Dissertations / Theses on the topic 'Melon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Melon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Aggelis, Alexandros. "Gene expression in ripening melon (Cucumis melo L.)." Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319646.
Full textKlingler, John Paul. "Phenotypic and molecular-genetic analysis of resistance to Aphis gossypii (cotton-melon aphid) in Cucumis melo (melon)." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/283992.
Full textFrancis, Andrew M. "belt melon grass." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3885.
Full textClark, L. J., R. Walser, and E. W. Carpenter. "Melon Variety Trial." College of Agriculture, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/220394.
Full textJinqiang, Yan. "Study of the resistance to Cucumber mosaic virus aggressive strains in the melon (Cucumis melon L.) accession PI 161375." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/666767.
Full textLa accesión de melón exótico PI 161375, cultivar Songwhan Charmi (SC) es resistente a la mayoría de las cepas de Cucumber mosaic virus (CMV). La resistencia a las cepas del subgrupo II de CMV es recesiva y controlada por el gen cmv1, que es capaz de prevenir la entrada del virus en el floema deteniéndolo en las células de la vaina que rodean la vena. Esta restricción depende de la proteína de movimiento (MP), el determinante de la virulencia frente a este gen. Para resistir a la cepa CMV-M6, del subgrupo I, se requieren dos QTL más, cmvqw3.1 y cmvqw10.1, funcionando en colaboración con cmv1. Sin embargo, CMV-FNY, una cepa más agresiva del subgrupo I, es capaz de superar la resistencia conferida por cmv1/cmvqw3.1/cmvqw10.1. En esta tesis, nuestro objetivo es (i) identificar los QTL adicionales responsables de la resistencia a CMV-FNY, (ii) caracterizar la resistencia conferida por los QTL cmv1/cmvqw3.1/cmvqw10.1 e (iii) identificar los factores de virulencia involucrados con estos QTL. El análisis de QTL se abordó desarrollando varias poblaciones F2 entre las líneas DHL142 o DHL69, resistentes a CMV-FNY, y varias líneas de melón susceptibles a CMV-FNY, donde se detectaron varios QTL menores en LG II, LG IX, LG X y LG XII. Sin embargo, ninguno de estos QTLs fue detectado reproduciblemente en varias poblaciones F2, ni utilizando diferentes métodos de fenotipado, lo que indicó que nuestro sistema de detección de QTL no es apropiado para detectar QTLs menores. El factor limitante más probable puede ser la dificultad del fenotipado de la infección para la detección de QTLs en una población F2. El estudio de la resistencia conferida por combinaciones de dos o los tres QTL mostró que, aunque las plantas eran susceptibles a CMV-FNY, hubo un retraso en la infección, lo que indica que la resistencia implica una restricción del movimiento viral. Un análisis posterior mostró que la restricción funcionaba al nivel de la entrada al floema, más que al nivel del movimiento dentro del floema. Por lo tanto, esto indica que cmvqw3.1 y cmvqw10.1 están dificultando el movimiento de CMV-FNY en el mismo paso de la infección viral donde cmv1 restringe CMV-LS. Los pseudorecombinantes generados entre CMV-FNY / CMV-M6 y entre CMV-FNY / CMV-LS demostraron que el determinante de virulencia no mapeaba en el RNA3. Tomados en conjunto, nuestros resultados sugieren que la resistencia al CMV en la accesión SC está formada por una serie de niveles de resistencia, siendo cmv1 el primer nivel, efectivo contra las cepas del subgrupo II; el segundo nivel, formado por cmvqw3.1 y cmvqw10.1, que cooperarían con cmv1 para proporcionar resistencia frente a CMV-M6; y el tercer nivel sería el QTL no identificado aún, necesario para la resistencia frente a CMV-FNY. En la actualidad, sabemos que los dos primeros niveles de resistencia estarían participando en la restricción de la entrada de CMV al floema.
The exotic melon accession PI 161375 cultivar Songwhan Charmi (SC) shows resistance to most of Cucumber mosaic virus (CMV) strains. The resistance to CMV subgroup II strains was reported as recessive, controlled by the gene cmv1 which is able to prevent the phloem entry of the virus by restricting it in the bundle sheath cells. This restriction depends on the movement protein (MP), the determinant of virulence. Two more QTLs, cmvqw3.1 and cmvqw10.1 are required, working together with cmv1, for the resistance to the subgroup I strain CMV-M6. However, CMV-FNY, a more aggressive strain from subgroup I, was able to overcome the resistance conferred by cmv1/cmvqw3.1/cmvqw10.1. In this thesis we aim to (i) identify the additional QTLs responsible for the resistance to CMV-FNY, (ii) characterize the resistance conferred by the QTLs cmv1/cmvqw3.1/cmvqw10.1 and (iii) identify the virulence factors involved with these QTLs. QTL analysis was addressed developing several F2 populations made between the CMV-FNY-resistant lines DHL142, DHL69 and several CMV-FNY-susceptible melon lines. Several putative minor QTLs were detected in LG II, LG IX, LG X and LG XII. However, none of these QTLs were reproducibly detected neither in several F2 populations nor using different methods of phenotyping. The evaluation of our QTL detecting system indicated that it is not appropriate for detecting minor QTL, being the most probable limiting factor the correct phenotyping of the infection for QTL detection in a F2 population. The study of the resistance conferred by combinations of two or the three QTLs showed that, although the plants were susceptible to CMV-FNY, there was a delay in the infection, indicating that the resistance involves a restriction of the viral movement. Further analysis showed that the restriction worked at the level of phloem entry, rather than at the level of movement within the phloem. Therefore, this indicates that cmvqw3.1 and cmvqw10.1 are impairing CMV-FNY movement at the same step of the viral infection where cmv1 restricts CMV-LS. Pseudorecombinants generated between CMV-FNY / CMV-M6 and between CMV-FNY / CMV-LS demonstrated that the determinant of virulence was not mapped in RNA3. Taken together, our results suggest that the resistance to CMV in SC accession is built by a series of resistance layers, being cmv1 the first layer, against subgroup II strains; the second layer, cmvqw3.1 and cmvqw10.1, that provide efficient resistance to CMV-M6; and the third layer being the unknown QTL, necessary for efficient resistance to CMV-FNY. At present, we know that the first two layers of resistance would be working in the restriction of CMV entry to the phloem.
Lemhemdi, Afef. "Caractérisation de réseaux des gènes qui contrôlent l’initiation du fruit chez le melon (Cucumis melo)." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS121.
Full textAnalyzes of candidates genes expression profile by qRT-PCR shown that ARF19 has the most interesting profile for parthenocarpy for melon and cucumber. These analyze show that the pollination induces the expression of GA20oxydase(1) and GA20oxydase(5). In the absence of pollination, almost all GA2oxydases are expressed. The study of the transcriptome by RNA-seq identifies genes which have a role of negative or positive regulators in the fruit initiation of melon. The study of genes matrix of cell division shows that their expression is high in ovules and pericarp at anthesis and fertilized stage. The data show that fruit development is largely regulated by transcription factors. Systematic phenotyping genetic analysis identified FS1 the first candidate for facultative parthenocarpy in melon
Cadete, Ana Prata Loureiro. "Qualidade de 13 cultivares de melão (Cucumis melo L.) do tipo Branco do Ribatejo e Pele de Sapo em Évora, Almeirim e Amareleja." Master's thesis, ISA/UTL, 2011. http://hdl.handle.net/10400.5/4170.
Full textIn order to develop technical guidelines for melons production with the objective to obtain high quality fruits, 13 melon cultivars (Cucumis melo L.) var. Inodorous, were evaluated. ‘Lusíada’, ‘Lusitano’, ‘HB06921’ and ‘HB71506’ are white melons and ‘Iberico’, ‘5 Jotas’, ‘Fitor’, ‘Havana’, ‘Hidalgo’, ‘Kanela’, ‘Ruidere’, ‘Sancho’ and ‘Seda’ are Pele de Sapo type or green melons. The trials were located at Évora, Almeirim, Amareleja regions, with different soil and climate conditions and dissimilar production techniques. Melons were evaluated regarding their physical characteristic as weight, length, diameter, firmness and colour and chemical parameters as total soluble solids (TSS- ºBrix), titratable acidity, vitamin C and total phenols. Altogether Pele de Sapo melons produced in Amareleja obtained the highest Brix 13.7% in average, and the sweetest melons were ‘Hidalgo’ with an average Brix of 15.7% and ‘Ruidere’ with 15.5%. The Brix of the white melons produced in Almeirim did not exceed, 12% and the fruits considered unmarketable by Pingo Doce. Vitamin C and total phenols content was not different between cultivars or locals, accounting for 17 mg and 34,4 mg, per 100 g of edible part, respectively
Lignou, Stella. "Optimisation of flavour in long shelf-life varieties of melon (Cucumis melo L.)." Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558737.
Full textSagot, Emeric. "Etude physiologique, biochimique, moléculaire et agronomique du stress salin chez le melon (Cucumis melo L. )." Poitiers, 2005. http://www.theses.fr/2005POIT2352.
Full textThe company which funded this work cultivates melon in 3 different places: in the Center West and South East in France, as well as in South of Spain. In this third location, the proximity of the sea, and the irrigation technique make the water salty (approximatively 30 mM NaCl in water and soil extract). This NaCl concentration decreases the growth of melon plants and the yield from 13 tons/ha to 8 tons/ha. The present work begun with the preparation of the tools needed for further experiments, especially the culture systems. A publication of Shalata and Neumann (Shalata and Neumann, 2001) shows that an exogenous application of ascorbic acid could increase salt tolerance in tomato. Exogenous application of ascorbic acid during hydroponic culture of melon improved salt tolerance in melon, and allowed a partial recovery of yield (near 20% more than in salt stress plant without ascorbic acid). Biochemical evidences shows that NADPH oxidases , but not peroxidases, are activated during salt stress. Addition of ascorbic acid (0,5 mM) in the medium prevented the activation of NADPH oxidases and increased the activity of peroxidases. RNA blot experiments revealed activation of galactinol synthase gene, which encodes a key enzyme of stachyose synthesis. Stachyose is the major transported sugar in melon. The activation of this gene probably creates a metabolic deviation and contributes to the loss of yield. The promoter of galactinol synthase contains a NFkB response box, which senses redox status of the cell. The relationship between ascorbic acid and galactinol synthase is not fully understood, but it is still under investigation in the lab. Field experiments confirmed that AA increases salt tolerance
Fave, Céline. "Effets de la température et de l'humidité relative de l'air sur les flux d'eau, de calcium et de potassium vers le fruit de melon (Cucumis melo L. )." Bordeaux 2, 1998. http://www.theses.fr/1998BOR20613.
Full textValantin, Muriel. "Fécondation, environnement climatique, équilibre source-puits et qualité du melon cantaloup charentais (cucumis melo L. )." Aix-Marseille 3, 1998. http://www.theses.fr/1998AIX30023.
Full textMcGinley, Susan. "A Knockout Melon Disease: Monosporascus cannonballus." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1995. http://hdl.handle.net/10150/622331.
Full textPalumbo, John C., and David Kerns. "Melon Insect Pest Management in Arizona." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1998. http://hdl.handle.net/10150/146668.
Full textMelon production in the Southwestern United States occurs primarily in the desert growing areas of Arizona, and Southern California. Melons in Arizona are grown in very diverse cropping systems, where a variety of vegetable, agronomic and seed crops are cultivated concurrently throughout the year. Numerous insect species can be found on melon plants, but only a few have been determined to be economically important. This publication discusses several key insects that cause economic damage to melons, and the tactics commonly used to manage infesting populations.
Jean-Baptiste, Isabelle. "Etude de la nutrition minérale du melon (Cucumis melo L. ) : application à la vitrescence du fruit." Toulouse, INPT, 1996. http://www.theses.fr/1996INPT014A.
Full textBouabdallah, Louiza. "Culture in vitro du melon (Cucumis melo L. ) et tentative d'application à l'étude de la fusariose." Paris 11, 1986. http://www.theses.fr/1986PA112200.
Full textBouabdallah, Louiza. "Culture in vitro du melon, Cucumis melo L., et tentative d'application à l'étude de la fusariose." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37596184n.
Full textGuis, Monique. "Transformation génétique du melon Cantaloup charentais : caractérisation de melons transgéniques exprimant un gène antisens de l'ACC oxydase." Toulouse, INPT, 1997. http://www.theses.fr/1997INPT007A.
Full textMcGinley, Susan. "Fighting a Melon Virus in Yuma County." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2008. http://hdl.handle.net/10150/622089.
Full textHowell, Don R., and E. S. Heathman. "Postemergence Control of Dudaim Melon in Cotton." College of Agriculture, University of Arizona (Tucson, AZ), 1985. http://hdl.handle.net/10150/204086.
Full textWang, You Ming. "The chemistry and biochemistry of melon fruit development and quality." Thesis, [S.l. : s.n.], 1994. http://handle.uws.edu.au:8081/1959.7/86.
Full textStanghellini, M. E., S. L. Rasmussen, D. H. Kim, and N. Oebker. "Vine-Decline of Melons Caused by Monosporascus cannonballus in Arizona: Epidemiology and Cultivar Susceptibility." College of Agriculture, University of Arizona (Tucson, AZ), 1995. http://hdl.handle.net/10150/221463.
Full textPalumbo, John C. "Review of New Insecticides Under Field Development for Desert Vegetable and Melon Production." College of Agriculture, University of Arizona (Tucson, AZ), 1997. http://hdl.handle.net/10150/221606.
Full textPalumbo, John C. "Seasonal Dynamics and Management of Whiteflies on Melons and Vegetables in the Desert Southwest." College of Agriculture, University of Arizona (Tucson, AZ), 1997. http://hdl.handle.net/10150/221609.
Full textPalumbo, John C. "Evaluation of Insect Growth Regulators for Management of Whiteflies in Melons." College of Agriculture, University of Arizona (Tucson, AZ), 1999. http://hdl.handle.net/10150/221650.
Full textLong, Robert Llewellyn, and bizarrealong@hotmail com. "Improving fruit soluble solids content in melon (Cucumis melo L.) (reticulatus group) in the Australian production system." Central Queensland University. Biological and Environmental Science, 2005. http://library-resources.cqu.edu.au./thesis/adt-QCQU/public/adt-QCQU20051019.144749.
Full textRajab, Mazen. "Déterminisme du sexe chez le melon (Cucumis melo) : clonage et caractérisation du gène G contrôlant la gynoécie." Paris 11, 2009. http://www.theses.fr/2009PA112020.
Full textWe chose the positional cloning as a strategy to isolate the gene G, which controls gynoecy in melon. A fine genetic mapping localized the G locus in a region of 8,28 cM, between the PCR marker M30 and the M53. Starting from two BAC libraries generated from monoecious plants (9684 individuals segregating for the G gene) we identified 14 overlapping BAC clones and built a fine physical map of the G locus. We determined 22 markers in the contig region of these BAC clones. We than identified 12 BAC clones carrying the G allele, by screening a third genomic BAC library also generated from monoecious plants. We entirely sequenced the 66 Kb BAC clone 102 and identified the region responsible for gyneocy in a region of 1. 4 Kb, which corresponds to a non-coding intergenic region. In order to identify the g allele, a BAC library coming from a gynoecious accession (gg) was built. The BAC clone P7 carrying the g allele, allowed us to identify an insertion of 8 KB at 1. 4 Kb, previously identified on the BAC clone 102/24/5. This insertion corresponds to a DNA transposon belonging to the hAT family, located at 1. 3 Kb from the ORF3, which corresponds to the CmWIP1 gene. Methylation analysis showed that this region is strongly methylated, thus impairing its expression and generating an epimutation. We used the TILLING approach to mutagenized the G gene, obtaining hence a complete reversion of plants to females. This results shows that the transcription factor controls the gynoecy in melon
Palumbo, John C., and Kai Umeda. "Whitefly Management on Desert Melons." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/146699.
Full textUmeda, Kai. "Evaluation of Postemergence Herbicides for Melon Weed Control." College of Agriculture, University of Arizona (Tucson, AZ), 1997. http://hdl.handle.net/10150/221635.
Full textPereira, García Lara. "Genetic dissection of fruit quality and ripening traits in melon." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/663830.
Full textMelon (Cucumis melo L.) is an important crop worldwide, with a production of around 31 million tons during 2016. Although traditionally breeding programs have been focused on agronomic traits, fruit quality has become a main goal recently. Fruit quality is a complex concept, including diverse traits related to fruit appearance, nutritional and organoleptic traits. Many of these traits are associated to fruit ripening, which is the process that the fruit undergoes to become edible to promote seed dispersal. Fruits are classified according to their ripening behavior into climacteric, when the plant hormone ethylene is synthesized in an autocatalytic way at the onset of ripening, and non-climacteric, in which ethylene has not a major role. The main goal of this work was to study the genetic basis of fruit quality and fruit ripening in melon. We have developed a Recombinant Inbred Line (RIL) population from a cross between two elite cultivars, “Védrantais”, highly climacteric, and “Piel de Sapo”, non-climacteric. The phenotypic diversity in fruit quality and ripening-associated traits, including ethylene production, has been thoroughly studied. A high-density genetic map was constructed using SNPs and INDELs obtained through a genotyping-by-sequencing experiment. A first QTL mapping experiment revealed five major genes and 33 QTLs governing fruit appearance (flesh and rind color, presence of sutures, mottled rind), fruit morphology, sugar content and seed weight. A second QTL mapping experiment identified 14 QTLs modifying ethylene production and ripening-associated traits, as chlorophyll degradation and abscission layer formation. Among them, we highlight a major QTL, ETHQV8.1, involved in ethylene production that was affecting almost all the studied traits, located in a 500-kb interval in chromosome VIII. In order to genetically dissect the fruit ripening process in melon, in addition to the mentioned RIL population, we studied a climacteric near-isogenic line, 8M35, with “Piel de Sapo” background and containing an introgression from the exotic accession PI 161375. 8M35 carries a QTL, ETHQB3.5, delimited in a region of 5 Mb in chromosome III. A positional cloning strategy was followed to fine map ETHQB3.5, generating a diverse set of subNILs. After multiple evaluations of different subNILs, we determined that at least two different genetic factors should be involved in triggering climacteric ripening in 8M35. One of them, named ETHQB3.5.1, which is responsible for the major part of the variation, was delimited to a 500-kb region containing 63 annotated genes. Finally, two reciprocal introgression line (IL) collections were developed, using both “Védrantais” and “Piel de Sapo” as recurrent and donor parental lines, respectively. Recurrent backcrosses were performed in both directions and marker-assisted selection was performed in each generation to select both the target introgressions and the desired background. The current IL collections, covering approximately 95% of the donor parental genome, are formed by 38 ILs. We performed a preliminary phenotyping that allowed to validate some of the QTLs mapped in the RIL population for both fruit quality and fruit ripening traits. In addition, two segregating families of ILs with “Piel de Sapo” background were used to fine map ETHQV8.1, allowing to narrow down the region to a 150-kb interval containing 14 candidate genes. As a summary, this PhD thesis has contributed to improving our knowledge about the genetics of fruit quality and particularly fruit ripening in melon, proposing some important QTLs that will be further explored in the future. Our work suggests that climacteric behavior in melon is a complex and quantitative trait controlled by polygenic inheritance, rather than a qualitative class as described traditionally in the literature.
Chen, Qixuan. "Anti-obesity effect of bitter melon (Momordica charantia)." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31048778.
Full textChen, Qixuan, and 陳起萱. "Anti-obesity effect of bitter melon (Momordica charantia)." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31048778.
Full textNuñez-Palenius, Hector Gordon. "Transformation of 'Galia' melon to improve fruit quality." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0011467.
Full textNischwitz, Claudia. "Factors influencing charcoal rot of melon in Arizona." Thesis, The University of Arizona, 2001. http://hdl.handle.net/10150/291652.
Full textPalumbo, John C., Athayde Jr Tonhasca, and David N. Byrne. "Sampling Schemes and Action Thresholds for Sweet Potato Whitefly Management in Spring Melons." College of Agriculture, University of Arizona (Tucson, AZ), 1994. http://hdl.handle.net/10150/214720.
Full textPalumbo, John, and Wayne Coates. "Deposition and Efficacy of Capture and Thiodan Applied to Melons Using Several Application Technologies." College of Agriculture, University of Arizona (Tucson, AZ), 1996. http://hdl.handle.net/10150/214748.
Full textCuny, Florence. "Processus d'induction d'embryons haploïdes par du pollen irradié chez le melon (cucumis melo l. ) : réponses du pollen à l'irradiation gamma." Avignon, 1992. http://www.theses.fr/1992AVIG0301.
Full textUmeda, Kai. "Weed Control in Melons." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/146709.
Full textAnselmo, Francisca Deuzenir Marques. "Quality and melon postharvest conservation Cantaloupe "Torreon" for export." Universidade Federal do CearÃ, 2007. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1507.
Full textAvaliou-se a vida Ãtil pÃs-colheita de melÃes Cantaloupe, hÃbrido âTorreonâ, submetidos à aplicaÃÃo pÃs-colheita de 1-MCP em diferentes concentraÃÃes (0, 300 e 600 ppb) e dois perÃodos distintos de exposiÃÃo ao gÃs (6 e 12 horas), colhidos em dois diferentes estÃdios de maturaÃÃo (50 e 75% de rachadura do pedÃnculo) mantidos em armazenamento refrigerado durante 21 dias e 28 dias, visando exportaÃÃo. Os frutos foram colhidos em fazendas de MossorÃ, RN-Brasil, sendo analisados nos LaboratÃrios de Fisiologia e Tecnologia PÃs-colheita da Embrapa AgroindÃstria Tropical e de Frutos Tropicais do Departamento de Tecnologia de Alimentos da Universidade Federal do CearÃ, em Fortaleza- CE. Para o monitoramento da qualidade dos frutos durante a armazenagem, determinaÃÃes quanto à perda de massa acumulada e firmeza externa e interna foram efetuadas, alÃm de avaliaÃÃo visual de aceitaÃÃo segundo escala de notas; onde se atribui notas relativas à cor externa, firmeza, incidÃncia de podridÃes e aparÃncia geral. Foram realizadas as anÃlises fÃsico-quÃmicas de clorofila total, aÃÃcares solÃveis totais, aÃÃcares redutores, carotenÃides totais, coloraÃÃo da polpa, conteÃdo de sÃlidos solÃveis totais, acidez total (AT) e pH. Segundo a avaliaÃÃo visual, a aplicaÃÃo do 1-MCP retardou a perda de firmeza e de coloraÃÃo verde dos frutos, bem como a incidÃncia de podridÃes. A manutenÃÃo da firmeza foi confirmada atravÃs da analise em texturÃmetro. Frutos tratados com 1-MCP apresentaram maior firmeza do que os frutos controle e esse resultado foi mais efetivo com o aumento da dosagem.
It was evaluated useful life postharvest Cantaloupe melons, hybrid `Torreon', submitted to the application postharvest of 1-MCP at different concentrations (0, 300 and 600 ppb) and two periods of exposition to the gas (6 and 12 hours),harvested in two different stadiums of maturation (50 and 75% stalk abscission layer) kept in storage cooled during 21 days and 28 days, aiming at exportation. The fruits were harvested in farms at MossorÃ, RN-Brazil, being analyzed in the Laboratories of Physiology and Technology Postharvest of the Embrapa Tropical AgroindÃstria and of Tropical Fruits of the Department of Food Technology of the Federal University of the CearÃ, in Fortaleza-CE. For the monitoring of the quality of the fruits during storage, its physical characterization how much to the loss of accumulated mass and external and internal firmness beyond visual evaluation acceptance second scale was made notes; in this scale if external color attributes to relative notes Ã, firmness, incidence of podridÃes and general appearance. Physical chemical analysis were performed of total chlorophyll content, soluble sugars, reducing sugars, totals carotenoids, coloration of the pulp, total soluble solid content, totals acidity (AT) and pH. According to visual evaluation, the application of the 1-MCP delayed the loss of firmne ss and green coloration of the fruits, as well as the incidence of rottenness. The maintenance of the firmness was confirmed through analyzes physical in the device texturometer. Fruits dealt with 1-MCP had presented greater firmness of that the fruits have controlled and this result was more effective with the increase of the dosage.
Périn, Christophe. "Construction d'une carte génétique de référence du melon (Cucumis melo L. ) et étude du contrôle génétique du développement et de la maturation du fruit." Aix-Marseille 2, 2000. http://www.theses.fr/2000AIX22066.
Full textWang, You Ming. "The chemistry and biochemistry of melon fruit development and quality /." [S.l. : s.n.], 1994. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030606.092302/index.html.
Full textAgaoua, Aimeric. "Fonction de la protéine VPS4 dans la sensibilité et la résistance au Watermelon mosaic virus (Potyvirus) chez le melon." Electronic Thesis or Diss., Avignon, 2020. http://www.theses.fr/2020AVIG0721.
Full textCucurbitaceae are a family of plants represented by a great diversity of species and cultivated crops all around the world. Within this family and in the genus Cucumis, the melon is particularly susceptible to Potyviruses, against which no allele of the translation initiation factor eIF4e gene has been able to induce a resistance. In cucumber, also a Cucurbitaceae in the genus Cucumis, Amano et al. (2013) identified an allele of the gene encoding for the VPS4 protein, which is involved in the resistance to the Potyvirus Zuchini yellow mosaic virus (ZYMV). In the cell, the VPS4 protein belong to the ESCRT complex (Endosomal sorting complexes required for transport) and is involved in the membrane deformation at the endosome level to create multivesicular bodies (MVBs). The ESCRT complex is highly conserved in all eukaryotic organisms and well described in yeasts and mammals. The use of cell membranes by ssRNA(+) viruses through ESCRT and VPS4 has been widely described for viruses infecting animals, including Human Papillomavirus (HPV) and Human Immunodeficiency (HIV) viruses. In recent years, the major role of vesicular transport in viral infection has also been demonstrated in plants. ssRNA(+) viruses form vesicles and quasi-organelles using cell endomembrane, integrating viral replication complexes (VRCs) and all the elements necessary for the replication of viral RNA and for the translation of viral proteins.This thesis focuses on two aspects: (1) the characterization of alleles of the Vps4 gene involved in melon in a recessive resistance to the Potyvirus Watermelon mosic virus (WMV) (2) and the study of the ESCRT involvement in the formation of viral vesicles in Potyvirus.In the first objective, I demonstrated that a point mutation in the gene encoding the VPS4 protein induces resistance to WMV in the melon accession TGR-1551. For this, I used a virus transformed with the wild type allele of Vps4 to infect the TGR-1551 accession. This allowed us to observe the restoration of the susceptibility in the resistant accession. In addition, all accessions from the natural diversity carrying this allele are also resistant to WMV. These results represent the first characterization of the molecular basis of resistance to WMV in melon. Combined with the results of Amano et al. (2013), this work is part of the identification of a gene for resistance to several Potyviruses.In the second objective, I demonstrated the involvement of ESCRT in the replication of Potyviruses. Using a yeast two-hybrid approach adapted to transmembrane proteins, we showed the interaction of the viral protein 6K2 with the CmVPS28, CmVPS2, CmVPS24 and CmVPS4 melon proteins. In addition, we localized the 6K2 / VPS4 interaction at the viral vesicle level in the plant cell. Since ESCRT has been characterized only at the level of MVBs, the presence of VPS4 at the level of viral vesicles, especially at the level of chloroplasts, implies the hijack of the entire ESCRT mechanism by the virus.Taken together, this work provides a better understanding of the viral vesicle formation mechanism during infection of a plant cell by a Potyvirus. It also offers the opportunity to identify new alleles providing resistance to Potyviruses in order to develop new resistant varieties
Lasserre, Éric. "Structure et expression des gènes codant pour l'ACC oxydase chez le melon (Cucumis melo L. ) : Analyse fonctionnelle des régions régulatrices." Toulouse, INPT, 1996. http://www.theses.fr/1996INPT016A.
Full textWang, You Ming, of Western Sydney Hawkesbury University, Faculty of Science and Technology, and School of Science. "The chemistry and biochemistry of melon fruit development and quality." THESIS_FST_SS_Wang_Y.xml, 1994. http://handle.uws.edu.au:8081/1959.7/86.
Full textMaster of Science (Hons)
Barros, JosivÃnia Rodrigues. "Irrigation yellow melon plants with saline water enriched with CO2." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=14644.
Full textSalt excess in the soil solution is a serious problem in agriculture, caused mainly by irrigation water, causing soil salinization. These salts, when absorbed affects the growth of plants because of the osmotic effect, reducing the absorption of water in the soil. In order to mitigate the deleterious effects of these salts in plants, several strategies have been developed in order to make plants most tolerant to salt stress. A recent innovation in plant cultivation system is the enrichment of irrigation water with carbon dioxide (carbonation), influencing the commercial crop yield and making them more tolerant to stresses. The objective of this study was to evaluate whether the application of CO2 in irrigation water of melon plants increases the tolerance of the same to salt stress. The experiment was conducted in Pacajus Experimental Field of Embrapa Tropical Agroindustry. The treatments were arranged in a factorial 5 x 3 with four replications, referring to salt solutions at electrical conductivities of (ECw) (0.5, 1.5, 3.0, 4.5 and 6.0 dS m-1) and three treatments with CO2: no CO2 (SC), five applications of CO2 (since flowering until the beginning ripening of fruits) (C1) and two applications of CO2 (since fruit set until the ripening of fruits) (C2). The CO2 was used as a gas injected weekly directly in the irrigation system. The electrical conductivity of the soil saturation extract and CO2 content in the irrigation water were measured at the end of the experiment. The measurement of photosynthesis, stomatal conductance and transpiration occurred throughout plant development. Were also evaluated leaf area, dry weight of leaves and stem + branches, levels of Na+, Cl-, K+ and carbohydrates in the leaves and stems + branches, the number of fruits, productivity, weight, lengths and diameters of the fruit, pulp thickness, total soluble solids and citric acid content. Leaf concentrations of Na+, Cl- and K+ in the leaf and stem + branches were influenced by salinity, with interaction salinity x CO2. For the growth variables: leaf area, dry matter of leaves and stem + branches, there was a significant difference only for the salinity levels. All variables of gas exchange were influenced by salinity, while the stomatal conductance and net photosynthesis were significantly influenced by the application of CO2. The carbohydrate in stem + branches were influenced by the application of CO2. Irrigation with saline water caused a reduction in productivity, number of fruits, lengths of commercial and total fruits. These variables were not influenced by the application of CO2. It is concluded that salinity affected the growth, development and production of melon plants, while the application of CO2 did not minimize the deleterious effect of salts in plants.
Um dos grandes problemas enfrentados pela agricultura à o excesso de sais dissolvidos na soluÃÃo do solo, carreados principalmente pela Ãgua de irrigaÃÃo, causando a salinizaÃÃo do solo. Esses sais, ao serem absorvidos, afetam o crescimento das plantas devido ao efeito osmÃtico, dificultando a absorÃÃo de Ãgua no solo. A fim de amenizar os efeitos deletÃrios desses sais nas plantas, vÃrias estratÃgias vÃm sendo desenvolvidas visando tornar as plantas mais tolerantes ao estresse salino. Uma inovaÃÃo recente no sistema de cultivo de plantas à o enriquecimento da Ãgua de irrigaÃÃo com o diÃxido de carbono (carbonataÃÃo), influenciando a produtividade comercial da cultura e tornando-a mais tolerante a estresses. Assim, o objetivo deste trabalho foi avaliar se a aplicaÃÃo de CO2 na Ãgua de irrigaÃÃo de plantas de meloeiro aumenta a tolerÃncia das mesmas ao estresse salino. O experimento foi conduzido no Campo Experimental de Pacajus da Embrapa AgroindÃstria Tropical. Os tratamentos foram dispostos em esquema fatorial 5 x 3 com quatro repetiÃÃes, referentes Ãs soluÃÃes salinas com condutividades elÃtricas de (CEa) (0,5; 1,5; 3,0; 4,5 e 6,0 dS m-1) e trÃs tratamentos de CO2: ausÃncia de CO2 (SC), cinco aplicaÃÃes de CO2 (inÃcio do florescimento atà a maturaÃÃo dos frutos) (C1) e duas aplicaÃÃes de CO2 (apÃs a frutificaÃÃo atà a maturaÃÃo dos frutos) (C2). O CO2 foi aplicado na forma de gÃs, injetado semanalmente diretamente no sistema de irrigaÃÃo. A condutividade elÃtrica do extrato de saturaÃÃo do solo e o teor de CO2 na Ãgua de irrigaÃÃo foram mensurados ao final do experimento. As mediÃÃes de fotossÃntese, transpiraÃÃo e condutÃncia estomÃtica ocorreram ao longo do desenvolvimento das plantas. Foram avaliadas ainda a Ãrea foliar, as massas secas das folhas e do caule + ramos, os teores de Na+, Cl-, K+ e os carboidratos nas folhas e nos caules + ramos, o nÃmero de frutos, a produtividade de frutos, o peso, os comprimentos e diÃmetros dos frutos, espessura da polpa, sÃlidos solÃveis totais e teor de Ãcido cÃtrico. Os teores de Na+, Cl- e k+ na folha e caule + ramos foram influenciados pela salinidade, havendo interaÃÃo salinidade x CO2. Para as variÃveis de crescimento: Ãrea foliar, matÃria seca das folhas e caule +ramos, houve diferenÃa significativa apenas para os nÃveis de salinidade. Todas as variÃveis de trocas gasosas foram influenciadas pela salinidade, enquanto que a condutÃncia estomÃtica e a fotossÃntese liquida foram significativamente influenciadas pela aplicaÃÃo de CO2. Os teores de carboidratos no caule + ramos foram influenciados pela aplicaÃÃo de CO2. A irrigaÃÃo com Ãgua salina provocou reduÃÃo na produtividade, nÃmero de frutos, comprimentos dos frutos comercias e mÃdios. Essas variÃveis nÃo foram influenciadas pela aplicaÃÃo de CO2. Em funÃÃo do exposto, conclui-se que a salinidade afetou o crescimento, desenvolvimento e produÃÃo das plantas de meloeiro, enquanto a aplicaÃÃo do CO2 nÃo minimizou o efeito deletÃrio dos sais nas plantas.
Castle, S. J. "Reduced Whitefly Infestations in Cotton Using a Melon Trap Crop." College of Agriculture, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/197519.
Full textSilva, Antonia Rosimeire da Cruz. "Acúmulo de matéria seca e de nutrientes em plantas de cobertura do solo e meloeiro em sistemas de cultivo." Universidade Federal Rural do Semi-Árido, 2015. http://bdtd.ufersa.edu.br:80/tede/handle/tede/170.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The objective of this work was to evaluate the dry matter production and accumulation of macronutrients, C and C / N ratio of roofing plants in the semiarid region and the growth and accumulation of nutrients in melons in different cropping systems. The experiments were conducted between April and September / October and December 2011 and between May and October / November 2012 and January 2013, in Fazenda Agrícola Famosa Ltda., located on the border of the municipalities Tibau-RN / Icapuí-CE. In the first semester, we used a randomized complete block design with five treatments and four replications. The treatments consisted of covers: sunn hemp and millet; corn + Brachiaria; spontaneous vegetation; Single millet and pork + millet beans. In the first semester, the production of dry matter of shoots of cover crops, accumulation of nutrients, carbon and C / N ratio were evaluated. In the second semester, we used the randomized block design with nine treatments and four replications. The treatments consisted of covers: Sunnhemp + embedded millet; Corn + embedded brachiaria; Embedded spontaneous vegetation; Millet not incorporated; Sunnhemp + millet not incorporated; Corn + Brachiaria not incorporated; Unincorporated spontaneous vegetation; Solo kept without vegetation unincorporated and millet + jack bean unincorporated. The greatest productions of total dry matter accumulation of macronutrients, except S and carbon, were obtained with sunnhemp + millet and corn + Brachiaria and spontaneous vegetation. Pearl millet (2011) and corn + Brachiaria and spontaneous vegetation (2012) showed higher C / N. The maximum accumulated plant dry matter in melon was observed in sunnhemp + embedded millet, sunnhemp + unincorporated millet and maize + embedded brachiaria at 30 DAT, DAT 60 and DAT 60 fruit, respectively. Embedded vegetation cover and under the mulching resulted in higher overall productivity in melon. The cover crops corn + Brachiaria and sunn hemp and millet incorporated under mulching achieved the highest business productivity in 2011 and 2012, respectively. The plant covers that contributed most to the total accumulation of N, P and K in melon were sunnhemp + embedded millet and corn + Brachiaria not incorporated
O trabalho teve como objetivo avaliar a produção de fitomassa seca e acúmulo de macronutrientes, C e a relação C/N de plantas de coberturas e o crescimento e acúmulo de nutrientes em meloeiro em diferentes sistemas de cultivo na região semiárida. Os experimentos foram realizados entre abril e setembro/outubro e dezembro de 2011 e entre maio e outubro/novembro de 2012 e janeiro 2013, na Fazenda Agrícola Famosa Ltda., situada na divisa dos municípios Tibau-RN/ Icapuí-CE. No primeiro semestre, utilizou-se o delineamento em blocos casualizados, com cinco tratamentos e quatro repetições. Os tratamentos consistiram das coberturas: crotalária + milheto; milho + braquiária; vegetação espontânea; milheto solteiro e feijão de porco + milheto. No primeiro semestre, foram avaliados a produção de matéria seca da parte aérea das plantas de cobertura, acúmulos de macronutrientes, carbono e relação C/N. No segundo semestre, utilizou-se o delineamento em blocos casualizados com nove tratamentos e quatro repetições. Os tratamentos foram constituídos pelas coberturas: Crotalária + milheto incorporado; Milho + braquiária incorporado; Vegetação espontânea incorporado; Milheto não incorporado; Crotalária + milheto não incorporado; Milho + braquiária não incorporado; Vegetação espontânea não incorporada; Solo mantido sem vegetação não incorporado e Milheto + feijão de porco não incorporado. As maiores produções de matéria seca total, acúmulo de macronutrientes, exceto S e carbono, foram obtidas com crotalária + milheto e milho + braquiária e vegetação espontânea. O milheto (2011) e milho + braquiária e vegetação espontânea (2012) apresentaram maiores relações C/N. A matéria seca vegetal acumulada máxima no melão foi observada na crotalária + milheto incorporado, crotalária + milheto não incorporado e no milho + braquiária, incorporado aos 30 DAT, 60 DAT e fruto aos 60 DAT, respectivamente. As coberturas vegetais incorporadas e sob o mulching resultaram em maior produtividade total no melão. As coberturas vegetais milho + braquiária e crotalária + milheto incorporado sob mulching obtiveram a maior produtividade comercial em 2011 e 2012, respectivamente. As plantas de coberturas que mais contribuíram para o acúmulo total de N, P e K no melão foram a crotalária + milheto incorporado e milho + braquiária não incorporado
Guiu, Aragonés Cèlia. "Study of Cucumber mosaic virus infection in the resistant melon accession PI 161375." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/284908.
Full textLa accesión exótica de melón PI 161375 presenta una mezcla de resistencia cualitativa y cuantitativa frente a la infección por CMV, dependiendo de la cepa. Anteriormente se describió en nuestro laboratorio la presencia del gen recesivo de resistencia cmv1 situado en el grupo de ligamiento XII, y que confería resistencia total sólo a algunas cepas de CMV (Essafi et al., 2009). En esta tesis hemos ampliado los conocimientos sobre la resistencia mediada por el gen cmv1 presente en melón y hemos obtenido la secuencia y los clones infectivos de la cepa M6. La tesis ha sido estructurada en tres capítulos. En el primer capítulo analizamos la resistencia conferida por el gen cmv1 en 11 cepas de CMV del subgrupo I y II. Los resultados indicaron que cmv1 confería resistencia total a las cepas del subgrupo II pero no a las del subgrupo I. Mediante el uso de los clones infecciosos de las cepas CMV-LS (subgrupo II) y CMV-FNY (subgrupo I) hicimos combinaciones entre los RNAs de ambas cepas, pudiendo localizar el determinante de virulencia en el RNA3. Quimeras entre FNY y LS indicaron que el determinante de virulencia estaba en los 209 aminoácidos del extremo N-terminal de la proteína de movimiento (MP). Mediante mutagénesis dirigida identificamos una combinación de 4 posiciones específicas que confieren a LS la habilidad de sobrepasar la resistencia mediada por cmv1 cuando las sustituimos por los residuos correspondientes de la cepa FNY. El segundo capítulo trata de la caracterización de la resistencia conferida por el gen cmv1. La cepa CMV-LS es capaz de replicarse y moverse célula a célula en la hoja inoculada de la línea resistente. No obstante, LS es incapaz de invadir el floema ya que no hemos podido detectar virus en el floema de la línea resistente. Mediante inmunomarcaje de CMV con oro coloidal hemos identificado el límite entre células de la vaina (BS) y parénquima vascular (VP) o células acompañantes (IC) como barrera que impide la infección sistémica en la línea portadora del gen cmv1. Con los resultados obtenidos hemos demostrado que la resistencia determinada por el gen cmv1 interrumpe la entrada del virus al sistema vascular, impidiendo así una infección sistémica. En el tercer capítulo hemos obtenido la secuencia de la cepa CMV-M6 y generado clones moleculares capaces de infectar sistémicamente N. benthamiana y melón.
The exotic melon accession PI 161375 shows a complex mixture of qualitative and quantitative resistance to Cucumber mosaic virus (CMV) infection, depending on the strain. Previously, the presence of a recessive gene (cmv1) in the linkage group XII conferring total resistance to a set of CMV strains was reported in our laboratory (Essafi et al., 2009). In this thesis we have extended the knowledge about the cmv1-mediated resistance present in melon and have obtained the sequence of the strain CMV-M6 and its infectious clones. This thesis is divided in three chapters. In the first chapter, we have analysed the cmv1-mediated resistance in 11 strains of CMV from subgroup I and II and have established that cmv1 confers total resistance only to strains of subgroup II. Using infectious clones of strains CMV-LS (subgroup II) and CMV-FNY (subgroup I) we have made combinations between RNAs of both strains showing that the determinant of the virulence is located in RNA3. Chimaeras between CMV-FNY and CMV-LS showed that the determinant of virulence is in the N-terminal 209 amino acids of the movement protein (MP). By directed mutagenesis, we identified a combination of four specific positions that confer to LS the ability to overcome cmv1-mediated resistance when exchanged for the corresponding FNY residues. In the second chapter, we have characterized the resistance mediated by cmv1. The strain CMV-LS is able to replicate and move cell to cell in the inoculated leaf of the resistant line. However, it is not able to invade the sieve elements since it has not been detected in the phloem of the resistant line. By immunogold labelling of CMV particles we have identified that the boundary between bundle sheath cells (BS) and vascular parenchyma (VP) or intermediary cells (IC) impedes the systemic infection in the resistant line. Altogether, our results demonstrate that the resistance determined by cmv1 involves interruption of the virus entry into the vascular system and therefore, inability to develop a systemic infection. In the third chapter, we have obtained the sequence of CMV-M6 strain and generated infectious clones able to infect systemically N. benthamiana and melon.
Ayub, Ricardo Antonio. "Manipulation génétique de la synthèse d'éthylène chez le melon (Cucumis melo, L. ) par expression d'un ADNc antisens codant pour l'ACC oxydase." Toulouse, INPT, 1995. http://www.theses.fr/1995INPT003A.
Full textTam, Ka-shing, and 譚家承. "Effects of bitter melon extracts on adipogenesis of 3T3-L1 adipocytes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42182037.
Full textLourenÃo, Isabel Peixoto. "Aminoethoxyvinylglycine on quality and maturation of cantaloupe melon in tropical conditions." Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11130.
Full textConselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
O aumento do perÃodo de conservaÃÃo dos frutos climatÃricos ocorre pela inibiÃÃo da sÃntese ou da aÃÃo do etileno de forma a retardar o amadurecimento. Uma das formas de controle deste processo pode ser a aplicaÃÃo de reguladores vegetais como o aminoetoxivinilglicina (AVG), um inibidor da biossÃntese do etileno. O AVG evita a formaÃÃo autocatalÃtica do etileno, reduz a respiraÃÃo climatÃrica, a abscisÃo de frutos e aumenta a firmeza da polpa quando pulverizado nas Ãrvores frutÃferas em prÃ-colheita. Este trabalho teve como objetivos avaliar o efeito da aplicaÃÃo de AVG na maturaÃÃo e qualidade de frutos do meloeiro cantaloupe em condiÃÃes de casa de vegetaÃÃo e de campo. O delineamento experimental foi o inteiramente casualizado, em fatorial 3 x 5, com trÃs datas de aplicaÃÃo e cinco doses do princÃpio ativo para os dois experimentos, sendo utilizado duas repetiÃÃes, tendo oito plantas por repetiÃÃo no plantio em ambiente protegido e trÃs repetiÃÃes, formadas por cinco frutos em campo. As respostas em cada ambiente foram especÃficas sendo que em casa de vegetaÃÃo o uso do AVG influencia na qualidade dos melÃes, quanto ao tamanho de fruto e cavidade interna; nÃo altera o teor de sÃlidos solÃveis, aÃÃcares totais e firmeza independentemente da dose e aplicaÃÃo do produto e influencia na maturaÃÃo dos frutos de meloeiro promovendo aumento na permanÃncia do fruto à planta quando pulverizados duas ou trÃs vezes, na dose de 270 mg. L-1. Em condiÃÃes de campo o AVG influencia na qualidade dos frutos do meloeiro, proporcionando frutos maiores com cavidade interna menor, maior teor de sÃlidos solÃveis e mais firmes e influencia na maturaÃÃo, promovendo maior permanÃncia dos frutos na planta. Portanto, o AVG influenciou na qualidade e na maturaÃÃo dos frutos de melÃo, sob ambas condiÃÃes de cultivo.
Increased retention of climacteric fruits occurs by inhibiting the synthesis or action of ethylene in order to delay ripening. One way to control this process may be the application of plant growth regulators such as aminoethoxivinilglicin (AVG), an inhibitor of ethylene biosynthesis. AVG prevents the formation of autocatalytic ethylene reduces respiration climacteric fruit abscission and increases firmness when sprayed on fruit trees before the harvest. This study aimed to evaluate the effect of AVG on ripening and fruit quality of muskmelon cantaloupe in greenhouse and field. The experimental design was completely randomized, with a 3 x 5, with three dates of application and five doses of the active ingredient for the two experiment, being used two replicates, with eight plants per replication at planting in a greenhouse and three replicates of five fruits formed in field. The responses were specific for each environment and in a greenhouse using AVG influences the quality of melons, as the fruit size and internal cavity; does not change the content of soluble solids, total sugars and firmness regardless of dose and application of the product and influences the maturation of melon fruits for increasing the permanence the fruit to the plant when sprayed two or three times at a dose of 270 mg. L-1. Under field conditions the AVG influences the quality of the melon fruit, providing larger fruits with internal cavity smaller, higher soluble solids content and firmness and influences the maturation promoting greater permanence of fruit on the plant. Therefore, AVG influenced the quality and maturity of melon fruits under both culture conditions.