Academic literature on the topic 'Membrane and separation technologies'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Membrane and separation technologies.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Membrane and separation technologies"

1

Ikeda, Masakazu. "Separation Technologies in Refineries and the Potential of Membrane–based Separation Technologies." MEMBRANE 40, no. 4 (2015): 201–4. http://dx.doi.org/10.5360/membrane.40.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Talukder, Md Eman, Fariya Alam, Mst Monira Rahman Mishu, Md Nahid Pervez, Hongchen Song, Francesca Russo, Francesco Galiano, George K. Stylios, Alberto Figoli, and Vincenzo Naddeo. "Sustainable Membrane Technologies for by-Product Separation of Non-Pharmaceutical Common Compounds." Water 14, no. 24 (December 13, 2022): 4072. http://dx.doi.org/10.3390/w14244072.

Full text
Abstract:
The Chinese pharmaceutical industry and traditional Chinese medicine (TCM) are both vital components of Chinese culture. Some traditional methods used to prepare TCMs have lost their conformity, and as a result, are producing lower-quality medicines. In this regard, the TCM sector has been looking for new ways to boost productivity and product quality. Membrane technology is environmentally-friendly, energy-saving technology, and more efficient than traditional technologies. Membrane separation is the most effective method for separating and cleaning the ingredients of the non-pharmaceutical common compounds from traditional Chinese medicine (TCM). Membrane technology is currently being employed for the concentration, purification, and separation of TCMs. This review paper discusses how membranes are fabricated and their role in non-pharmaceutical common compound separation and TCM purification. Accordingly, the membrane applicability and the technological advantage were also analyzed in non-pharmaceutical common compound separation. Researchers pay attention to the choice of membrane pore size when selecting membranes but often ignore the influence of membrane materials and membrane structure on separation, resulting in certain blindness in the membrane selection process.
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Zhongyi, Liangyin Chu, Xuemei Wu, Zhi Wang, Xiaobin Jiang, Xiaojie Ju, Xuehua Ruan, and Gaohong He. "Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China." Reviews in Chemical Engineering 36, no. 1 (December 18, 2019): 67–105. http://dx.doi.org/10.1515/revce-2017-0066.

Full text
Abstract:
Abstract During the past two decades, research on membrane and membrane-based separation process has developed rapidly in water treatment, gas separation, biomedicine, biotechnology, chemical manufacturing and separation process integration. In China, remarkable progresses on membrane preparation, process development and industrial application have been made with the burgeoning of the domestic economy. This review highlights the recent development of advanced membranes in China, such as smart membranes for molecular-recognizable separation, ion exchange membrane for chemical productions, antifouling membrane for liquid separation, high-performance gas separation membranes and the high-efficiency hybrid membrane separation process design, etc. Additionally, the applications of advanced membranes, relevant devices and process design strategy in chemical engineering related fields are discussed in detail. Finally, perspectives on the future research directions, key challenges and issues in membrane separation are concluded.
APA, Harvard, Vancouver, ISO, and other styles
4

Wei, Yanying, Gongping Liu, Jianquan Luo, Libo Li, and Zhi Xu. "Novel membrane separation technologies and membrane processes." Frontiers of Chemical Science and Engineering 15, no. 4 (April 24, 2021): 717–19. http://dx.doi.org/10.1007/s11705-021-2053-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SIRKAR, KAMALESH K. "MEMBRANE SEPARATION TECHNOLOGIES: CURRENT DEVELOPMENTS." Chemical Engineering Communications 157, no. 1 (March 1997): 145–84. http://dx.doi.org/10.1080/00986449708936687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brunetti, A., F. Scura, G. Barbieri, and E. Drioli. "Membrane technologies for CO2 separation." Journal of Membrane Science 359, no. 1-2 (September 2010): 115–25. http://dx.doi.org/10.1016/j.memsci.2009.11.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kawamoto, Tohru. "Separation and Concentration as Nitrogen Circular Technologies." MEMBRANE 47, no. 4 (2022): 184–88. http://dx.doi.org/10.5360/membrane.47.184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Raza, Ayesha, Sarah Farrukh, Arshad Hussain, Imranullah Khan, Mohd Hafiz Dzarfan Othman, and Muhammad Ahsan. "Performance Analysis of Blended Membranes of Cellulose Acetate with Variable Degree of Acetylation for CO2/CH4 Separation." Membranes 11, no. 4 (March 29, 2021): 245. http://dx.doi.org/10.3390/membranes11040245.

Full text
Abstract:
The separation and capture of CO2 have become an urgent and important agenda because of the CO2-induced global warming and the requirement of industrial products. Membrane-based technologies have proven to be a promising alternative for CO2 separations. To make the gas-separation membrane process more competitive, productive membrane with high gas permeability and high selectivity is crucial. Herein, we developed new cellulose triacetate (CTA) and cellulose diacetate (CDA) blended membranes for CO2 separations. The CTA and CDA blends were chosen because they have similar chemical structures, good separation performance, and its economical and green nature. The best position in Robeson’s upper bound curve at 5 bar was obtained with the membrane containing 80 wt.% CTA and 20 wt.% CDA, which shows the CO2 permeability of 17.32 barrer and CO2/CH4 selectivity of 18.55. The membrane exhibits 98% enhancement in CO2/CH4 selectivity compared to neat membrane with only a slight reduction in CO2 permeability. The optimal membrane displays a plasticization pressure of 10.48 bar. The newly developed blended membranes show great potential for CO2 separations in the natural gas industry.
APA, Harvard, Vancouver, ISO, and other styles
9

Badwal, S. P. S., and F. T. Ciacchi. "Ceramic Membrane Technologies for Oxygen Separation." Advanced Materials 13, no. 12-13 (July 2001): 993–96. http://dx.doi.org/10.1002/1521-4095(200107)13:12/13<993::aid-adma993>3.0.co;2-#.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shekhah, Osama, Valeriya Chernikova, Youssef Belmabkhout, and Mohamed Eddaoudi. "Metal–Organic Framework Membranes: From Fabrication to Gas Separation." Crystals 8, no. 11 (October 31, 2018): 412. http://dx.doi.org/10.3390/cryst8110412.

Full text
Abstract:
Gas membrane-based separation is considered one of the most effective technologies to address energy efficiency and large footprint challenges. Various classes of advanced materials, including polymers, zeolites, porous carbons, and metal–organic frameworks (MOFs) have been investigated as potential suitable candidates for gas membrane-based separations. MOFs possess a uniquely tunable nature in which the pore size and environment can be controlled by connecting metal ions (or metal ion clusters) with organic linkers of various functionalities. This unique characteristic makes them attractive for the fabrication of thin membranes, as both the diffusion and solubility components of permeability can be altered. Numerous studies have been published on the synthesis and applications of MOFs, as well as the fabrication of MOF-based thin films. However, few studies have addressed their gas separation properties for potential applications in membrane-based separation technologies. Here, we present a synopsis of the different types of MOF-based membranes that have been fabricated over the past decade. In this review, we start with a short introduction touching on the gas separation membrane technology. We also shed light on the various techniques developed for the fabrication of MOF as membranes, and the key challenges that still need to be tackled before MOF-based membranes can successfully be used in gas separation and implemented in an industrial setting.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Membrane and separation technologies"

1

Wang, Lei. "Cyclic membrane gas separation processes." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0291/document.

Full text
Abstract:
Ce travail traite une investigation systématique des performances du procédé membranaire cyclique par séparation gazeuse. Premièrement, l'état de l'art du procédé membranaire cyclique, les problèmes techniques et la modélisation du transfert à travers la membrane ont été exposés. Deuxièmement, les études théoriques et expérimentales existantes sur le procédé cyclique sont passées en revue. Selon la durée de pression haute et sa fraction dans un cycle, ce genre d'opération est divisé en deux classes: classes courte et longue. D'après cette classification, une analyse systématique de l'intérêt potentiel de la classe courte par rapport aux performances d'une opération en régime permanent a été accomplie par des simulations et optimisations numériques. Par ailleurs, afin d'améliorer la performance, l'usage du MMM dans un tel procédé a été discuté. En parallèle à l'étude sur la classe courte, une nouvelle conception du procédé cyclique de classe longue a été proposée. Les avantages spectaculaires par rapport aux procédés membranaires classiques ont été mis en évidence à l'aide de nos simulations et optimisations. Finalement, une validation expérimentale a été effectuée afin de fournir un support solide à cette nouvelle conception
This study deals with a systematic investigation of the performance of cyclic membrane gas separation processes. First, a state of the art of membrane separation processes, including material challenges and mass transfer modeling issues is proposed. In a second step, a review of the different theoretical and experimental studies performed on cyclic processes is reported. With respect to the length of the high pressure stage and its fraction in one cycle, these operations are classified into short and long classes. Based on this classification, a systematic analysis of the potential interest of short class compared to steady-state operation performances has been achieved by means of numerical simulation and optimization. In order to improve the performance, the use of MMM in such a process has been further discussed. In parallel with the short class study, a design of novel long class has been proposed. Spectacular advantages with respect to classical membrane-based processes have been highlighted by means of our simulation and optimization studies. Finally, an experimental verification has been performed in order to provide a solid support to this novel process
APA, Harvard, Vancouver, ISO, and other styles
2

Teepakorn, Chalore. "Numerical simulation and experimental study of membrane chromatography for biomolecule separation." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10299/document.

Full text
Abstract:
La chromatographie membranaire est une alternative à la chromatographie classique sur résine basée sur le transport convectif des solutés à travers une membrane microporeuse plutôt que par le transport diffusif des solutés dans les particules de résines. Cette technique présente les avantages de diminuer les phénomènes de diffusion, de réduire les temps de séjour et les pertes de charge, et de permettre la purification rapide de quantités importantes de molécules. La chromatographie membranaire connaît un fort succès commercial. Une gamme importante de membranes chromatographiques mettant en jeu différents mécanismes de rétention (échange d’ions, affinité, etc.) et différentes géométries (feuille, spirale, etc.) est actuellement commercialisée. Malgré ce succès, différents aspects relatifs à la chromatographie membranaire restent mal connus. Cette thèse de doctorat se propose de répondre à certaines questions relatives à cette technique
Membrane chromatography (MC) is an alternative to traditional resin packed columns chromatography. The solute mass transport in the membrane occurs in convective through-pores rather than in stagnant fluid inside the pores of the resins particles, which is limited by the slow diffusive transport. MC offers the main advantage of reducing diffusion phenomena, shorter residence time and lowered pressures drops, and thus, facilitates rapid purification of large quantities of molecules. A wide range of chromatographic membranes involving different molecules retention mechanisms (ion exchange, affinity, etc...) is now commercialized. Despite their success, the influence of the geometry of the membrane chromatography devices remains relatively unexplored from a theoretical point of view. This doctoral thesis is aimed to clarify some ambiguous points related to this technique
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Chia-Ling. "Preparation of poly(vinylidene fluoride) (PVDF) membrane by nonsolvent-induced phase separation and investigation into its formation mechanism." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20155.

Full text
Abstract:
Cette thèse décrit comment la morphologie et le polymorphisme de membranes en fluorure de poly(vinylidène) (PVDF) préparées par séparation de phase induite par la vapeur d'eau (VIPS) et par un non-solvant liquide peuvent être ajustés par la température à laquelle le PVDF est dissous (Tdis) pour former la solution de coulée. Les résultats montrent que Tdis présente une transition, notée comme la température de dissolution critique (Tcri), à partir de laquelle la morphologie et le polymorphisme des membranes changent radicalement. Ce phénomène observé pour les trois solvants, N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), and N,M-dimethylformamide (DMF), et les non-solvants (eau et une série d'alcools) utilisés dans cette étude peut être considéré comme général. La cristallisation a lieu avant la démixtion L-L quelle que soit Tdis. Pour une Tdis supérieure à Tcri, les membranes se présentent sous forme de nodules (cristallite forme beta) dont la taille décroît lorsque Tdis diminue. Ce domaine a été dénommé "à grossissement libre" car les chaînes de polymère peuvent cristalliser librement pendant la séparation de phase. Pour une Tdis inférieure à Tcri, des membranes avec une structure bi-continue (cristallite forme alpha) sont obtenues. Ce domaine a été appelé "à grossissement empêché" dans la mesure où la séparation de phase s'accompagne d'une gélification. Nous avons démontré que la morphologie et le polymorphisme cristallin des membranes de PVDF peuvent ainsi être contrôlés par la Tdis et la vitesse d'échange avec le non-solvant. Ces résultats sont interprétés en termes d'auto germination et de compétition entre gélification, cristallisation et démixtion L-L
This dissertation shows how the morphology and polymorphism of poly(vinylidene fluoride) (PVDF) membranes prepared by using vapor-induced phase separation (VIPS) and liquid-induced phase separation (LIPS) were tuned by varying the dissolution temperature at which PVDF was dissolved (Tdis) to form the casting solution. We observed a transition temperature denoted by critical dissolution temperature, Tcri, across which the morphology and polymorphism of membranes (obtained by VIPS) drastically changed. The phenomenon was considered as general, as a Tcri was observed for all the three solvents N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF) and the non-solvents, water and a series of alcohols, used in the present study. No matter which Tdis we used, polymer crystallization occurred prior to the L-L demixing. With Tdis above Tcri, the prepared membranes were composed of nodules (mainly in beta crystalline form) and the size of polymer domains decreased as the Tdis decreased. Because the polymer chains could freely coarsen to a large domain during the phase separation, we called the system free coarsening. With Tdis below Tcri, membranes with lacy (bi-continuous) structure (mainly in alpha crystalline form) were obtained. Because the polymer solution gelled during the phase separation, we called the system hindered coarsening. It was proven that PVDF membrane morphology and crystalline polymorphs can be monitored by Tdis and the solvent-nonsolvent exchange rate. These results were discussed in terms of self-seeding effect and competition between the gelation, crystallisation and L-L demixing
APA, Harvard, Vancouver, ISO, and other styles
4

Hanafia, Amira. "Étude des mécanismes interdépendants d’élaboration d’une membrane polymère sans solvant organique par une méthode originale de séparation de phase (TIPS-LCST), à partir d’un polymère biosourcé : l’hydroxypropylcellulose." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20045.

Full text
Abstract:
La séparation de phase au sein d'un système polymère/solvant est la méthode la plus couramment utilisée pour élaborer une membrane polymère poreuse. Les principales méthodes d'inversion de phase nécessitent l'usage de solvants organiques qui génèrent des problèmes environnementaux (traitement des bains de coagulation) et sanitaires (sécurité des installations industrielles). Cette étude porte sur le développement d'une nouvelle membrane polymère poreuse à partir d'un polymère biosourcé et hydrosoluble, l'hydroxypropylcellulose (HPC), permettant de s'affranchir de l'usage de solvants organiques. La propriété de thermosensibilité de l'HPC, caractérisé par une température critique basse en solution dans l'eau (LCST) de l'ordre de 40 °C, a par ailleurs permis de développer un procédé original d'élaboration de membranes HPC par séparation de phase induite par augmentation de la température au-delà de la LCST. Ce travail vise un triple objectif : (i) déterminer la formulation idoine permettant de former une membrane poreuse insoluble dans l'eau à partir d'HPC, (ii) appréhender et comprendre les mécanismes de structuration de la matrice polymère à travers l'interaction des mécanismes interdépendants de séparation de phase par décomposition spinodale, de réticulation chimique et d'extraction du solvant par évaporation et enfin (iii) caractériser l'aptitude des membranes à la filtration d'une solution aqueuse sous pression. Le suivi en ligne de la dynamique de séparation de phase d'un système HPC/eau/réticulant ± porogène (PEG200) par microscopie optique en contraste de phase, de la réticulation par rhéologie et de l'évaporation de l'eau par thermogravimétrie a ainsi permis de mettre en évidence l'impact de la formulation et des paramètres de conduite du procédé d'inversion de phase sur les propriétés morphologiques et d'usage des membranes. La porosité membranaire et le caractère symétrique de la morphologie ont notamment été corrélés à la vitesse des phénomènes concomitants de réticulation et d'évaporation de l'eau, donc à la vitesse de montée en température du procédé TIPS-LCST. La caractérisation de la perméabilité à l'eau des membranes HPC a confirmé l'efficacité de la réticulation et la résistance structurale des membranes au cours de plusieurs filtrations continues à l'eau. En raison du caractère thermosensible de l'HPC, ces membranes ont montré une aptitude remarquable à la filtration de solutions aqueuses à température élevée (60 °C). Par ailleurs, il a été montré que la perméabilité des membranes pouvait être en partie contrôlée par la température et la pression transmembranaire appliquée
Phase separation of polyer/solvent system is the most widespread industrial process to manufacture membranes. Large solvent quantity is usually used whatever the process, hence leading to environmental (coagulation and washing baths treatment) and health (industrial and plant safety) problems.This study focuses on the development of new porous membranes made from hydroxypropylcellulose (HPC), a water soluble polymer, avoiding the use of any organic solvent. Moreover, the thermo-sensitive character of this polymer, characterized by a Lower Critical Solution Temperature (LCST) in water of about 40 °C, enabled to design an original thermally induced phase separation process by temperature increase above the LCST. This study aims (i) to find the ideal polymer solution composition to produce insoluble HPC membrane, (ii) to approach and understand the link between phase separation mechanism by spinodal decomposition, crosslinkig reaction and water extraction by evaporation, (iii) characterize pure water permeability under pressure. On-line monitoring of phase sepration dynamics by phase contrast optical microscopy, crosslinking reaction by rheology and water evaporation by thermogravimetric analysis of the system HPC/water/cross-linking agent ± porogen (PEG200) allowed an understanding of simultaneous and related mechanisms occurring during elaboration (phase separation / cross-linking / water evaporation) and a correlation with HPC membrane morphologies and characteristics in relation with phase separation process parametres. Pure water permeability characterization demonstrated the efficiency of cross-linking and structural strength during several filtration cycles. Furthermore, it has been shown that water permeability of HPC membranes could be controlled in part by the temperature and the applied pressure
APA, Harvard, Vancouver, ISO, and other styles
5

Spratková, Aneta. "Intenzifikace stávající čistírny odpadních vod technologií MBR." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-392274.

Full text
Abstract:
This diploma thesis is focused on the topic of membrane technologies used in wastewater treatment. The research part of the thesis deals with membrane separation of activated sludge, and the focus is on the submerged membrane modules. The thesis contains basic principles of MBR systems, an overview of used membrane modules, modes of operation, advantages and disadvantages of using this process. The practical part of the thesis proposes the intensification of WWTP Perná with using MBR technology. This part includes the technical-economic assessment of the activation WWTP with the third stage of treatment and activation WWTP with MBR.
APA, Harvard, Vancouver, ISO, and other styles
6

Šrámek, Zbyněk. "Návrh technologie čištění bioplynu pro pohon vozidel pomocí membránové separace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254301.

Full text
Abstract:
Thesis aims to design suitable technology for biogas treatment so that its output can be used as a fully equivalent fuel for vehicles. First part introduces reader into an area of biogas treatment. Second part describes in detail chosen method, technology of membrain separation. In third part, current conditions in Czech republic were discussed. Fourth part adresses the aplication of membrane technology into existing biogas station via side-standing reaserch container. The end of the thesis is focused on selection and proper desing of blower, which will be transporting raw biogas from biogas fermenters into research container.
APA, Harvard, Vancouver, ISO, and other styles
7

Bozorg, Marjan. "Optimization of membrane process architecture." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0252.

Full text
Abstract:
Les procédés de séparation membranaire sont une technologie bien connue et déjà largement utilisée dans le domaine de la purification des gaz. Ces procédés sont applicables à de nombreux secteurs d’activités industriels. Selon les performances de séparation recherchées, elles peuvent constituer une alternative intéressante aux technologies existantes de traitement des gaz (adsorption, cryogénie, contacteurs gaz/liquide). Pour exploiter au mieux cette technologie, le développement d'outils d’aide à la décision permettant d’identifier les procédés et les conditions opératoires économiquement avantageux est absolument nécessaire. Bien que les approches expérimentales d'optimisation appliquées à différentes études de cas conservent un intérêt certain, une approche générale et sa validation dans le cadre de différentes études de cas font toujours défaut. L’objectif principal de cette thèse est de développer un outil numérique le plus générique possible d’optimisation de procédés de séparation membranaire. Dans ce travail, la synthèse du procédé membranaire est traitée et modélisée comme un problème d'optimisation mathématique non linéaire et non convexe basé sur un paradigme de superstructure couvrant une combinatoire d'unités (modules membranaires, compresseurs, pompes à vide) et de connexions la plus exhaustive possible. Des fonctions de coûts réalistes et détaillées sont utilisées comme fonction objectif dans l'optimisation. Une stratégie d'optimisation globale continue, qui peut se considérer comme la composition de deux algorithmes : Multistart et Monotonic Basin Hopping (MBH) ; est présentée pour résoudre le problème d'optimisation susmentionné. L'efficacité de cette démarche d'optimisation est dans un premier temps validée en comparant sa solution à celles présentées dans la littérature. La méthode proposée est ensuite appliquée à l'optimisation de plusieurs cas emblématiques de la séparation de gaz (CO2 de gaz de haut fourneaux, séparation O2/N2 de l’air, traitement du biogaz et du gaz naturel). Différents degrés de liberté du système sont permis et analysés selon les cas (pressions variables, type de membrane variable). L'analyse détaillée des résultats est discutée en termes d’architecture de procédés et de distribution des coûts (CAPEX, OPEX)
Membrane separation is a well-known technology in gas purification, which is applicable in different aspects of the industry. Over the last decades, depending on the required separation performances, it became a viable alternative to several gas separation technologies (adsorption, cryogenics, gas /liquid contactors). To exploit at best this technology, nevertheless, tools to find cost-effective designs and operating conditions are necessary. While experimental optimization approaches applied to different case studies have been investigated extensively, a more generic optimization approach and its validation along different case studies are still missing. The work of this thesis starts with this key observation and tries to fill this gap. The membrane process synthesis is modelled as a nonlinear and non-convex mathematical optimization problem based on a superstructure paradigm covering a wide range of possible units (membrane modules, compressors, and vacuum pumps) and connections as exhaustive as possible. Realistic and detailed cost functions are used as the objective in the optimization. A continues global optimization strategy, that can be considered as the composition of two algorithms: Multistart and Monotonic Basin Hopping (MBH); is presented to solve the aforementioned optimization problem. The efficiency of this overall optimization approach is, first, validated by comparing its solution with the ones presented in the literature. Then, the proposed method is applied to the optimization of several important gas separation cases (CO2 recovery from blast furnace gas, O2/N2 air separation, and biogas and natural gas purification) by increasing the membrane system degree of freedom step by step. Detailed analysis of the results is discussed in terms of process architecture and cost distribution (CAPEX, OPEX)
APA, Harvard, Vancouver, ISO, and other styles
8

Gu, Yingying. "Membranes polymères fonctionnalisées par des poly(liquide ionique)s et des nanoparticules de palladium : applications au captage de CO2 et aux membranes catalytiques." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30157/document.

Full text
Abstract:
Des membranes supports en polymère ont été photo-greffées par des poly(liquide ionique)s (polyLIs) à base d'imidazolium. Les polyLIs permettent de séparer le CO2 d'autres gaz et de stabiliser des nanoparticules. Dans le cas du captage de CO2, les expériences montrent qu'une couche fine homogène de gel réticulé en polyLI gonflé par du liquid ionique (LI) est obtenue sur la surface de fibres creuses. Les fibres ainsi obtenues ont montré des perméances au CO2 plus élevées (600-700 GPU) que des membranes commerciales et des sélectivités de CO2/N2 comparables (13 et 17). Dans le cas de membranes catalytiques, des nanoparticules de palladium (NPPd) servant de catalyseur ont été immobilisées en forte concentration locale au sein d'une couche de polyLI greffée à la surface de membranes. La réactivité des membranes catalytiques a été testée en configuration de contacteur traversé sur différentes réactions (couplage croisé C-C, hydrogénation, etc). Une conversion totale est obtenue pour des temps de séjours de quelques secondes, sans aucun sous-produit formé. Comparée aux NPPd colloïdaux dans un réacteur en batch, la membrane catalytique accélère les réactions d'environ 2000 fois en terme de temps de réaction sans perte de NPPd; la sélectivité est aussi accrue. Le réacteur membranaire catalytique a été modélisé afin d'obtenir les profils de concentration et de température et une meilleure compréhension des performances obtenues. Les membranes catalytiques se révèlent isothermes et les constantes cinétiques sont calculées. Enfin, les capacités de production de ces membranes catalytiques à une échelle industrielle sont estimées à environ 3 t/(hm3) pour le couplage de Suzuki
Polymeric support membranes were modified via photo-grafting by poly(ionic liquid)s (polyILs), featuring in the capability to separate CO2 from other gases and to stabilize metallic nanoparticles (MNPs). For CO2 capture, a thin polyIL-IL gel layer was homogenously coated on support hollow fibers. The composite fibers show high CO2 permeance and reasonable CO2/N2 selectivity. For the catalytic membrane, palladium NPs were generated inside a grafted polyLI layer. Compared to colloidal palladium system in a batch reactor, the catalytic membrane, as a contactor membrane reactor, is more efficient in terms of reaction time (ca. 2000 times faster), selectivity and MNP retainability. Theoretical study on reactor modeling, concentration & temperature profiles, and production capacity was done for an overall understanding of the catalytic membrane
APA, Harvard, Vancouver, ISO, and other styles
9

Hunter, Paige Holt. "Control of Volatile Organic Compound (VOC) Air Pollutants." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/38614.

Full text
Abstract:
A variety of methods exist to remove volatile organic compound (VOC) air pollutants from contaminated gas streams. As regulatory and public opinion pressures increase, companies are searching for more effective methods to control these emissions. This document is intended as a guide to help determine if existing systems are adequate and to provide additional information to improve the efficiency of the systems. It explores conventional methods of controlling VOC emissions, as well as innovative technologies including membrane separation, plasma destruction, and ozone catalytic oxidation. The conventional technologies covered include condensation, adsorption, absorption (or scrubbing), thermal incineration, flaring, catalytic incineration, and biofiltration. Each chapter includes a description of the technology, a discussion of the types of systems available, notes on the design of the system, economic estimates, an explanation of potential problems, and a list of considerations for installation and maintenance concerns. The final chapter is dedicated to the preparation and characterization of metal catalysts which were developed to improve the reaction rate of VOCs using ozone as an oxidant.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

MAIDOU, ERIC SIMON-PIERRE. "Extraction, concentration et conversion en acide lactique de lactate de sodium produit par fermentation de lactoserum." Rennes 1, 1988. http://www.theses.fr/1988REN10116.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Membrane and separation technologies"

1

Clark, Becky, and William G. Baumgartner. Membrane separation technologies. Cleveland, OH: Freedonia Group, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baumgartner, William G., and Diana E. Kole. Membrane separation technologies. Cleveland: Freedonia Group, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Lawrence K. Membrane and desalination technologies. New York, NY: Humana Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Membrane technologies and applications. Boca Raton: CRC Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Agency, International Atomic Energy, ed. Application of membrane technologies for liquid radioactive waste processing. Vienna: International Atomic Energy Agency, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Campbell, Craig. Non-cryogenic gas separations: Technologies and markets. Norwalk, CT: Business Communications Co., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Yunkun. Development of Novel Bioelectrochemical Membrane Separation Technologies for Wastewater Treatment and Resource Recovery. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3078-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Klein, Elias. Affinity membranes: Their chemistry and performancein adsorptive separation processes. New York: Wiley, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Klein, Elias. Affinity membranes: Their chemistry and performance in adsorptive separation processes. New York: Wiley, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Inc, Technical Insights, ed. Membrane separation. Englewood, NJ: Technical Insights, J. Wiley, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Membrane and separation technologies"

1

Nakao, Shin-ichi, Katsunori Yogo, Kazuya Goto, Teruhiko Kai, and Hidetaka Yamada. "Membrane for CO2 Separation." In Advanced CO2 Capture Technologies, 65–83. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18858-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Jiaping Paul, Honghui Mou, Lawrence K. Wang, Takeshi Matsuura, and Yuting Wei. "Membrane Separation: Basics and Applications." In Membrane and Desalination Technologies, 271–332. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-59745-278-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Yan, Natalia Widjojo, Panu Sukitpaneenit, and Tai-Shung Chung. "Membrane Pervaporation." In Separation and Purification Technologies in Biorefineries, 259–99. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118493441.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Izquierdo-Gil, M. A. "Membrane Distillation." In Separation and Purification Technologies in Biorefineries, 301–25. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118493441.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kajitvichyanukul, Puangrat, Yung-Tse Hung, and Lawrence K. Wang. "Membrane Technologies for Oil–Water Separation." In Membrane and Desalination Technologies, 639–68. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-59745-278-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ulbricht, Mathias, and Heru Susanto. "Porous Polymer Membranes by Manufacturing Technologies other than Phase Separation of Polymer Solutions." In Membranes for Membrane Reactors, 511–29. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470977569.ch23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Xiaoyi, Haiqing Lin, Fan Shi, Kevin Resnik, and Shouliang Yi. "Membrane Technologies and Applications for Produced Water Treatment." In Solid–Liquid Separation Technologies, 123–49. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091011-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tanudjaja, Henry J., and Jia W. Chew. "Assessment of Oil Fouling by Oil–Membrane Interaction Energy Analysis." In Solid–Liquid Separation Technologies, 151–68. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003091011-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Badenes, Sara M., Frederico Castelo Ferreira, and Joaquim M. S. Cabral. "Membrane Bioreactors for Biofuel Production." In Separation and Purification Technologies in Biorefineries, 377–407. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118493441.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cabassud, Corinne, Hugo Matamoros, and Yves Aurelle. "Application of Membrane Separation Processes to Oily Wastewater Treatment: Cutting Oil Emulsions." In Environmental Technologies and Trends, 236–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59235-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Membrane and separation technologies"

1

Choudhury, Tanzim Ahmed, George Mahley, Pinkesh Sanghani, and Hans Kumar. "Advancements in CO2 Membrane Separation Technologies: Reducing Emissions and Enabling CCS." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211191-ms.

Full text
Abstract:
Abstract To overcome production restraints caused by CO2 and H2S in mature basins, operators require more cost-effective gas treatment to effectively remove these impurities from natural gas. Cellulose triacetate (CTA) based CO2 separation membranes have already been used extensively in acid gas treatment and associated enhanced oil recovery. A new technical challenge was to provide a horizontal membrane element that could easily replace poorly performing existing flat-sheet spiral-wound membranes with minimal operational changes to debottleneck existing hardware capacity, minimize hydrocarbon loss, and reduce membrane replacement frequency. Existing CTA vertical hollow fiber CO2 separation membranes were further developed and modified into the form of 8-in./8.25-in diameter horizontal packaging. Qualification testing was performed at an in-plant gas test loop using full-scale membrane elements. Test programs included varying inlet parameters such as feed gas pressure, temperature, and a wide range of CO2 concentrations. Results showed that the horizontal configuration of the hollow fiber gas separation membrane exhibited superior separation characteristics in terms of gas throughput and hydrocarbon retention in the sales gas, when compared to alternative currently available CO2 removal membrane technologies. The robustness of the membrane polymer was confirmed throughout several startup and shutdown scenarios, with stable gas flux and selectivity observed during rigorous and long-term testing. The membrane elements can be deployed in existing installations as a "drop-in" solution to overcome production constraints, whilst driving down the cost of excessive membrane replacements. In brownfields, more efficient acid gas removal and enhanced hydrocarbon recovery will reduce emissions by lowering gas flaring and limiting the potential release of methane. Upfront capital expenditure and ongoing operational expenses in greenfield projects can be significantly reduced by the greater natural gas treatment capacity per membrane compared to alternative membrane solutions. The high-purity CO2 permeate stream can also support the implementation of carbon capture and sequestration (CCS), thereby helping to reduce the assets carbon footprint and overall emissions. The advancements in horizontal CTA membranes have been proven in operation at several facilities, where they have improved the economics of the assets via reduced hydrocarbon flaring and increased gas throughput. An intelligent, automated digital membrane monitoring tool has been developed and deployed to further optimize membrane operations. Operators have also been able to actively pursue acid gas fields previously considered uneconomical for production. Such greenfield and brownfield case studies will be presented as part of this paper.
APA, Harvard, Vancouver, ISO, and other styles
2

Bosch, Jürgen, Rolf Strittmatter, Jan Mantau, and Johannes Witt. "Development of Membrane Based Gas - Water Separation Technologies." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/961406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

R.H. Zhang, P. Yang, Z. Pan, T.D. Wolf, and J.H. Turnbull. "Treatment of Swine Wastewater By Biological and Membrane Separation Technologies." In 2002 Chicago, IL July 28-31, 2002. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2002. http://dx.doi.org/10.13031/2013.10488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zausner, Jack. "Thermodynamic Analysis of CO2 Capture Cycles Using Pre-Combustion Decarbonization and Membrane Technologies." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27961.

Full text
Abstract:
Over the past 5–10 years, interest has increased significantly in CO2 free power generation cycles. This study focuses on precombustion decarbonization cycles that reform syngas, separating the CO2 using a membrane, and then burning hydrogen-rich fuel in a gas turbine. The syngas reforming section is comprised of 1) Auto-thermal reformer (ATR) used for syngas production 2) water gas shift reactor (WGSR) to shift CO into CO2 3) CO2 -separation membrane and 4) combustion with hydrogen rich fuel. Overall performance shows an efficiency loss of 8.4% and 10.6% compared to the baseline cycle for the high and low temperature CO2 membrane cycles examined. The operating temperatures of the membranes are limited by the exothermic CO shift reaction favoring lower temperatures. Furthermore, a chemical exergy analysis of the reformers in the decarbonization system is undertaken to understand the impact of fuel reforming.
APA, Harvard, Vancouver, ISO, and other styles
5

Simion, Marius, Gabriela Paun, Aurelia Meghea, Jianzhong Ma, and Fan Zhang. "THE INFLUENCE OF SURFACTANTS ON CASEIN MEMBRANE PREPARATION AND SEPARATION TECHNOLOGIES." In International Symposium "The Environment and the Industry". National Research and Development Institute for Industrial Ecology, 2016. http://dx.doi.org/10.21698/simi.2016.0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Atsonios, Kostantinos, Antonios Koumanakos, Kyriakos D. Panopoulos, Aggelos Doukelis, and Emmanuel Kakaras. "Techno-Economic Comparison of CO2 Capture Technologies Employed With Natural Gas Derived GTCC." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95117.

Full text
Abstract:
Carbon Capture and Storage can either concern the removal of carbon as CO2 in flue gases (post-combustion option) or before its combustion in a Gas Turbine (pre-combustion option). Among the numerous CO2 capture technologies, amine scrubbing (MEA and MDEA), physical absorption (Selexol™ and Rectisol™) and H2 separator membrane reactors are investigated and compared in this study. In the pre-combustion options, the final fuel combusted in the GT is a rich-H2 fuel. Process simulations in ASPEN Plus™ showed that the case of H2 separation with Pd-based membranes has the greatest performance as far as the net efficiency of the energy system is concerned. The economic assessment reveals that the technology is promising in terms of cost of CO2 avoided, provided that the current high membrane costs are reduced.
APA, Harvard, Vancouver, ISO, and other styles
7

Gai, Limei, Yee Van Fan, Petar Sabev Varbanov, and Jiri Jaromir Klemes. "Membrane Separation for Light Hydrocarbons Recovery in the Petrochemical Industry." In 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE, 2021. http://dx.doi.org/10.23919/splitech52315.2021.9566419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Khabibi, Nor Basid Adiwibawa Prasetya, Retno Ariadi Lusiana, Linda Suyati, Rahmad Nuryanto, Lailatul Rohmah, and Ika Aprilia Khoirunnisa. "Synthesis of citric acid-crosslinked chitosan membrane with zeolite filler and its application as Cu(II) ion separation membrane." In VIII INTERNATIONAL ANNUAL CONFERENCE “INDUSTRIAL TECHNOLOGIES AND ENGINEERING” (ICITE 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0104558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ohenoja, Markku, Pekka Uusitalo, Hanna Valkama, Buddhika Rathnayake, Riitta L. Keiski, and Mika Ruusunen. "Dynamic modeling of diafiltration system for a biorefinery application." In 63rd International Conference of Scandinavian Simulation Society, SIMS 2022, Trondheim, Norway, September 20-21, 2022. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp192018.

Full text
Abstract:
Application of membrane technologies in biorefinery processes has been studied for some time. The heterogenous nature of biorefinery steams, however, results in unideal performance of membrane systems and considerable fouling of membranes, which is decreasing the efficiency of separation. As a part of BioSPRINT project, this study focuses on application of separating monomeric sugars from the hemicelluloses fraction of lignocellulosic biomass, where pressure-driven nanofiltration with several diafiltration stages has been proposed for the separation task. Diafiltration is required to overcome the decreased separation efficiency when the retentate concentrations and viscosity increases. A lumped parameter dynamical model of the diafiltration plant is applied. The key model parameters are identified from experimental data from a laboratory membrane unit to reflect the considered biorefinery process. The model is then simulated to study the sensitivity of the uncertain model parameters (related to membrane fouling, solute concentrations, viscosity, and mass transfer coefficients) to the diafiltration plant performance (product purity, operation time). The model is implemented in the MATLAB®/Simulink environment. The simulation results are expected to identify potential sources of scale-up challenges in biorefinery-related membrane applications. The developed dynamic model also allows to investigate different operational strategies of diafiltration plants in the future.
APA, Harvard, Vancouver, ISO, and other styles
10

Davood Abadi Farahani, Mohammad Hossein. "Organic solvent nanofiltration membrane for vegetable oil refining." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/srfh3809.

Full text
Abstract:
Membrane separation technology has been receiving much attention for processing vegetable oils due to its potential advantages over conventional purification techniques. Based on the molecular weights and their interactions with the membrane, various solutes can be removed or purified using this technology. However, one of the major challenges is that the membrane has to be chemically inert to organic solvents such as hexane or acetone. Thus, many studies have been focused on developing chemically resistant membranes for specific industrial applications. Organic solvent nanofiltration (OSN) membranes is one of the potential energy efficient and sustainable separation processes that can drastically change the way solvents are recovered and free fatty acids (FFA) are removed in the vegetable oil industry. Seppure's patented GreenMem Series can process vegetable oil in acetone and hexane, achieving high product purity at relatively mild conditions (25 €“ 60°C, 10 €“ 30 bar). This results in up to 90% lower energy consumption and CO2e emissions as well as up to 30-50% lower operating costs compared to the conventional separation processes. GreenMem Series membranes show a high pure solvent flux of 30 €“ 40 LMH for acetone and hexane as well as high rejection towards oil molecules >95%. Moreover, 99% of FFA can be removed from a solvent/FFA mixture using multi-pass filtration system, which can be implemented in a unique membrane system to separate oil/FFA/solvent from each other. Moreover, GreenMem system can be implemented in both continuous and batch processes. Just like many other membrane technologies, its modularity makes it easy to be scaled up based on production capacity to augment existing processes. It is envisioned that OSN technology provides both positive economic and environmental impacts on the vegetable oil industry.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Membrane and separation technologies"

1

Keiser, James R., Dexin Wang, Brian L. Bischoff, Richard J. CioraJr, Balasubramaniam Radhakrishnan, and Sarma B. Gorti. Advanced Membrane Separation Technologies For Energy Recovery From Industrial Process Streams. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1069330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Keiser, J. R., D. Wang, B. Bischoff, Ciora, B. Radhakrishnan, and S. B. Gorti. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1073610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goetzler, William, Matt Guernsey, and Youssef Bargach. R&D Opportunities for Membranes and Separation Technologies in Building Applications. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1413892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Heung, L. K. Separation Membrane Development (Separation Using Encapsulated Metal Hydride). Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/799397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Heung, L. K. Separation Membrane Development - 2003 Annual Report. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/812301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skone, Timothy J. Membrane Separation of CO2 and Hydrocarbons. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1509404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peterson, T. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation). Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/188507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Siler, J. L. Novel disk modules for membrane separation processes. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10137549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elangovan, S. Novel, Ceramic Membrane System For Hydrogen Separation. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1097096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

S.A.Stern, P.A. Rice, and J. Hao. UPGRADING NATURAL GAS VIA MEMBRANE SEPARATION PROCESSES. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/834349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography