were used. After positioning the sample in the 600 MHz vertical imager (Figure 1-A), a constant water flow rate is introduced while the gas flow rate is varied. The saturation profiles measured through the porous material depend on the gas flow rate and a semi-dryness of the sample occurs (Figure 1-B) with a residual quantity trapped between pores (minimum stable water content). The water flow rate variation in the channel does not affect saturation, but a higher gas flow rate is needed to reach a minimum stable water content for higher water flow rate.The gas pressure drop through the porous medium was measured and bubble formation in the channel was also analyzed. The results show that the pressure drops and types of flow (slug, annular, and bubble flow) depend on orientation of the water channel (horizontally and vertically) and flow direction (up or downward), and on the water and gas flow rates. To reach a better understanding of the dynamic characteristics of water and oxygen transport over the PTL, the phase-field model based on the Cahn-Hilliard theory was used to simulate the two-phase flow through a porous medium [2]. In this model, the modified Navier-Stokes equations for two phases are coupled with a phase-field equation for describing the diffuse interface. Numerical simulations performed in the COMSOL® multiphysics software were carried on 2D geometries composed of spherical solid grains of different sizes, having properties similar to the PTL used in the MRI experiments. Gas is injected on one side of the sample and flows through the porous medium initially saturated and evacuated on another side in contact with the water channel (Figure 1-C). Gas flow in the porous medium and bubble formation in the water channel are studied while varying the gas and water flow rates. The simulation results give information about the gas pathways within the porous medium and the saturation profiles over time, depending on the gas/water flow rates, which will be compared with experimental results. [1] J. Parra-Restrepo, “Caractérisation des hétérogénéités de fonctionnement et de dégradation au sein d’un électrolyseur à membrane échangeuse de protons (PEM),” Université de Lorraine, 2020. [2] J. W. Cahn and J. E. Hilliard, “Free Energy of a Nonuniform System. I. Interfacial Free Energy,” The Journal of Chemical Physics, vol. 28, no. 2, pp. 258–267, Feb. 1958. Figure 1
5

Teepakorn, Chalore, Catherine Charcosset, and Koffi Fiaty. "Sorption de biomolécules par membrane échangeuse d’ions : étude expérimentale et modélisation." Comptes Rendus Chimie 19, no. 7 (July 2016): 812–19. http://dx.doi.org/10.1016/j.crci.2015.11.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Poilbout, K., S. Mokrani, L. Dammak, G. Bulvestre, and B. Auclair. "Détermination du coefficient d’affinité d’une membrane échangeuse de cations à différentes forces ioniques." European Polymer Journal 36, no. 8 (August 2000): 1555–61. http://dx.doi.org/10.1016/s0014-3057(99)00238-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

DELMAS, F. "Production de chlore et de soude par le procédé à membrane échangeuse d'ions." Le Journal de Physique IV 04, no. C1 (January 1994): C1–223—C1–232. http://dx.doi.org/10.1051/jp4:1994116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mendy, Jean-Pierre, Christian Larchet, Pierre Schaetzel, and Bernard Auclair. "Méthode de détermination de l'exclusion d'un electrolyte fort par une membrane échangeuse d'ions." European Polymer Journal 23, no. 7 (January 1987): 533–40. http://dx.doi.org/10.1016/0014-3057(87)90108-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nasser, B., S. Poussard, P. Cottin, and M. S. Istab, Laboratoire de biochimie et toxic El Kebbaj. "Purification et caractérisation de la D-bêta-hydroxybutyrate déshydrogenase de mitochondries de foie de chamelon." Revue d’élevage et de médecine vétérinaire des pays tropicaux 53, no. 2 (February 1, 2000): 122. http://dx.doi.org/10.19182/remvt.9735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La D-bêta-hydroxybutyrate déshydrogénase (BDH) est une protéine membranaire mitochondriale. Elle est située sur la face interne de la membrane interne, fortement liée à la membrane. C'est une oxydoréductase à NAD+ (H). Elle intervient dans le métabolisme des corps cétoniques en catalysant la transformation du D-bêta-hydroxybutyrate et de l'acétoacétate. Une nouvelle technique a été mise au point pour extraire et purifier cette enzyme à partir de mitochondries de foie de chamelon. Elle consiste en une chromatographie sur colonne en deux étapes : la première sur matrice échangeuse d'ions (DEAE-sephacel) la seconde sur matrice hydrophobe (phényl Sépharose CL 4B). Les résultats obtenus ont montré que la BDH délipidée est inactive ; elle ne retrouve son activité qu'en présence de phospholipides contenant des lécithines. La BDH a été reconnue par un anticorps polyclonal anti BDH mitochondriale de foie de rat. La masse moléculaire de l'enzyme a été estimée à 70 000, par électrophorèse sur gel de polyacrylamide en présence de sulfate de dodécyl de sodium. La masse moléculaire et les conditions optimales de réactivation de la BDH sont différentes par rapport à celles déjà obtenues chez d'autres espèces.
10

Dilley, R. A., S. M. Theg, and W. A. Beard. "Membrane-Proton Interactions in Chloroplast Bioenergetics:Localized Proton Domains." Annual Review of Plant Physiology 38, no. 1 (June 1987): 347–89. http://dx.doi.org/10.1146/annurev.pp.38.060187.002023.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Membrane échangeuse de proton":

1

He, Chen Feng. "Surface behavior of sulfonated hydrocarbon proton exchange membranes." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/31224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La pile à combustible a suscité une attention croissante en tant que solution de rechange écologique aux carburants fossiles. Les membranes échangeuses d’ions (PEM)s sont utilisées dans des piles à combustible à membrane échangeuse de protons (PEMFC) et des piles à combustible directes au méthanol (DMFC) comme composant séparateur pour fournir une barrière au transfert de carburant entre les électrodes et pour transférer des protons de l'anode à La cathode. Les PEMFC et les DMFC suscitent des intérêts plus particuliers pour l'utilisation dans les applications automobiles, stationnaires et électroniques portables. En tant que composante clé d’une PEMFC, une PEM est nécessaire pour effectuer des fonctions multiples telles que la séparation de gaz, l'isolation électrique et le transfert ionique pour transporter des protons de l'anode à la cathode. La présence d'eau dans une PEM est essentielle pour que les polymères traditionnels sulfonés transfèrent les protons et facilitent la conductivité protonique. Comme le Nafion, la conduction protonique des polymères de type PEM sulfonés dépend de le teneur en eau dans les membranes. Cependant, une absorption excessive d'eau dans une PEM conduit à un changement dimensionnel inacceptable, à une mésadaptation dimensionnelle avec les électrodes, à une délamination des couches de catalyseur de la PEM et à une perte des propriétés mécaniques, ce qui pourrait conduire à une mauvaise performance ou un manque de durabilité de l'assemblage membrane – électrode (MEA). En tant que systèmes hautement intégrés, les piles à combustible sont faites de matériaux hétérogènes comportant contenant du gaz, du liquide et du solide. Les MEA sont typiquement fabriqués par collage d'électrodes de catalyseur de platine supporté sur du carbone sur l'électrolyte PEM, en utilisant un ionomère de type Nafion liant du catalyseur, quel que soit la PEM utilisée. La structure et l'activité des différentes interfaces, l'adhérence et la compatibilité entre les différentes couches ainsi que les caractéristigues du carburant jouent des rôles clés sur la performance globale de la pile à combustible. Parmi ces questions diverses, le transfert inévitable de méthanol dans une PEM, telle que le Nafion, limite les applications en DEMFC. Malgré le développement de nombreuses PEM à base d'hydrocarbures en tant que substituts au Nafion, le comportement de surface et l'adaptation / compatibilité interfaciale entre ce type de PEM et les autres couches est moins bien compris. Dans cette thèse, nous...
The fuel cell has received attention as a promising eco-friendly alternative energy source to fossil fuels. Polymer exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) have attracted increasing interest for use in motor vehicles and electronic applications including stationary and portable devices. As a key component of PEMFC and DMFC, PEM is required to perform multiple functions such as fuel separator, electrical insulator and ionic path to transport protons from the anode to the cathode. The presence of water in PEM is essential for traditional, sulfonated polymers to transfer protons and to facilitate proton conductivity. As Nafion, the proton conduction of the sulfonated PEM-type polymers depends upon the water content in the membranes. However, excessive water uptake in a PEM results in unacceptable dimensional change, dimensional mismatch with the electrodes, delaminating of catalyst layers from the PEM and loss of mechanical properties, which could result in poor membrane electrode assembly (MEA) performance or durability. As a highly integrated system, fuel cells are used in a heterogeneous environment containing gas, liquid, and solid. Typically, MEAs are constructed by bonding carbonsupported platinum catalyst electrodes onto the PEM electrolyte. Regardless of the PEM used, a Nafion-type ionomer is usually employed as a catalyst support. The structure and activity at the different interfaces, the adhesion and compatibility among various layers, as well as fuel property on PEM play key roles on the fuel cell universal performance as vital as the individual components. Among these heterogeneous concerns, crossover of methanol in PEM, such as Nafion, limits DEMFC applications. In spite of the development of numerous hydrocarbon PEMs as substitutes to Nafion, the surface behavior and interfacial match between a PEM and the other layers, such as, the interface between a PEM and gas diffusion layer/catalyst layer/methanol layer are less understood. In this thesis, the surface/interface behavior of a representative selection of hydrocarbon-based proton exchange membranes (PEMs) was investigated. These PEMs are: copolymerized sulfonated poly(ether ether ketone) (SPEEK-HQ), sulfophenylated poly(aryl ether ether ketone) (Ph-SPEEK), sulfophenylated poly(aryl ether ether ketone ketone) (Ph-m-SPEEKK), and sulfonated poly (aryl ether ether nitrile) (SPAEEN-B).
2

Mabrouk, Walid. "Synthèse et caractérisation de nouvelles membranes protoniques : Applications en pile à combustible à membrane échangeuse de protons." Phd thesis, Conservatoire national des arts et metiers - CNAM, 2012. http://tel.archives-ouvertes.fr/tel-00697008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La synthèse et la caractérisation de nouvelles membranes à conduction protonique, pour pile à combustible à membrane échangeuse de proton, ont été réalisées. Une étude sur des molécules modèles a permis de mieux appréhender la stabilité thermique et électrochimique du polyéthersulfone sulfoné (S-PES). Des membranes à base de polyéthersulfone sulfoné greffés à l'octylamine (S-PESOS) et des membranes mixtes à base de S-PESOS et S-PES ont été caractérisées d'un point de vue physicochimique et électrochimique. L'effet de la réticulation chimique sur les propriétés des membranes a été évalué. Les membranes réticulées présentent des bonnes propriétés mécaniques, des conductivités ioniques et une stabilité chimique suffisantes pour être utilisées dans les piles à combustible à membrane échangeuse de proton. L'étude des propriétés de transport dans ces électrolytes acides a été approfondie en corrélant des mesures thermiques avec des mesures électrochimiques, thermodynamiques et les performances en pile. Mots clés: pile à combustible à membrane échangeuse de proton, conductivité ionique, taux de sulfonation, polyéthersulfone.
3

Bressel, Mathieu. "Modélisation raphique pour le pronostic robuste de pile à combustible à membrane échangeuse de proton." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10119/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La pile à combustible (PàC) est actuellement la solution alternative aux énergies fossiles la plus prometteuse. Il convient cependant d’améliorer sa fiabilité. Cela nécessite la mise en place d’algorithmes capables d’estimer en temps réel l´état de santé de son fonctionnement et de prédire sa durée de vie résiduelle. Les méthodes de pronostic basées sur un modèle physique offrent des résultats précis car ne nécessitent ni apprentissage de modes de fonctionnement ni expertise de l’opérateur. Toutefois, la problématique pour un système PàC réside dans le couplage de plusieurs phénomènes physique, l’incertitude des paramètres du modèle et la faible instrumentation du cœur de pile. Ainsi, nous utilisons des modèles incertains basés sur l’outil Bond Graph bien adapté pour la PàC. Concrètement, les incertitudes sont intégrées au modèle d´évolution des puissances qui est utilisé pour la détection du vieillissement et l’estimation de la dégradation de la PàC. Un modèle de dégradation est utilisé par un filtre de Kalman étendu pour l’estimation de l’état de santé, de la dynamique du vieillissement et permet de quantifier l’incertitude pour toute condition opératoire. Un algorithme Inverse First Order Reliability Method permet ensuite la prédiction de la durée de vie résiduelle et de l’incertitude de prédiction inhérente. La méthode globale a été validée sur différents jeux de données expérimentales. Grâce à l’ensemble de ces outils, un contrôle par inversion de modèle REM (Représentation Energétique Macroscopique) à paramètres variant, robuste au vieillissement a été développé en se basant sur l’estimation de l’état de santé
The fuel cell (FC) is at present the alternative solution to the fossil fuels the most promising. It is however advisable to improve its reliability. This requires the implementation of algorithms capable of estimating in real time the state of health and forecasting its remaining useful life (prognostics). The methods of prognostics based on a physical model offer precise results once they do not requiring either learning or expertise of the operator. However, the problem for a FC system lies in the coupling of several physical phenomena, the uncertainty of the parameters of the model and the low instrumentation of the FC stack.Thus, we use uncertain models based on the Bond Graph tool well adapted for the FC. Concretely, the parameters uncertainties are integrated in the model of evolution of the powers which is used for the detection of the beginning of the aging and the estimation of the degradation of the FC based on the causal and structural properties of the model. The generated model of degradation is used by an extended Kalman filter which allows the estimation of the state of health , the dynamics of the aging and the quantification of the uncertainty for any operating condition (of temperature, current and pressure). An Inverse First Order Reliability Method is then used for the prediction of the remaining useful life and the inherent uncertainty. The global method was validated on various sets of experimental data. Thanks to this set of tools, a control based on the inversion of an Energetic Macroscopic Representation (EMR) model with time varying parameters, robust to aging is developed based on the state of health estimation
4

Wu, Yiming. "Long term performance prediction of proton exchange membrane fuel cells using machine learning method." Thesis, Belfort-Montbéliard, 2016. http://www.theses.fr/2016BELF0308/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les questions environnementales, en particulier le réchauffement de la planète en raison de l'effet de serre, estdevenu de plus en plus critique au cours des dernières décennies. Candidate potentielle parmi les différentessolutions alternatives d'énergie verte pour le développement durable, la pile à combustible à membrane échangeusede protons (PEMFC en anglais) a fait l'objet de nombreux travaux de recherche, dans les domaines de l'énergie etdes transports. Les PEMFC peuvent produire de l'électricité directement à partir de la réaction électrochimique entrel'hydrogène et l'oxygène de l'air, avec comme seul sous-produits de l'eau et de la chaleur. Si l'hydrogène est produità partir de sources d'énergie renouvelables, cette conversion de l'énergie est complètement écologique.Cependant, la durée de vie relativement courte des PEMFC fonctionnant dans des conditions dynamiques (pour lesvéhicules, par exemple) empêche son utilisation massive. La prévision précise de leurs mécanismes devieillissement peut ainsi aider à concevoir des modèles de maintenance appropriés des PEMFC en fournissant desinformations prévisibles sur la dégradation des performances. De plus, la prédiction pourrait également contribuer àatténuer la dégradation indésirable des systèmes PEMFC en cours d'exploitation. Ces travaux proposent unenouvelle approche guidée par les données pour prédire la dégradation des performances des PEMFC en utilisantune méthode d'apprentissage améliorée (Relevance Vector Machine : RVM).Tout d'abord, la description théorique des PEMFC en fonctionnement est présentée. Ensuite, une illustrationdétaillée de l'impact des conditions opérationnelles sur la performance des PEMFC est exposée, ainsi que desmécanismes de dégradation de chaque composant des PEMFC.Une méthode de prédiction de performance en utilisant la RVM améliorée est ensuite proposée et démontrée. Lesrésultats de prédiction basés sur des zones d'apprentissage différentes à partir des données historiques sontégalement discutés et comparés avec les résultats de prédiction utilisant les machines à vecteurs de support(Support Vector Machine : SVM).En outre, une méthode de prédiction RVM à noyau auto-adaptatif (Self-Adaptive Kernel) est présentée. La matricede conception de la formation du RVM est également modifiée afin d'acquérir une plus grande précision lors de laprédiction. Les résultats de la prévision sont illustrés et discutés en détails.En résumé, ces travaux permettent de discuter principalement de l'analyse de la prédiction de la performance desPEMFC en utilisant des méthodes d'apprentissage statistique
The environmental issues, especially the global warming due to greenhouse effect, has become more and morecritical in recent decades. As one potential candidate among different alternative "green energy" solutions forsustainable development, the Proton Exchange Membrane Fuel Cell (PEMFC) has been received extensiveresearch attention since many years for energy and transportation applications. The PEMFC stacks, can produceelectricity directly from electrochemical reaction between hydrogen and oxygen in the air, with the only by-productsof water and heat. If the hydrogen is produced from renewable energy sources, this energy conversion is 100% ecofriendly.However, the relatively short lifespan of PEMFCs operating under non-steady-state conditions (for vehicles forexample) impedes its massive use. The accurate prediction of their aging mechanisms can thus help to designproper maintenance patterns of PEMFCs by providing foreseeable performance degradation information. In addition,the prediction could also help to avoid or mitigate the unwanted degradation of PEMFC systems during operation.This thesis proposes a novel data driven approach to predict the performance degradation of the PEMFC using animproved relevance vector machine method.Firstly, the theoretical description of the PEMFC during operation will be presented followed by an extensivelydetailed illustration on impacts of operational conditions on PEMFC performance, along with the degradationmechanisms on each component of PEMFC. Moreover, different approaches of PEMFC performance prediction inthe literature will also be briefly introduced.Further, a performance prediction method using an improved Relevance Vector Machine (RVM) would be proposedand demonstrated. The prediction results based on different training zones from historical data will also bediscussed and compared with the prediction results using conventional Support Vector Machine (SVM).Moreover, a self-adaptive kernel RVM prediction method will be introduced. At the meantime, the design matrix ofthe RVM training will also be modified in order to acquire higher precision during prediction. The prediction resultswill be illustrated and discussed thoroughly in the end.In summary, this dissertation mainly discusses the analysis of the PEMFC performance prediction using advancedmachine learning methods
5

Sutor, Anna. "Étude des relations entre les performances électrochimiques des membranes ionomères pour piles à combustible et leur état d'hydratation : apport des spectroscopies vibrationnelles in situ." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2013. http://www.theses.fr/2013ENCM0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'état d'hydratation des électrolytes polymères pour piles à combustibles de type PEMFC et donc, la conductivité protonique de ce type d'électrolytes, est le point crucial pour comprendre et expliquer les performances électrochimiques de ce type de système. Le fonctionnement de la pile (création, absorption, diffusion, migration et désorption d'eau) conduit à une forte hétérogénéité de l'état d'hydratation du matériau polymère et donc de sa conductivité.La conductivité protonique des membranes actuellement utilisées comme électrolyte est le fait de la structure du matériau, des mécanismes de diffusion de l'eau et du proton, et des interactions eau-polymère au sein de la membrane. Nous nous sommes intéressés à ces problèmes et avons étudié les mécanismes d'hydratation et de diffusion par les techniques de spectroscopies vibrationnelles Infra-Rouge et Raman.Ce travail démontrera, entre autres, l'apport particulièrement intéressant des spectroscopies vibrationnelles in-situ pour la résolution de la problématique de la distribution de l'eau au sein de la membrane et son influence sur les performances de la pile. Nous proposons ici une étude de deux polymères perfluorosulfonés, le Nafion et l'Aquivion.Les propriétés d'absorption d'eau, de diffusion d'eau et de transport du proton dans ces deux membranes sont étudiées dans diverses conditions d'hydratation : dans les conditions d'équilibre, sous gradient d'activité chimique de l'eau (mesure in situ) et sous l'effet d'un champ électrique (mesure in situ et operando dans une pile en fonctionnement). La spectroscopie Infra-Rouge est utilisée pour étudier les changements structuraux des polymères ainsi que l'état de confinement de l'eau au cours de l'hydratation des membranes soumises à différentes valeurs de pression partielle d'eau et de température. Elle permet également d'étudier les interactions entre l'eau et les différents groupements chimiques présents dans la structure du polymère. L'ensemble des résultats est utilisé pour proposer des mécanismes d'absorption de l'eau ainsi que de dissociation des groupements acides de la membrane. La micro-spectroscopie Raman confocale, grâce à sa résolution spatiale micrométrique, permet de sonder l'épaisseur de la membrane et de déterminer le gradient d'eau transverse. Une cellule micro-fluidique a été développée pour l'étude des phénomènes de transport diffusif. Cette technique est actuellement la seule permettant de calculer les coefficients de diffusion équivalente à partir des gradients de concentration d'eau interne.Une pile à combustible spécialement adaptée aux mesures Raman, nous a permis, pour la première fois avec cette technique, de déterminer la distribution de l'eau à travers l'épaisseur de la membrane dans le système électrochimique en fonctionnement. Les informations ainsi obtenues sont des données primordiales pour comprendre, expliquer et prévoir l'impact de la distribution de l'eau au sein du cœur de pile sur les performances globales de ce système
The water content of polymer electrolytes for Proton Exchange Membrane Fuel Cells and, thus, their proton conductivity, is the key issue to understand and to explain the electrochemical performances of the PEMFC electrochemical device. The fuel cell operation (creation, absorption, diffusion, migration and desorption of water) leads the hydration state of the membrane strongly heterogeneous. The proton conductivity of state-of-art polymer electrolytes results from the material structure, the water and proton diffusion mechanisms and the interactions between water and the polymer phase within the membrane. This work deals with these issues and uses vibrational spectroscopy techniques (Infra-Red and Raman) to study hydration and diffusion phenomena. Among others, this work shows the contribution of in-situ vibrational spectroscopies to the understanding of the water management issue and relationships between the water distribution throughout the membrane and the fuel cell electrochemical performances. Two perfluorosulfonated polymers, Nafion and Aquivion, are investigated.The water absorption and diffusion properties of these two membranes are studied under several hydration conditions: at the equilibrium, under external gradient of the water chemical activity and under the effect of an electric gradient (in-situ and operando measurements with the working fuel cell).Infrared spectroscopy is used to study structural modifications of the polymer phase occurring during the hydration process as well as the confinement state of water sorbed within the membrane. The last is submitted to different water vapor pressures and temperatures. This spectroscopy also allows to study interactions between water and the different chemical groups belonging to the polymer structure. Results are used to describe water absorption as well as the proton dissociation mechanism involving the sulfonic groups.Confocal Raman Micro-spectroscopy allows, by the spatial resolution at the micrometric scale, to probe the thickness of the membrane and to measure the inner, through-plane, water gradient. A micro-fluidic cell has been developed for the study of diffusion transport phenomena. This method is currently the only one by which equivalent diffusion coefficients can be calculated from internal water concentration gradients.A fuel cell especially designed for Raman measurements allowed us, for the first time by means of this technique, to determine the water distribution through the thickness of the membrane working in the electrochemical device. The new insights so obtained are essential for understanding, explaining and predicting the effects of the heterogeneous water distribution throughout the fuel cell heart on the electrochemical behavior
6

Yakisir, Dinçer. "Development of gas diffusion layer for proton exchange membrane fuel cell, PEMFC." Master's thesis, Université Laval, 2006. http://hdl.handle.net/20.500.11794/18765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bultel, Yann. "Modélisation des couches actives d'électrodes volumiques de piles à combustible à membrane échangeuse de protons." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ce travail est focalise sur la modelisation des transports de matiere, de charge et de chaleur dans les couches actives des electrodes volumiques de piles a combustible a membrane echangeuse de protons (p. E. M. F. C). Un premier temps decrit la structure des piles a combustible et les processus physico-chimiques aux electrodes sont decrits. Une analyse des modeles classiques rencontres dans la litterature montre qu'ils supposent tous que l'electrocatalyseur est uniformement reparti sur un plan ou en volume. Dans un deuxieme temps, la modelisation des phenomenes de transport de matiere et de charge a ete menee en utilisant un logiciel de calcul numerique (flux-expert#) mettant en oeuvre la methode des elements finis et qui permet de prendre en compte la repartition discrete du catalyseur en nano-particules. Les simulations ont mis en evidence les limitations du taux d'utilisation du catalyseur par la diffusion et la chute ohmique ionique non seulement a l'echelle de la couche d'electrolyte mais aussi a celle des particules. Afin d'ameliorer la modelisation des piles a combustible a membrane echangeuses de protons, les modeles classiques ont ete modifies afin de les rendre capables de prendre en compte ces contributions locales ; ils ne requierent que des methodes numeriques simples telle que celle des differences finies. Appliques a la reduction de l'oxygene a la cathode ou a l'oxydation de l'hydrogene a l'anode, ces modeles permettent de determiner les parametres cinetiques (densites de courant d'echanges et pentes des droites de tafel) corrigees de la diffusion dans la couche active. Une modelisation des transferts thermiques a l'echelle des couches actives est ensuite proposee. Le modele prend en compte les echanges de chaleur convectifs entre les phases solides et le gaz, le transport d'eau par electro-osmose, la creation de chaleur par effet joule et par les reactions electrochimiques. Enfin, le dernier chapitre presente une etude des mecanismes reactionnels dans le cas des electrodes poreuses par la methode des impedances. Des modeles analytiques et numeriques ont ete developpes pour calculer les impedances d'electrode et sont appliques a l'etude de la reduction de l'oxygene et d'oxydation de l'hydrogene.
8

Cherragui, Mohamed. "Développement d'un simulateur Hardware-in-the-Loop (HIL) d'un système pile à combustible à membrane échangeuse de proton." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La pile à combustible (PàC) est une source d’énergie qui produit de l’électricité à partir de l’hydrogène et de l’oxygène.Elles sont très prometteuses pour la production d'énergie électrique. Néanmoins, la PàC souffre encore d’imperfections limitant ainsi sa commercialisation à grande échelle, tout particulièrement pour les applications de transport.C’est pourquoi, l’hybridation des différentes sources d’énergies est devenue une réalité pour les applications non-stationnaires telles que les véhicules tout électriques.Cependant ces applications nécessitent des solutions de gestion de l’énergie fiables prenant en compte toutes les contraintes du système électrique hybride.Par conséquent, le développement de plateforme de validation est nécessaire.Dans ce contexte, le Hardware In the Loop (HIL) est une technique très prometteuse, où une partie d’un système réel peut être remplacée par un système virtuel tout en respectant la communication entre ces sous-systèmes physiques et virtuels.Ce mémoire détaille des modèles dynamiques d'une pile à combustible échangeuse de proton (PEMFC) hybridée à des supercondensateurs.Par ailleurs, on détaille la gestion d’énergie entre ces deux sources, ainsi que le pronostic de la pile basé d’une part d’un filtre de Kalman étendu (EKF) pour l’estimation de l’état de santé (SoH) réel de la pile, et d’autre part, de la méthode Inverse First Order Reliability Method (IFORM) en vue d’estimer la durée de vie utile restante de la pile, tout cela dans une approche Hardware-In-The-Loop (HIL)
The fuel cell is a source of energy that generates electricity from hydrogen and oxygen.They are very promising candidates for the production of electric power.Nevertheless, the fuel cell still suffers from imperfections limiting its commercialization on a full scale, in particular for transport applications.This is the reason why, hybridization of different energy sources has become a reality for non-stationary applications such as all-electric vehicles.However, these applications require reliable energy management solutions that take into account all the constraints of the hybrid electrical system.Therefore, the development of validation platform is necessary.In this context, the Hardware In the Loop (HIL) is a very promising technique, where part of a real system can be replaced by a virtual system while respecting the communication between these physical and virtual subsystems.This document details the dynamic models of a proton exchange membrane fuel cell (PEMFC) associated with supercapacitors.Furthermore, the energy management between these two sources and the prognostic of the fuel cell composed of a extenced Kalman Filter filter (EKF) for the estimation of the real state of health (SoH) of the stack and, on the other hand, of the Inverse First Order Reliability Method (IFORM) in order to estimate the remaining useful life of the stack, all implemented in an FPGA control board in a Hardware-In-The-Loop (HIL) context
9

Tran, Thi Bich Hue. "Gestion de l’eau dans les piles à combustible électrolyte polymère : étude par micro-spectroscopie Raman operando." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT198/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les performances et la durabilité d’une pile à combustible à membrane échangeuse de proton (PEMFC) sont directement liées à la répartition de l’eau dans l’assemblage membrane-électrode (AME), plus particulièrement dans la membrane électrolyte. L’optimisation de cette répartition de l’eau, homogène et suffisante, est donc indispensable pour obtenir de bonnes performances et une grande durabilité. La répartition de l’eau dépend d’une part des conditions de fonctionnement et d’autre part de la géométrie des canaux de distribution des gaz dans les plaques mono ou bipolaires. Cependant, l’effet de ces paramètres n’est pas encore entièrement élucidé malgré de nombreuses études réalisées.Dans ce contexte, la première partie de cette thèse se focalise sur l’effet des conditions d’humidification des gaz et de température de fonctionnement sur les performances et la distribution de l’eau dans une pile de configuration en serpentin. Les profils d’eau à travers l’épaisseur de la membrane au centre de la surface active sont enregistrés par spectroscopie Raman operando. Le lien entre la distribution de l’eau et les performances de la pile sera discuté. Dans la deuxième partie, les performances et la distribution de l’eau dans une pile de configuration en parallèle sont étudiées aux mêmes conditions de température appliquées pour la pile de configuration en serpentin. Les résultats obtenus nous permettent de comparer directement les comportements de ces deux configurations. L’origine des différences de leur répartition de l’eau et donc de leurs performances sera clarifiée. Dans la troisième partie, nous nous concentrons sur la répartition de l’eau dans le plan d’une pile en serpentin aux différentes température de fonctionnement. La pile est alimentée en contre-flux. Les profils d’eau dans l’épaisseur de la membrane sont enregistrés pour trois zones : entrée, centre et sortie. Nous traçons par la suite la répartition de l’eau sur les interfaces cathodique et anodique. Ces informations nous apportent une meilleure compréhension de la répartition de l’eau dans cette configuration ainsi que l’effet du mode d’alimentation des gaz en contre-flux
In a proton exchange membrane fuel cell (PEMFC), the performance and the durability of the system is directly related to the water management in the membrane electrode assembly (AME), particularly in the membrane electrolyte. The optimization of the water repartition, homogeneous and sufficient, is therefore essential to obtain good performance and great durability. The water management in the membrane depends both on the operating conditions and the gas flow-field design. However, the effect of these parameters is not yet fully understood despite numerous studies.In this context, the first part of this thesis focuses on the influence of gas humidification and operating temperature conditions on the performance and the water distribution in a serpentine flow-field cell. The inner water profiles across the membrane thickness at the center of the active surface are recorded by Raman spectroscopy operando. The relationship between the water distribution and the performance of the cell will be discussed. In the second part, the performance and the water distribution in a parallel flow-field cell are studied under the same temperature conditions applied for the serpentine flow-field cell. The results obtained allow us to directly compare the behavior of these two configurations. The origin of their water distribution and performance differences will be discussed. In the third part, we focus on the distribution of water in the plane of a serpentine flow-field cell at different operating temperatures. The cell is powered in counter-flow. The inner water profiles in the membrane are recorded for three zones: inlet, center and outlet. We then trace the water repartition on the cathodic and anodic interfaces. This information gives us a better understanding of the counter-flow effect on the water distribution in the plane of the serpentine flow-field cell
10

Gloaguen, Frédéric. "Piles à combustible à membrane échangeuse de protons : contribution à l'étude de la cathode à oxygène." Grenoble INPG, 1994. http://www.theses.fr/1994INPG0105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le but de ce travail est de minimiser la quantite de platine dans les cathodes a oxygene des piles a combustible envisagees pour les vehicules electriques. La premiere partie de ce memoire comprend une etude bibliographique des piles a combustible a membrane echangeuse de protons (pemfc), ainsi qu'une presentation des principaux resultats concernant la reduction electrochimique de l'oxygene sur platine massif et disperse. Differents modeles, decrivant le fonctionnement des couches actives des electrodes de piles a combustible, sont ensuite etudies. Des applications numeriques au cas de la cathode a oxygene des pemfc permettent de definir les geometries internes des couches actives pour lesquelles l'utilisation du catalyseur est maximale. En utilisant ces modeles, la mise au point d'un protocole de test des proprietes des particules de catalyseur autorise une etude de l'influence de la taille des particules sur l'activite du platine vis a vis de la reduction de l'oxygene. Il est ainsi observe que l'activite massique du platine passe par un maximum pour des tailles de particules comprises entre trois et quatre nanometres. L'interpretation des resultats electrochimiques s'appuie, en partie, sur une experience d'absorption x in situ. Enfin la derniere partie de ce memoire decrit des methodes de preparation de particules de catalyseur par reduction electrochimique de differents complexes du platine

Books on the topic "Membrane échangeuse de proton":

1

Spiegel, Colleen. PEM fuel cell modeling and simulation using Matlab. Boston: Academic Press/Elsevier, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Spiegel, Colleen. PEM fuel cell modeling and simulation using Matlab. Boston: Academic Press/Elsevier, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Spiegel, Colleen. PEM fuel cell modeling and simulation using Matlab. Boston: Academic Press/Elsevier, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Albarbar, Alhussein, and Mohmad Alrweq. Proton Exchange Membrane Fuel Cells. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70727-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Fei, Benjamin Blunier, and Abdellatif Miraoui, eds. Proton Exchange Membrane Fuel Cells Modeling. Hoboken, NJ USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118562079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Francis, Fuller Thomas, Electrochemical Society Meeting, Electrochemical Society. Energy Technology Division., and International Symposium on Proton Exchange Membrane Fuel Cells (7th : 2007 : Washington, D.C.), eds. Proton exchange membrane fuel cells 7. Pennington, N.J: Electrochemical Society, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Francis, Fuller Thomas, Electrochemical Society Meeting, Sociedad Mexicana de Electroquimica. Congreso, and Electrochemical Society. Energy Technology Division., eds. Proton exchange membrane fuel cells 6. Pennington, N.J: Electrochemical Society, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Fei. Proton exchange membrane fuel cells modeling. London: ISTE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gregory, Bock, Marsh Joan, Ciba Foundation, and Symposium on Proton Passage Across Cell Membranes (1988 : Ciba Foundation), eds. Proton passage across cell membranes. Chichester, Sussex, UK: Wiley, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

International Symposium on Proton Conducting Membrane Fuel Cells (2nd 1998). Proton conducting membrane fuel cells II: Proceedings of the Second International Symposium on Proton Conducting Membrane Fuel Cells II. Edited by Gottesfeld Shimshon, Fuller Thomas Francis, Electrochemical Society. Energy technology Division., Electrochemical Society Battery Division, and Electrochemical Society. Physical Electrochemistry Division. Pennington, New Jersey: Electrochemical Society, Inc., 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Membrane échangeuse de proton":

1

Alhazov, Artiom, and Matteo Cavaliere. "Proton Pumping P Systems." In Membrane Computing, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24619-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hickner, Michael A. "Proton Exchange Membrane Nanocomposites." In ACS Symposium Series, 155–70. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1034.ch011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schlegel, Andreas, and Christoph Kempf. "A Viral Proton Channel." In Dynamics of Membrane Assembly, 375–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02860-5_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Larminie, James, and Andrew Dicks. "Proton Exchange Membrane Fuel Cells." In Fuel Cell Systems Explained, 67–119. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9781118878330.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aricò, Antonino S., Vincenzo Baglio, Nicola Briguglio, Gaetano Maggio, and Stefania Siracusano. "Proton Exchange Membrane Water Electrolysis." In Fuel Cells : Data, Facts and Figures, 343–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA., 2016. http://dx.doi.org/10.1002/9783527693924.ch34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pomès, Régis. "Proton Relay in Membrane Proteins." In ACS Symposium Series, 159–73. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0883.ch010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cavaliere, Pasquale. "Proton Exchange Membrane Water Electrolysis." In Water Electrolysis for Hydrogen Production, 233–85. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37780-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peng, Shengjie. "Proton Exchange Membrane Water Electrolysis." In Electrochemical Hydrogen Production from Water Splitting, 69–98. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4468-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

King, G. F., and C. A. R. Boyd. "Proton NMR Studies of Transmembrane Solute Transport." In Cell Membrane Transport, 297–323. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-9601-8_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steinmetz, Philip R., and Joseph Palmisano. "Disorders of Proton Secretion by the Kidney." In Physiology of Membrane Disorders, 957–83. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2097-5_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Membrane échangeuse de proton":

1

P., Radovanovic, Kellner M., Matovic J., and Liska R. "Asymmetric Sol-Gel Proton-Conducting Membrane." In 8th International Conference on Multi-Material Micro Manufacture. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-07-0319-6_207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dhar, Hari. "Internally humidified proton exchange membrane fuel cell." In Intersociety Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-4076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jung Geun Seo, Jun Taek Kwon, Junbom Kim, Woo Sik Kim, and Jong Tae Jung. "Impurity effect on proton exchange membrane fuel cell." In 2007 International Forum on Strategic Technology. IEEE, 2007. http://dx.doi.org/10.1109/ifost.2007.4798637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, C. Y. "TRASNPORT PHENOMENA IN PROTON EXCHANGE MEMBRANE FUEL CELLS." In Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/see2000.1870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gwang-Yeon Jeon, Hong-Jun Choi, Young-Hoon Yun, In-Su Cha, Dong-Mook Kim, Jeong-Sik Choi, Jin-Ho Jung, and Jeong-Phil Yoon. "PEM (Proton Exchange Membrane) fuel cell bipolar plates." In 2007 International Conference on Electrical Machines and Systems. IEEE, 2007. http://dx.doi.org/10.1109/icems12746.2007.4412119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dams, R. A. J., P. Hayter, and S. C. Moore. "Fuel options For Proton Exchange Membrane Fuel Cells." In Warship 96 - Naval Submarines 5. RINA, 1996. http://dx.doi.org/10.3940/rina.warship.1996.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ngema, S. N., A. K. Saha, and N. M. Ijumba. "Power converter for proton exchange membrane fuel cell." In 2010 International Conference on Power System Technology - (POWERCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/powercon.2010.5666082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Belyaev, P. V., V. S. Mischenko, D. A. Podberezkin, and R. A. Em. "Simulation modeling of proton exchange membrane fuel cells." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7818980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jalani, Nikhil H., Shivananda P. Mizar, Pyoungho Choi, Cosme Furlong, and Ravindra Datta. "Optomechanical characterization of proton-exchange membrane fuel cells." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Wolfgang Osten and Erik Novak. SPIE, 2004. http://dx.doi.org/10.1117/12.562893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Detti, A. H., S. Jemei, and N. Yousfi Steiner. "Proton Exchange Membrane Fuel Cell Model for Prognosis." In 2018 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2018. http://dx.doi.org/10.1109/vppc.2018.8605017.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Membrane échangeuse de proton":

1

Lin, Rui. The Application of Proton Exchange Membrane Water Electrolysis. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, June 2024. http://dx.doi.org/10.4271/epr2024014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
<div class="section abstract"><div class="htmlview paragraph">Hydrogen has gained global recognition as a crucial energy resource, holding immense potential to offer clean, efficient, cost-effective, and environmentally friendly energy solutions. Through water electrolysis powered by green electricity, the production of decarbonized “green hydrogen” is achievable. Hydrogen technology emerges as a key pathway for realizing the global objective of “carbon neutrality.” Among various water electrolysis technologies, proton exchange membrane water electrolysis (PEMWE) stands out as exceptionally promising. It boasts high energy density, elevated electrolysis efficiency, and the capacity for high output pressure, making it a frontrunner in the quest for sustainable hydrogen production.</div><div class="htmlview paragraph"><b>The Application of Proton Exchange Membrane Water Electrolysis</b> delves into the challenges and trends ahead of PEMWE—from fundamental research to practical application—and briefly describes its relative characteristics, key components, and future targets. The cost-effectiveness of PEMWE is illustrated and the report explores the potential for deeper integration into various industries, such as renewable energy consumption and hydrogen for industrial purposes. It further points the current trends, concluding with a series of recommendations for consideration by government, industry stakeholders, and researchers.</div><div class="htmlview paragraph"><a href="https://www.sae.org/publications/edge-research-reports" target="_blank">Click here to access the full SAE EDGE</a><sup>TM</sup><a href="https://www.sae.org/publications/edge-research-reports" target="_blank"> Research Report portfolio.</a></div></div>
2

Lamb, J. D. Novel macrocyclic carriers for proton-coupled liquid membrane transport. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/6110290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lamb, J. D., J. S. Bradshaw, and R. M. Izatt. Novel macrocyclic carriers for proton-coupled liquid membrane transport. Office of Scientific and Technical Information (OSTI), July 1992. http://dx.doi.org/10.2172/6957516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mayyas, Ahmad T., Mark F. Ruth, Bryan S. Pivovar, Guido Bender, and Keith B. Wipke. Manufacturing Cost Analysis for Proton Exchange Membrane Water Electrolyzers. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1557965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weisbrod, K. R., N. E. Vanderborgh, and S. A. Grot. Modeling of gaseous flows within proton exchange membrane fuel cells. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

L.G. Marianowski. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/838020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/825377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/825378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYST FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/778369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/821855.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography