Academic literature on the topic 'Melon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Melon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Melon"
Daryono, Budi Setiadi, Emy Setyani, Adhestya Alfiani, and Pungky Ramadhan Rivaldi. "Fruit characters of Cucumis melo L.: ‘tacapa green black’, ‘melona’ and ‘meloni’." Digital Press Life Sciences 1 (2018): 00003. http://dx.doi.org/10.29037/digitalpress.21241.
Full textCohen, R., C. Horev, Y. Burger, S. Shriber, J. Hershenhorn, J. Katan, and M. Edelstein. "Horticultural and Pathological Aspects of Fusarium Wilt Management Using Grafted Melons." HortScience 37, no. 7 (December 2002): 1069–73. http://dx.doi.org/10.21273/hortsci.37.7.1069.
Full textKhomphet, Thanet, Athakorn Promwee, and Shams Shaila Islam. "Effects of foliar fertilizer application on the growth and fruit quality of commercial melon varieties grown in a soilless culture system." PeerJ 11 (February 21, 2023): e14900. http://dx.doi.org/10.7717/peerj.14900.
Full textAlhudzaifah, Azka Iklilah, Anwar Anwar, and Sri Maryati. "ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KONSUMSI BUAH-BUAHAN PADA SKALA RUMAH TANGGA DI KOTA MATARAM." JURNAL AGRIMANSION 22, no. 2 (September 3, 2021): 134–48. http://dx.doi.org/10.29303/agrimansion.v22i2.621.
Full textAlhudzaifah, Azka Iklilah, Anwar Anwar, and Sri Maryati. "ANALISIS FAKTOR-FAKTOR YANG MEMPENGARUHI KONSUMSI BUAH-BUAHAN PADA SKALA RUMAH TANGGA DI KOTA MATARAM." JURNAL AGRIMANSION 22, no. 2 (September 3, 2021): 134–48. http://dx.doi.org/10.29303/agri.v22i2.621.
Full textDaryono, Budi Setiadi. "“LANTPYCATION” : METODE BARU BUDIDAYA MELON (Cucumis melo L.) RAMAH LINGKUNGAN." Jurnal Pendidikan Matematika dan IPA 7, no. 1 (November 2, 2016): 25. http://dx.doi.org/10.26418/jpmipa.v7i1.17342.
Full textYunusov, Salohiddin, Sanjarbek Sadullayev, Guzal Khaitboyeva, and Maftuna Sharipova. "Selection of high-yielding, disease-resistant, promising, and export-oriented varieties of melons." E3S Web of Conferences 389 (2023): 03044. http://dx.doi.org/10.1051/e3sconf/202338903044.
Full textIshak, Muhammad Alif, and Budi Setiadi Daryono. "Detection of Powdery Mildew Resistance Gene in Melon Cultivar Meloni Based on SCAR Markers." Biosaintifika: Journal of Biology & Biology Education 12, no. 1 (April 23, 2020): 76–82. http://dx.doi.org/10.15294/biosaintifika.v12i1.22198.
Full textWiratara, P. R. W., B. S. Daryono, and Supriyadi. "Physiological properties of novel melon cultivars (cv. Meloni and cv. Tacapa Green Black) during storage." Food Research 7, no. 4 (August 18, 2023): 171–83. http://dx.doi.org/10.26656/fr.2017.7(4).841.
Full textWahyudi, Wahyudi, Evi Andriani, and Ana Nurmelia. "PENDAPATAN DAN STRATEGI PEMASARAN PETANI MELON DI KABUPATEN SELUMA." AGRITEPA: Jurnal Ilmu dan Teknologi Pertanian 7, no. 1 (May 31, 2020): 57–69. http://dx.doi.org/10.37676/agritepa.v7i1.999.
Full textDissertations / Theses on the topic "Melon"
Aggelis, Alexandros. "Gene expression in ripening melon (Cucumis melo L.)." Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319646.
Full textKlingler, John Paul. "Phenotypic and molecular-genetic analysis of resistance to Aphis gossypii (cotton-melon aphid) in Cucumis melo (melon)." Diss., The University of Arizona, 1999. http://hdl.handle.net/10150/283992.
Full textFrancis, Andrew M. "belt melon grass." VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3885.
Full textClark, L. J., R. Walser, and E. W. Carpenter. "Melon Variety Trial." College of Agriculture, University of Arizona (Tucson, AZ), 2000. http://hdl.handle.net/10150/220394.
Full textJinqiang, Yan. "Study of the resistance to Cucumber mosaic virus aggressive strains in the melon (Cucumis melon L.) accession PI 161375." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/666767.
Full textLa accesión de melón exótico PI 161375, cultivar Songwhan Charmi (SC) es resistente a la mayoría de las cepas de Cucumber mosaic virus (CMV). La resistencia a las cepas del subgrupo II de CMV es recesiva y controlada por el gen cmv1, que es capaz de prevenir la entrada del virus en el floema deteniéndolo en las células de la vaina que rodean la vena. Esta restricción depende de la proteína de movimiento (MP), el determinante de la virulencia frente a este gen. Para resistir a la cepa CMV-M6, del subgrupo I, se requieren dos QTL más, cmvqw3.1 y cmvqw10.1, funcionando en colaboración con cmv1. Sin embargo, CMV-FNY, una cepa más agresiva del subgrupo I, es capaz de superar la resistencia conferida por cmv1/cmvqw3.1/cmvqw10.1. En esta tesis, nuestro objetivo es (i) identificar los QTL adicionales responsables de la resistencia a CMV-FNY, (ii) caracterizar la resistencia conferida por los QTL cmv1/cmvqw3.1/cmvqw10.1 e (iii) identificar los factores de virulencia involucrados con estos QTL. El análisis de QTL se abordó desarrollando varias poblaciones F2 entre las líneas DHL142 o DHL69, resistentes a CMV-FNY, y varias líneas de melón susceptibles a CMV-FNY, donde se detectaron varios QTL menores en LG II, LG IX, LG X y LG XII. Sin embargo, ninguno de estos QTLs fue detectado reproduciblemente en varias poblaciones F2, ni utilizando diferentes métodos de fenotipado, lo que indicó que nuestro sistema de detección de QTL no es apropiado para detectar QTLs menores. El factor limitante más probable puede ser la dificultad del fenotipado de la infección para la detección de QTLs en una población F2. El estudio de la resistencia conferida por combinaciones de dos o los tres QTL mostró que, aunque las plantas eran susceptibles a CMV-FNY, hubo un retraso en la infección, lo que indica que la resistencia implica una restricción del movimiento viral. Un análisis posterior mostró que la restricción funcionaba al nivel de la entrada al floema, más que al nivel del movimiento dentro del floema. Por lo tanto, esto indica que cmvqw3.1 y cmvqw10.1 están dificultando el movimiento de CMV-FNY en el mismo paso de la infección viral donde cmv1 restringe CMV-LS. Los pseudorecombinantes generados entre CMV-FNY / CMV-M6 y entre CMV-FNY / CMV-LS demostraron que el determinante de virulencia no mapeaba en el RNA3. Tomados en conjunto, nuestros resultados sugieren que la resistencia al CMV en la accesión SC está formada por una serie de niveles de resistencia, siendo cmv1 el primer nivel, efectivo contra las cepas del subgrupo II; el segundo nivel, formado por cmvqw3.1 y cmvqw10.1, que cooperarían con cmv1 para proporcionar resistencia frente a CMV-M6; y el tercer nivel sería el QTL no identificado aún, necesario para la resistencia frente a CMV-FNY. En la actualidad, sabemos que los dos primeros niveles de resistencia estarían participando en la restricción de la entrada de CMV al floema.
The exotic melon accession PI 161375 cultivar Songwhan Charmi (SC) shows resistance to most of Cucumber mosaic virus (CMV) strains. The resistance to CMV subgroup II strains was reported as recessive, controlled by the gene cmv1 which is able to prevent the phloem entry of the virus by restricting it in the bundle sheath cells. This restriction depends on the movement protein (MP), the determinant of virulence. Two more QTLs, cmvqw3.1 and cmvqw10.1 are required, working together with cmv1, for the resistance to the subgroup I strain CMV-M6. However, CMV-FNY, a more aggressive strain from subgroup I, was able to overcome the resistance conferred by cmv1/cmvqw3.1/cmvqw10.1. In this thesis we aim to (i) identify the additional QTLs responsible for the resistance to CMV-FNY, (ii) characterize the resistance conferred by the QTLs cmv1/cmvqw3.1/cmvqw10.1 and (iii) identify the virulence factors involved with these QTLs. QTL analysis was addressed developing several F2 populations made between the CMV-FNY-resistant lines DHL142, DHL69 and several CMV-FNY-susceptible melon lines. Several putative minor QTLs were detected in LG II, LG IX, LG X and LG XII. However, none of these QTLs were reproducibly detected neither in several F2 populations nor using different methods of phenotyping. The evaluation of our QTL detecting system indicated that it is not appropriate for detecting minor QTL, being the most probable limiting factor the correct phenotyping of the infection for QTL detection in a F2 population. The study of the resistance conferred by combinations of two or the three QTLs showed that, although the plants were susceptible to CMV-FNY, there was a delay in the infection, indicating that the resistance involves a restriction of the viral movement. Further analysis showed that the restriction worked at the level of phloem entry, rather than at the level of movement within the phloem. Therefore, this indicates that cmvqw3.1 and cmvqw10.1 are impairing CMV-FNY movement at the same step of the viral infection where cmv1 restricts CMV-LS. Pseudorecombinants generated between CMV-FNY / CMV-M6 and between CMV-FNY / CMV-LS demonstrated that the determinant of virulence was not mapped in RNA3. Taken together, our results suggest that the resistance to CMV in SC accession is built by a series of resistance layers, being cmv1 the first layer, against subgroup II strains; the second layer, cmvqw3.1 and cmvqw10.1, that provide efficient resistance to CMV-M6; and the third layer being the unknown QTL, necessary for efficient resistance to CMV-FNY. At present, we know that the first two layers of resistance would be working in the restriction of CMV entry to the phloem.
Lemhemdi, Afef. "Caractérisation de réseaux des gènes qui contrôlent l’initiation du fruit chez le melon (Cucumis melo)." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS121.
Full textAnalyzes of candidates genes expression profile by qRT-PCR shown that ARF19 has the most interesting profile for parthenocarpy for melon and cucumber. These analyze show that the pollination induces the expression of GA20oxydase(1) and GA20oxydase(5). In the absence of pollination, almost all GA2oxydases are expressed. The study of the transcriptome by RNA-seq identifies genes which have a role of negative or positive regulators in the fruit initiation of melon. The study of genes matrix of cell division shows that their expression is high in ovules and pericarp at anthesis and fertilized stage. The data show that fruit development is largely regulated by transcription factors. Systematic phenotyping genetic analysis identified FS1 the first candidate for facultative parthenocarpy in melon
Cadete, Ana Prata Loureiro. "Qualidade de 13 cultivares de melão (Cucumis melo L.) do tipo Branco do Ribatejo e Pele de Sapo em Évora, Almeirim e Amareleja." Master's thesis, ISA/UTL, 2011. http://hdl.handle.net/10400.5/4170.
Full textIn order to develop technical guidelines for melons production with the objective to obtain high quality fruits, 13 melon cultivars (Cucumis melo L.) var. Inodorous, were evaluated. ‘Lusíada’, ‘Lusitano’, ‘HB06921’ and ‘HB71506’ are white melons and ‘Iberico’, ‘5 Jotas’, ‘Fitor’, ‘Havana’, ‘Hidalgo’, ‘Kanela’, ‘Ruidere’, ‘Sancho’ and ‘Seda’ are Pele de Sapo type or green melons. The trials were located at Évora, Almeirim, Amareleja regions, with different soil and climate conditions and dissimilar production techniques. Melons were evaluated regarding their physical characteristic as weight, length, diameter, firmness and colour and chemical parameters as total soluble solids (TSS- ºBrix), titratable acidity, vitamin C and total phenols. Altogether Pele de Sapo melons produced in Amareleja obtained the highest Brix 13.7% in average, and the sweetest melons were ‘Hidalgo’ with an average Brix of 15.7% and ‘Ruidere’ with 15.5%. The Brix of the white melons produced in Almeirim did not exceed, 12% and the fruits considered unmarketable by Pingo Doce. Vitamin C and total phenols content was not different between cultivars or locals, accounting for 17 mg and 34,4 mg, per 100 g of edible part, respectively
Lignou, Stella. "Optimisation of flavour in long shelf-life varieties of melon (Cucumis melo L.)." Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558737.
Full textSagot, Emeric. "Etude physiologique, biochimique, moléculaire et agronomique du stress salin chez le melon (Cucumis melo L. )." Poitiers, 2005. http://www.theses.fr/2005POIT2352.
Full textThe company which funded this work cultivates melon in 3 different places: in the Center West and South East in France, as well as in South of Spain. In this third location, the proximity of the sea, and the irrigation technique make the water salty (approximatively 30 mM NaCl in water and soil extract). This NaCl concentration decreases the growth of melon plants and the yield from 13 tons/ha to 8 tons/ha. The present work begun with the preparation of the tools needed for further experiments, especially the culture systems. A publication of Shalata and Neumann (Shalata and Neumann, 2001) shows that an exogenous application of ascorbic acid could increase salt tolerance in tomato. Exogenous application of ascorbic acid during hydroponic culture of melon improved salt tolerance in melon, and allowed a partial recovery of yield (near 20% more than in salt stress plant without ascorbic acid). Biochemical evidences shows that NADPH oxidases , but not peroxidases, are activated during salt stress. Addition of ascorbic acid (0,5 mM) in the medium prevented the activation of NADPH oxidases and increased the activity of peroxidases. RNA blot experiments revealed activation of galactinol synthase gene, which encodes a key enzyme of stachyose synthesis. Stachyose is the major transported sugar in melon. The activation of this gene probably creates a metabolic deviation and contributes to the loss of yield. The promoter of galactinol synthase contains a NFkB response box, which senses redox status of the cell. The relationship between ascorbic acid and galactinol synthase is not fully understood, but it is still under investigation in the lab. Field experiments confirmed that AA increases salt tolerance
Fave, Céline. "Effets de la température et de l'humidité relative de l'air sur les flux d'eau, de calcium et de potassium vers le fruit de melon (Cucumis melo L. )." Bordeaux 2, 1998. http://www.theses.fr/1998BOR20613.
Full textBooks on the topic "Melon"
Melon. London: Methuen, 1987.
Find full textMacoun, W. T. Melon culture. [Canada?: s.n., 1997.
Find full textGrais, Ran. Kaḥol-melon. Tel-Aviv: Saʻar, 1996.
Find full textEdelist, Ran. Melon Paleśtinah. [Tel Aviv]: Modan, 1986.
Find full textChow, Cara. Bitter melon. New York: Scholastic, 2011.
Find full textFrąś, Jacek. Melon: Pretensje. Warszawa: Wydawnictwo WAB - Grupa Wydawnicza Foksal, 2020.
Find full textFranks, Jo. Melon greats. Australia?]: Jo Franks, 2013.
Find full textWater melon. Dublin: Poolbeg, 1996.
Find full textEdelist, Ran. Melon Paleśtinah. [Tel Aviv]: Modan, 1986.
Find full textChow, Cara. Bitter melon. New York: Egmont USA, 2011.
Find full textBook chapters on the topic "Melon"
Nonaka, Satoko, and Hiroshi Ezura. "Melon (Cucumis melo)." In Methods in Molecular Biology, 195–203. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1658-0_16.
Full textChristophe, Wiart. "Melon (Cucumis melo L.)." In Handbook of Medicinal Plants of the World for Aging, 131–32. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003301455-51.
Full textBährle-Rapp, Marina. "melon." In Springer Lexikon Kosmetik und Körperpflege, 347. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6414.
Full textDaryono, Budi Setiadi, Aestethica El Virdausy, and Eka Wasi’ Al-Mughni. "Phenotypic Characters Stability of Melon (Cucumis melo L. Meloni Cultivar)." In Proceeding of the 2nd International Conference on Tropical Agriculture, 141–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97553-5_14.
Full textSastry, K. Subramanya, Bikash Mandal, John Hammond, S. W. Scott, and R. W. Briddon. "Cucumis melo var. agrestis (Wild melon)." In Encyclopedia of Plant Viruses and Viroids, 702. New Delhi: Springer India, 2019. http://dx.doi.org/10.1007/978-81-322-3912-3_1051.
Full textSastry, K. Subramanya, Bikash Mandal, John Hammond, S. W. Scott, and R. W. Briddon. "Cucumis melo var. flexuosus (Snake melon)." In Encyclopedia of Plant Viruses and Viroids, 702–5. New Delhi: Springer India, 2019. http://dx.doi.org/10.1007/978-81-322-3912-3_271.
Full textLim, T. K. "Cucumis melo L. (Reticulatus Group) ‘Hami melon’." In Edible Medicinal And Non-Medicinal Plants, 231–34. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1764-0_36.
Full textChikh-Rouhou, H., W. Abdedayem, I. Solmaz, N. Sari, and A. Garcés-Claver. "Melon (Cucumis melo L.): Genomics and Breeding." In Smart Plant Breeding for Vegetable Crops in Post-genomics Era, 25–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5367-5_2.
Full textCasacuberta, Josep, Pere Puigdomènech, and Jordi Garcia-Mas. "The Melon Genome." In Genetics and Genomics of Cucurbitaceae, 173–81. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/7397_2016_5.
Full textCrato, Nuno. "The Melon Paradox." In Figuring It Out, 205–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04833-3_49.
Full textConference papers on the topic "Melon"
Qozoqov, Tohirjon. "DESCRIPTION OF THE CAPITAL OF UMARSHEIKH MIRZA IN "BABURNAMA"." In The Impact of Zahir Ad-Din Muhammad Bobur’s Literary Legacy on the Advancement of Eastern Statehood and Culture. Alisher Navoi' Tashkent state university of Uzbek language and literature, 2023. http://dx.doi.org/10.52773/bobur.conf.2023.25.09/ymwj6333.
Full textWang, Qipeng, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan, Xin Jin, Gang Huang, Yunxin Liu, and Xuanzhe Liu. "Melon." In MobiSys '22: The 20th Annual International Conference on Mobile Systems, Applications and Services. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3498361.3538928.
Full textSaputri, Avia Purnama, Wiko Arif Wibowo, and Budi Setiadi Daryono. "Phenotypical characters and biochemical compound of cucurbitacin melon (Cucumis melo L. ‘Gama Melon Parfum’) resulted from breeding." In THE 6TH INTERNATIONAL CONFERENCE ON BIOLOGICAL SCIENCE ICBS 2019: “Biodiversity as a Cornerstone for Embracing Future Humanity”. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017615.
Full textSuslova, V. A., M. S. Kornilova, and E. A. Galichkina. "Result of breeding work to create promising new variety of melon ‘Katyusha’." In CURRENT STATE, PROBLEMS AND PROSPECTS OF THE DEVELOPMENT OF AGRARIAN SCIENCE. Federal State Budget Scientific Institution “Research Institute of Agriculture of Crimea”, 2020. http://dx.doi.org/10.33952/2542-0720-2020-5-9-10-77.
Full textZulfikar, Muhammad, Faiza Senja Widya, Wiko Arif Wibowo, Budi Setiadi Daryono, and Slamet Widiyanto. "Antioxidant activity of melon fruit (Cucumis melo L. ‘GMP’) ethanolic extract." In THE 6TH INTERNATIONAL CONFERENCE ON BIOLOGICAL SCIENCE ICBS 2019: “Biodiversity as a Cornerstone for Embracing Future Humanity”. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015748.
Full textMuhammadi, Amir, and Budi Setiadi Daryono. "Phenotypic Characters Stability of Melon (Cucumis melo L. ‘Kinaya’)." In 7th International Conference on Biological Science (ICBS 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/absr.k.220406.043.
Full textYakimova, O. V., and V. E. Lazko. "THE USE OF BIODEGRADABLE POLYMERIC FILM AND SECONDARY CELLULOSE AS A MULCHING MATERIAL ON THE MELON SOWINGS OF THE VARIETY STRELCHANKA." In 11-я Всероссийская конференция молодых учёных и специалистов «Актуальные вопросы биологии, селекции, технологии возделывания и переработки сельскохозяйственных культур». V.S. Pustovoit All-Russian Research Institute of Oil Crops, 2021. http://dx.doi.org/10.25230/conf11-2021-278-283.
Full textPahlevanyan, Armenuhi, Zara Harutyunyan, Raya Balayan, Alvina Avagyan, Anna Hakobyan, and Iryna Vardanian. "Use of in vitro culture in the breeding of melon Cucumis melo." In INTERNATIONAL CONFERENCE “SUSTAINABLE DEVELOPMENT: VETERINARY MEDICINE, AGRICULTURE, ENGINEERING AND ECOLOGY” (VMAEE2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0148766.
Full textAninkan, Anjola S., and Eyitayo A. Makinde. "Fertilizer Rate for Optimum Growth and Yield of Egusi Melon (ColocynthiscitrullusL.)/ Hot Pepper (Capsicum chinense, Jackquin cv. rodo) Intercrop." In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.005.
Full textBaviera-Puig, Amparo, Tomás Baviera, Carmen Escribá-Pérez, and Juan Buitrago-Vera. "EFFECT OF FRUIT ORIGIN ON CONSUMERS’ CONSCIOUS AND UNCONSCIOUS ASSESSMENT OF QUALITY AND PURCHASE INTENTION." In 13th International Scientific Conference „Business and Management 2023“. Vilnius Gediminas Technical University, 2023. http://dx.doi.org/10.3846/bm.2023.1051.
Full textReports on the topic "Melon"
Katzir, Nurit, James Giovannoni, Marla Binzel, Efraim Lewinsohn, Joseph Burger, and Arthur Schaffer. Genomic Approach to the Improvement of Fruit Quality in Melon (Cucumis melo) and Related Cucurbit Crops II: Functional Genomics. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7592123.bard.
Full textCohen, Roni, Kevin Crosby, Menahem Edelstein, John Jifon, Beny Aloni, Nurit Katzir, Haim Nerson, and Daniel Leskovar. Grafting as a strategy for disease and stress management in muskmelon production. United States Department of Agriculture, January 2004. http://dx.doi.org/10.32747/2004.7613874.bard.
Full textPerl-Treves, Rafael, M. Kyle, and Esra Galun. Development and Application of a Molecular Genetic Map for Melon (Cucumis melo). United States Department of Agriculture, October 1993. http://dx.doi.org/10.32747/1993.7568094.bard.
Full textKatzir, Nurit, James Giovannoni, and Joseph Burger. Genomic approach to the improvement of fruit quality in melon (Cucumis melo) and related cucurbit crops. United States Department of Agriculture, June 2006. http://dx.doi.org/10.32747/2006.7587224.bard.
Full textGrumet, Rebecca, Rafael Perl-Treves, and Jack Staub. Ethylene Mediated Regulation of Cucumis Reproduction - from Sex Expression to Fruit Set. United States Department of Agriculture, February 2010. http://dx.doi.org/10.32747/2010.7696533.bard.
Full textBadami, Kaswan, Budi Setiadi Daryono, Achmad Amzeri, and Syaiful Khoiri. COMBINING ABILITY AND HETEROTIC STUDIES ON HYBRID MELON (Cucumis melo L.) POPULATIONS FOR FRUIT YIELD AND QUALITY TRAITS. SABRAO Journal of Breeding and Genetics, October 2020. http://dx.doi.org/10.21107/amzeri.2020.3.
Full textGur, Amit, Edward Buckler, Joseph Burger, Yaakov Tadmor, and Iftach Klapp. Characterization of genetic variation and yield heterosis in Cucumis melo. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7600047.bard.
Full textKatzir, Nurit, Rafael Perl-Treves, and Jack E. Staub. Map Merging and Homology Studies in Cucumis Species. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575276.bard.
Full textLi, Li, Joseph Burger, Nurit Katzir, Yaakov Tadmor, Ari Schaffer, and Zhangjun Fei. Characterization of the Or regulatory network in melon for carotenoid biofortification in food crops. United States Department of Agriculture, April 2015. http://dx.doi.org/10.32747/2015.7594408.bard.
Full textPerl-Treves, Rafael, Rebecca Grumet, Nurit Katzir, and Jack E. Staub. Ethylene Mediated Regulation of Sex Expression in Cucumis. United States Department of Agriculture, January 2005. http://dx.doi.org/10.32747/2005.7586536.bard.
Full text