Journal articles on the topic 'MEL cells; Epigenetic marks'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MEL cells; Epigenetic marks.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Black, Kathryn, Elena Sotillo, Nicole Martinez, Matthew Gazzara, Alejandro Barrera, Yoseph Barash, Kristen Lynch, and Andrei Thomas-Tikhonenko. "Regulation of CD19 Exon 2 Inclusion in B-Lymphoid Cells By Splicing Factors and Epigenetic Marks." Blood 126, no. 23 (December 3, 2015): 2425. http://dx.doi.org/10.1182/blood.v126.23.2425.2425.
Full textKarkhanis, Vrajesh, Lapo Alinari, Bethany Mundy, Michael Caliguri, Selina Chen-Kiang, Olivier Elemento, Sif Said, and Robert A. Baiocchi. "PRMT5 Targets Tumor Suppressor Micro RNAs to Regulate Cyclin D1 and c-MYC in Mantle Cell Lymphoma." Blood 128, no. 22 (December 2, 2016): 2937. http://dx.doi.org/10.1182/blood.v128.22.2937.2937.
Full textArumugam, Paritha, Fabrizia Urbinati, Chinavenmeni S. Velu, H. Leighton Grimes, and Punam Malik. "The 3′ End of the Chicken Hypersensitive Site-4 Insulator Has Properties Similar to the 5′ Insulator Core and Is Necessary in Conjunction with the Core for Full Insulator Activity." Blood 112, no. 11 (November 16, 2008): 817. http://dx.doi.org/10.1182/blood.v112.11.817.817.
Full textWatanabe, Toshiki. "Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1–infected T cells." Blood 129, no. 9 (March 2, 2017): 1071–81. http://dx.doi.org/10.1182/blood-2016-09-692574.
Full textChung, Jihyun, Vrajesh Karkhanis, Said Sif, and Robert A. Baiocchi. "Protein Arginine Methyltransferase 5 Supports MYC, Survivin and Cyclin D1 Activity in Aggressive Lymphomas By Regulating the WNT/β-Catenin Pathway." Blood 124, no. 21 (December 6, 2014): 58. http://dx.doi.org/10.1182/blood.v124.21.58.58.
Full textMeng, Fanli, Kathrin Stamms, Romina Bennewitz, Andria Green, Fleur Oback, Pavla Turner, Jingwei Wei, and Björn Oback. "Targeted histone demethylation improves somatic cell reprogramming into cloned blastocysts but not postimplantation bovine concepti†." Biology of Reproduction 103, no. 1 (April 21, 2020): 114–25. http://dx.doi.org/10.1093/biolre/ioaa053.
Full textChung, JI Hyun, Shelby Sloan, Peggy Scherle, Kris Vaddi, Said Sif, Rosa Lapalombella, and Robert A. Baiocchi. "PRMT5 Is a Key Epigenetic Regulator That Promotes Transcriptional Activation in Mantle Cell Lymphoma By Regulating the Lysine Methyltransferase SETD7 and MLL1 Activity." Blood 134, Supplement_1 (November 13, 2019): 2777. http://dx.doi.org/10.1182/blood-2019-131020.
Full textLichtenberg, Jens, Elisabeth F. Heuston, Cheryl A. Keller, Ross C. Hardison, and David M. Bodine. "Comparison of Expression and Epigenetic Profiles in Human and Mouse Erythropoiesis and Megakaryopoiesis Using a Systems Biology Model." Blood 126, no. 23 (December 3, 2015): 2383. http://dx.doi.org/10.1182/blood.v126.23.2383.2383.
Full textFiskus, Warren, Rekha Rao, Ramesh Balusu, Jianguo Tao, Eduardo M. Sotomayor, Peter Atadja, and Kapil N. Bhalla. "Efficacy of Combined Epigenetic Targeting of Histone Methyltransferase EZH2 and Histone deacetylases Against Human Mantle Cell Lymphoma Cells." Blood 116, no. 21 (November 19, 2010): 2488. http://dx.doi.org/10.1182/blood.v116.21.2488.2488.
Full textGambacorta, Valentina, Daniela Gnani, Laura Zito, Stefano Beretta, Lucia Zanotti, Oliveira Giacomo, Davide Cittaro, et al. "Integrated Epigenetic Profiling Identifies EZH2 As a Therapeutic Target to Re-Establish Immune Recognition of Leukemia Relapses with Loss of HLA Class II Expression." Blood 134, Supplement_1 (November 13, 2019): 514. http://dx.doi.org/10.1182/blood-2019-127395.
Full textSzpurka, Hadrian, Anna M. Jankowska, Bartlomiej Przychodzen, Zhenbo Hu, Yogen Saunthararajah, Michael A. McDevitt, and Jaroslaw P. Maciejewski. "UTX Mutations and Epigenetic Changes In MDS/MPN and Related Myeloid Malignancies." Blood 116, no. 21 (November 19, 2010): 121. http://dx.doi.org/10.1182/blood.v116.21.121.121.
Full textBurda, Pavel, Nikola Curik, Nina Dusilkova, Giorgio L. Papadopoulos, John Strouboulis, Anna T. Jonasova, and Tomas Stopka. "Erythroid Transcription Factor GATA-1 Binds and Represses PU.1 Gene – Candidate Mechanism Of Epigenetic Repression Of PU.1 and Inefficient Erythropoiesis In MDS." Blood 122, no. 21 (November 15, 2013): 1558. http://dx.doi.org/10.1182/blood.v122.21.1558.1558.
Full textPayton, Jacqueline E., Olivia I. Koues, Rodney Kowalewski, Jennifer A. Schmidt, Li-Wei Chang, Amanda Cashen, Nancy L. Bartlett, and Eugene M. Oltz. "Defining the Malignant Epigenome in Non-Hodgkin Lymphoma." Blood 120, no. 21 (November 16, 2012): 524. http://dx.doi.org/10.1182/blood.v120.21.524.524.
Full textWoo, Andrew J., Jonghwan Kim, Jian Xu, Hui Huang, and Alan Cantor. "Role of the Krüppel-Type Zinc Finger Transcription Factor ZBP-89 In Human Globin Gene Regulation and Erythroid Development." Blood 116, no. 21 (November 19, 2010): 2067. http://dx.doi.org/10.1182/blood.v116.21.2067.2067.
Full textKarkhanis, Vrajesh, Olivier Elemento, Maurizio Di Liberto, Selina Chen-Kiang, Said Sif, and Robert A. Baiocchi. "Protein Arginine Methyltransferase 5 Directly Targets and Epigenetically Silences microRNAs miR33b and miR96 to Support Constitutive Cyclin D1 Activity in Non-Hodgkin’s Lymphoma." Blood 124, no. 21 (December 6, 2014): 60. http://dx.doi.org/10.1182/blood.v124.21.60.60.
Full textChung, Jihyun, Vrajesh Karkhanis, Sif Said, and Robert A. Baiocchi. "Protein Arginine Methyltransferase 5 Regulates WNT/β-Catenin Target Gene Expression in at Multiple Levels." Blood 128, no. 22 (December 2, 2016): 4106. http://dx.doi.org/10.1182/blood.v128.22.4106.4106.
Full textVaitkus, Kestis, Vinzon Ibanez, Maria Armila Ruiz, Ramasamy Jagadeeswaran, Yogenthiran Saunthararajah, James Douglas Engel, Joseph DeSimone, Angela Rivers, and Donald Lavelle. "The LSD1 Inhibitor RN-1 Increases γ-Globin Expression in Baboons By Targeting an Early Event Responsible for γ-Globin Repression." Blood 132, Supplement 1 (November 29, 2018): 1054. http://dx.doi.org/10.1182/blood-2018-99-113539.
Full textBapat, Sharmila A., Victor Jin, Nicholas Berry, Curt Balch, Neeti Sharma, Nawneet Kurrey, Shu Zhang, et al. "Multivalent epigenetic marks confer microenvironment-responsive epigenetic plasticity to ovarian cancer cells." Epigenetics 5, no. 8 (November 2010): 716–29. http://dx.doi.org/10.4161/epi.5.8.13014.
Full textHu, Xin, Xingguo Li, River Ybarra, Kristell Valverde, Xueqi Fu, Constance Noguchi, Yi Qiu, and Suming Huang. "LSD1-Mediated Epigenetic Modification Is Important for TAL1 Function." Blood 112, no. 11 (November 16, 2008): 4757. http://dx.doi.org/10.1182/blood.v112.11.4757.4757.
Full textStanworth, S. J., N. A. Roberts, J. A. Sharpe, J. A. Sloane-Stanley, and W. G. Wood. "Established epigenetic modifications determine the expression of developmentally regulated globin genes in somatic cell hybrids." Molecular and Cellular Biology 15, no. 8 (August 1995): 3969–78. http://dx.doi.org/10.1128/mcb.15.8.3969.
Full textKint, Sam, Wim Van Criekinge, Linos Vandekerckhove, Winnok H. De Vos, Karol Bomsztyk, Diane S. Krause, and Oleg Denisenko. "Single cell epigenetic visualization assay." Nucleic Acids Research 49, no. 8 (January 28, 2021): e43-e43. http://dx.doi.org/10.1093/nar/gkab009.
Full textWibowo, Anjar, Claude Becker, Julius Durr, Jonathan Price, Stijn Spaepen, Sally Hilton, Hadi Putra, et al. "Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation." Proceedings of the National Academy of Sciences 115, no. 39 (September 10, 2018): E9145—E9152. http://dx.doi.org/10.1073/pnas.1805371115.
Full textRamanouskaya, Tatsiana V., Anastasiya V. Kviatko, and Vasily V. Grinev. "Epigenetic marks on the chromatin are associated with RNA splicing in human leukemia cells." Journal of the Belarusian State University. Biology, no. 2 (July 18, 2019): 70–81. http://dx.doi.org/10.33581/2521-1722-2019-2-70-81.
Full textNegi, Sandeep S., Eric S. Schafer, Donald Small, and Patrick Brown. "Histone Profiling of Normal B-Precursors and Primary Pre-B Acute Lymphoblastic Leukemia Reveals Distinct Aberrant Histone Codes In MLL-Rearranged Vs. Wild Type MLL Leukemias That Correlate with Differential Expression of Key MLL Target Genes." Blood 116, no. 21 (November 19, 2010): 2503. http://dx.doi.org/10.1182/blood.v116.21.2503.2503.
Full textPatra, Samir Kumar, Moonmoon Deb, and Aditi Patra. "Molecular marks for epigenetic identification of developmental and cancer stem cells." Clinical Epigenetics 2, no. 1 (December 17, 2010): 27–53. http://dx.doi.org/10.1007/s13148-010-0016-0.
Full textUller, Tobias, Sinead English, and Ido Pen. "When is incomplete epigenetic resetting in germ cells favoured by natural selection?" Proceedings of the Royal Society B: Biological Sciences 282, no. 1811 (July 22, 2015): 20150682. http://dx.doi.org/10.1098/rspb.2015.0682.
Full textCheng, Xiaodong, Hideharu Hashimoto, Yusuf Olatunde Olanrewaju, Samuel Hong, and Xing Zhang. "Generation, Recognition, and Erasure of 5-methylcytosine and its Oxidative Derivatives." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C297. http://dx.doi.org/10.1107/s2053273314097022.
Full textHarandi-Zadeh, Sadaf, Cayla Boycott, Megan Beetch, Tony Yang, Benjamin J. E. Martin, Kevin Ren, Anna Kwasniak, et al. "Pterostilbene Changes Epigenetic Marks at Enhancer Regions of Oncogenes in Breast Cancer Cells." Antioxidants 10, no. 8 (July 30, 2021): 1232. http://dx.doi.org/10.3390/antiox10081232.
Full textKamada, Rui, Wenjing Yang, Yubo Zhang, Mira C. Patel, Yanqin Yang, Ryota Ouda, Anup Dey, et al. "Interferon stimulation creates chromatin marks and establishes transcriptional memory." Proceedings of the National Academy of Sciences 115, no. 39 (September 10, 2018): E9162—E9171. http://dx.doi.org/10.1073/pnas.1720930115.
Full textOhguchi, Hiroto, Teru Hideshima, Manoj Bhasin, Gullu Gorgun, Loredana Santo, Michele Cea, Naoya Mimura, et al. "The KDM3A-KLF2-IRF4 Axis Maintains Myeloma Cell Survival." Blood 126, no. 23 (December 3, 2015): 3633. http://dx.doi.org/10.1182/blood.v126.23.3633.3633.
Full textCapparelli, Rosanna, and Domenico Iannelli. "Role of Epigenetics in Type 2 Diabetes and Obesity." Biomedicines 9, no. 8 (August 8, 2021): 977. http://dx.doi.org/10.3390/biomedicines9080977.
Full textSloan, Shelby, Fiona Brown, JI Hyun Chung, Alexander Prouty, Esther Wheeler, Bonnie K. Harrington, Eric Brooks, et al. "Targeting PRMT5 to Circumvent Acquired Ibrutinib Resistance in Mantle Cell Lymphoma." Blood 134, Supplement_1 (November 13, 2019): 4065. http://dx.doi.org/10.1182/blood-2019-128998.
Full textAntony, J., F. Oback, R. Broadhurst, S. Cole, C. Graham, T. Jenuwein, L. Chamley, B. Oback, and G. Laible. "500. THE MANIPULATION OF THE EPIGENETIC MARK HISTONE 3 LYSINE 9 TRIMETHYLATION IN DONOR CELLS AND ITS EFFECTS ON THE DEVELOPMENT OF CLONED MOUSE EMBRYOS." Reproduction, Fertility and Development 21, no. 9 (2009): 101. http://dx.doi.org/10.1071/srb09abs500.
Full textZarakowska, Ewelina, Jolanta Czerwinska, Agnieszka Tupalska, Matt J. Yousefzadeh, Siobhán Q. Gregg, Claudette M. St Croix, Laura J. Niedernhofer, et al. "Oxidation Products of 5-Methylcytosine are Decreased in Senescent Cells and Tissues of Progeroid Mice." Journals of Gerontology: Series A 73, no. 8 (February 3, 2018): 1003–9. http://dx.doi.org/10.1093/gerona/gly012.
Full textRobbez-Masson, Luisa, Christopher H. C. Tie, and Helen M. Rowe. "Cancer cells, on your histone marks, get SETDB1, silence retrotransposons, and go!" Journal of Cell Biology 216, no. 11 (October 24, 2017): 3429–31. http://dx.doi.org/10.1083/jcb.201710068.
Full textArnaud, Philippe. "Genomic imprinting in germ cells: imprints are under control." REPRODUCTION 140, no. 3 (September 2010): 411–23. http://dx.doi.org/10.1530/rep-10-0173.
Full textde Miranda, Juliana Xavier, Fábia de Oliveira Andrade, Aline de Conti, Maria Lúcia Zaidan Dagli, Fernando Salvador Moreno, and Thomas Prates Ong. "Effects of selenium compounds on proliferation and epigenetic marks of breast cancer cells." Journal of Trace Elements in Medicine and Biology 28, no. 4 (October 2014): 486–91. http://dx.doi.org/10.1016/j.jtemb.2014.06.017.
Full textFessele, Kristen L., and Fay Wright. "Primer in Genetics and Genomics, Article 6: Basics of Epigenetic Control." Biological Research For Nursing 20, no. 1 (November 23, 2017): 103–10. http://dx.doi.org/10.1177/1099800417742967.
Full textRhie, Suhn K., Shannon Schreiner, Heather Witt, Chris Armoskus, Fides D. Lay, Adrian Camarena, Valeria N. Spitsyna, et al. "Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation." Science Advances 4, no. 12 (December 2018): eaav8550. http://dx.doi.org/10.1126/sciadv.aav8550.
Full textNesvick, Cody, Charles Day, Liang Zhang, Edward Hinchcliffe, and David Daniels. "DIPG-78. REVERTANCE OF THE H3K27M MUTATION RESCUES CHROMATIN MARKS NECESSARY FOR ONCOGENESIS IN DIFFUSE MIDLINE GLIOMA." Neuro-Oncology 22, Supplement_3 (December 1, 2020): iii302. http://dx.doi.org/10.1093/neuonc/noaa222.120.
Full textPruvost, Mathilde, and Sarah Moyon. "Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination." Life 11, no. 1 (January 15, 2021): 62. http://dx.doi.org/10.3390/life11010062.
Full textJurkiewicz, Dorota, Elżbieta Ciara, Małgorzata Krajewska-Walasek, and Krystyna Chrzanowska. "DNA methylation as an epigenetic biomarker in imprinting disorders." Postępy Higieny i Medycyny Doświadczalnej 74 (December 7, 2020): 532–40. http://dx.doi.org/10.5604/01.3001.0014.5687.
Full textZhang, Zhichao, Adeel Manaf, Yanjiao Li, Sonia Peña Perez, Rajikala Suganthan, John Arne Dahl, Magnar Bjørås, and Arne Klungland. "Histone Methylations Define Neural Stem/Progenitor Cell Subtypes in the Mouse Subventricular Zone." Molecular Neurobiology 57, no. 2 (October 25, 2019): 997–1008. http://dx.doi.org/10.1007/s12035-019-01777-5.
Full textZaidi, Sayyed K., Daniel W. Young, Martin Montecino, Jane B. Lian, Janet L. Stein, Andre J. van Wijnen, and Gary S. Stein. "Architectural Epigenetics: Mitotic Retention of Mammalian Transcriptional Regulatory Information." Molecular and Cellular Biology 30, no. 20 (August 9, 2010): 4758–66. http://dx.doi.org/10.1128/mcb.00646-10.
Full textMotti, Maria Letizia, and Rosaria Meccariello. "Minireview: The Epigenetic Modulation of KISS1 in Reproduction and Cancer." International Journal of Environmental Research and Public Health 16, no. 14 (July 22, 2019): 2607. http://dx.doi.org/10.3390/ijerph16142607.
Full textOzyerli-Goknar, Ezgi, and Tugba Bagci-Onder. "Epigenetic Deregulation of Apoptosis in Cancers." Cancers 13, no. 13 (June 27, 2021): 3210. http://dx.doi.org/10.3390/cancers13133210.
Full textKent, Clement, and Pavan Agrawal. "Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons." Molecular Neurobiology 57, no. 11 (August 3, 2020): 4500–4510. http://dx.doi.org/10.1007/s12035-020-02037-7.
Full textJoglekar, Mugdha V., Vinay M. Joglekar, Sheela V. Joglekar, and Anandwardhan A. Hardikar. "Human fetal pancreatic insulin-producing cells proliferate in vitro." Journal of Endocrinology 201, no. 1 (January 26, 2009): 27–36. http://dx.doi.org/10.1677/joe-08-0497.
Full textInoue, Daichi, Takeshi Fujino, and Toshio Kitamura. "ASXL1 as a critical regulator of epigenetic marks and therapeutic potential of mutated cells." Oncotarget 9, no. 81 (October 16, 2018): 35203–4. http://dx.doi.org/10.18632/oncotarget.26230.
Full textShiota, Kunio, Yasushi Kogo, Jun Ohgane, Takuya Imamura, Atsushi Urano, Koichiro Nishino, Satoshi Tanaka, and Naka Hattori. "Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice." Genes to Cells 7, no. 9 (September 2002): 961–69. http://dx.doi.org/10.1046/j.1365-2443.2002.00574.x.
Full text