Dissertations / Theses on the topic 'Meiosis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Meiosis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Canales, C. "Characterisation of extra sporogenous cells (ESP) : an avbidopsis gene required for another development." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365861.
Full textPhizicky, David V. (David Vincent). "Mechanisms preventing DNA replication between Meiosis I and Meiosis II." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117786.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged student-submitted from PDF version of thesis.
Includes bibliographical references.
The vast majority of multicellular organisms reproduce using sexual reproduction, which requires the production of haploid gametes. These gametes are produced by meiosis, a specialized cell division during which one round of DNA replication is followed by two rounds of chromosome segregation, Meiosis I (MI) and Meiosis II (MII). This imbalance between rounds of DNA replication and chromosome segregation causes diploid cells to produce haploid gametes. In contrast, mitotically-dividing cells maintain ploidy by alternating between rounds of replication and segregation. It is unclear how meiosis accomplishes two sequential chromosome segregation events without an intervening round of DNA replication. In mitotic cells, both DNA replication and chromosome segregation are regulated by oscillations of cyclin-dependent kinase (CDK) activity. Both events initiate during G1 due to the associated low CDK-activity state, and both events are completed later in the cell cycle due to increased CDK activity. During meiosis, uncoupling replication and segregation presents a unique problem. After completion of MI, CDK activity decreases and then increases to drive MII chromosome segregation. However, DNA replication must remain inhibited between MI and MII. Given that an oscillation of CDK activity is sufficient for genome re-duplication in mitotic cells, I sought to understand how meiotic cells prevent DNA replication while resetting the chromosome segregation program. In this thesis, I show that meiotic cells inhibit two distinct steps of DNA replication: (1) loading of the replicative helicase onto replication origins, and (2) activation of the replicative helicase. CDK and the meiosis-specific kinase Ime2 cooperatively inhibit helicase loading during the meiotic divisions, and their simultaneous inhibition causes inappropriate helicase reloading. Further studies of Ime2 revealed two mechanisms by which it inhibits this process. First, I showed that Ime2-phosphorylation of the helicase directly inhibits its loading onto origins. Second, Ime2 cooperated with CDK to transcriptionally and proteolytically repress Cdc6, an essential helicase-loading protein. In addition, I found that meiotic cells use CDK and the polo-like kinase Cdc5 to promote degradation of Sld2, an essential helicase-activation protein. Together, these data demonstrate that multiple kinases inhibit both helicase loading and activation between MI and MII, thereby ensuring a reduction in ploidy.
by David V. Phizicky.
Ph. D.
Marcet, Ortega Marina. "Surveillance mechanisms in mammalian meiosis." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/387429.
Full textIn order to protect germinal cells from genomic instability, surveillance mechanisms ensure that meiosis occurs properly. In mammals, spermatocytes that display recombination or sex body defects experience an arrest at pachytene stage. Previous studies from our lab described that the MRE11 complex-ATM-CHK2 pathway activates the recombination-dependent arrest in the presence of unrepaired double strand breaks (DSBs). In this work we aimed to identify if p53 family members, which are putative targets of ATM and CHK2, participate in the activation of the recombination-dependent arrest. As a genetic approach, we bred double mutant mice carrying a mutation of a member of the p53 family (p53, TAp63, p73) in a Trip13 defective background. Trip13 mutation causes recombination defects, which activate the recombination-dependent arrest in pachytene-stage spermatocytes. Thus, we studied how the absence of p53 family members affected the arrest phenotype of Trip13mod/mod spermatocytes. Our data showed that p53 and TAp63 deficiency, but not p73, allowed spermatocytes to progress further into late pachynema, despite accumulating numerous unrepaired DBSs. In addition, lack of p53 or TAp63 resulted in a decrease of apoptotic spermatocytes at early pachytene stage. Therefore, our results indicate that p53 and TAp63 are responsible to activate the recombination-dependent arrest in mouse spermatocytes. Even though, double mutant spermatocytes still arrested at pachytene stage. To study if double mutant spermatocytes were arresting due to the activation of the sex body deficient arrest we analyzed MSCI functionality in Trip13 mutants. Thus, by bypassing the recombination-dependent arrest has allowed us to elucidate a role for TRIP13 protein in meiotic silencing, which consequently triggers apoptosis in double mutants at late pachytene stage due to sex body impairment. These results infer that the recombination-dependent and the sex-body deficient arrest are activated by two genetically separated mechanisms. From the observation that TRIP13 is required to implement MSCI silencing, we performed an exhaustive analysis of transcription in Trip13 mutants. Our results suggested that RNA expression in Trip13 mutants was increased in early meiotic stage spermatocytes, assessed by EU-labeling RNA and phosphorylated(S2)-RNA polymerase II. Moreover, RNA sequencing data highlighted the observation that sex chromosome genes and pre-meiotic genes are overexpressed in Trip13 mutants, suggesting that TRIP13 is required to maintain the expression of these genes at low levels. Overall, the data presented in this work contributes to the understanding on how surveillance mechanisms control several crucial steps of meiotic prophase progression in mammalian spermatocytes.
Fabig, Gunar. "Dynamic and ultrastructural characterization of chromosome segregation in C. elegans male meiosis." Technische Universität Dresden, 2018. https://tud.qucosa.de/id/qucosa%3A32727.
Full textConnor, Colette. "Investigating the role of Cdc14 in the regulation of the meiosis I to meiosis II transition." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/21086.
Full textIgea, Fernández Ana. "CPEB4 replaces CPEB1 to complete meiosis." Doctoral thesis, Universitat Pompeu Fabra, 2009. http://hdl.handle.net/10803/22687.
Full textÇetin, Bülent. "Chromosome segregation in mitosis and meiosis." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.669990.
Full textRattani, Ahmed Anwer Ali. "Regulation of anaphase in mammalian meiosis." Thesis, University of Oxford, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639733.
Full textWinters, Tristan. "The role of STAG3 in mammalian meiosis." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-233399.
Full textFernandes, Joiselle Blanche. "Identification et caractérisation fonctionnelle de gènes contrôlant la fréquence de crossovers méiotiques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS303/document.
Full textMeiotic crossovers (CO) are formed by reciprocal exchange of genetic material between the homologous chromosomes. CO generate genetic diversity and are essential for the proper segregation of chromosomes during meiosis in most eukaryotes. Despite their significance and a large excess of CO precursors, CO number is very low in vast majority of species (typically one to three per chromosome pair). This indicates that COs are tightly regulated but the underlying mechanisms of this limit remain elusive. In order to identify genes that limit COs, a genetic screen was performed in Arabidopsis thaliana. This led to the identification and characterization of several anti-CO factors belonging to three different pathways: (i) The FANCM helicase and its cofactors (ii) The AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) (iii) The RECQ4 -Topoisomerase 3α-RMI1 complex. The first objective was to understand the functional relationship between these three pathways and to address following questions: (1) how far can we increase recombination when combining mutations in FANCM, FIGL1 and RECQ4? We show that the highest increase in recombination was obtained in figl1 recq4, reaching to 7.5 fold the wild type level, on average genome wide. (2) How is the distribution of recombination events genome wide in mutants? The increased CO frequency in the mutants was not uniform throughout the genome. CO frequency rises from the centromere to telomeres, with distal intervals having highest COs (3) is the recombination frequency increase same in both male and female? In Arabidopsis wild type, male has higher recombination than female meiosis. In contrast, in recq4 and recq4 figl1, female recombination was higher than male. This suggests that certain constraints that apply to CO formation in wild type females are relieved in the mutant. By continuing the same genetic screen, a novel anti-CO mutant was identified. The second objective was to identify and functionally characterize the corresponding gene. Genetic mapping and protein interaction studies led to the identification of a factor that directly interacts with FIGL1 and appears to form a conserved complex both in Arabidopsis and humans. Hence, the factor was named FLIP (Fidgetin-like-1 interacting protein). Recombination frequency is increased in flip, confirming that FLIP limit COs. Epistasis studies showed that FLIP and FIGL1 act in same pathway. Further, FIGL1/FLIP proteins of Arabidopsis and humans directly interact with the recombinases RAD51 and DMC1 which catalyze a crucial step of homologous recombination, the inter homolog strand invasion. In addition flip like figl1 modifies dynamics of DMC1. We thus propose a model wherein the FLIP-FIGL1 complex negatively regulates RAD51/DMC1 to limit CO formation. Studying the conserved FIGL1-FLIP complex led to the identification of a novel mode of regulation of recombination, that likely acts at the key step of homologous strand invasion. Further the unprecedented level of CO increase in recq4figl1 in hybrids could be of great interest for crop improvement, allowing the production of novel allele combinations
Pasternak, Michał. "RNAi screen for meiotic genes in mammals reveals BTG4 as a novel regulator of meiosis." Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/283984.
Full textWidger, Alexander David. "Ablating ATR in mouse meiosis and its consequences for synapsis, recombination and meiotic surveillance mechanisms." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10043772/.
Full textAlemany, Schmidt Alexandra. "Bases moleculares de la meiosis en mamíferos." Doctoral thesis, Universitat de les Illes Balears, 2017. http://hdl.handle.net/10803/458994.
Full text- Introducción: La meiosis es un tipo de división celular íntimamente ligado a la gametogénesis en eucariotas superiores, la finalidad es la reducción del número cromosómico de diploide a haploide (es decir, de 2n a n) en el núcleo de los gametos. En la presente tesis se han analizado los procesos de sinapsis y recombinación en tres especies de mamíferos: humanos, gatos y perros. - Contenido de la investigación: Para el análisis de los procesos de sinapsis y recombinación en tres especies de mamíferos (humanos, gatos y perros) se ha utilizado la técnica de inmunocitogenética, la cual ha permitido determinar los valores cuantitativos y las características cualitativas de estos procesos. - Conclusión: La infertilidad atribuible a alteraciones en procesos de recombinación y sinapsis cromosómica en autosomas y cuerpo sexual se restringe a aquellos individuos que presentan desviaciones extremas respecto del rango control de estos parámetros. Existe un fenotipo meiótico recurrente, caracterizado por bloqueo en la transición zigoteno-paquiteno. La aplicación de técnicas de NGS (análisis del exoma) en este individuo infértil ha permitido localizar una mutación en el gen TEX11, probablemente patogénica y responsable de las características asociadas a este fenotipo. El análisis de la relación de las variantes alélicas del gen PRDM9 con problemas de fertilidad y generación de síndromes de novo no detectó una asociación significativa en ningún caso. La influencia del gen RNF212 sobre la variabilidad interindividual de la recombinación observada en el presente estudio está asociada a la presencia de polimorfismos genéticos en ese gen. Así, cada copia del alelo T en el SNP rs3796619 de este gen supone una disminución media de la tasa de recombinación de 132,5 cM en comparación con el alelo C. Existe una relación compleja entre los genotipos de PRDM9 y la tasa de recombinación, que parece estar determinada por la longitud de los alelos, por el estado de homozigosidad o heterozigosidad de los mismos y por efectos de dominancia. Hay una gran variabilidad intraindividual de los aspectos cuantitativos y cualitativos de la recombinación y sinapsis en las tres especies analizadas. Esta variabilidad sugiere que, en mamíferos, estos procesos y los factores que los controlan deben ser lo suficientemente flexibles para permitir generar diversidad, aunque dentro de unos márgenes que garanticen la estabilidad genómica. Se han observado diferencias notables en los procesos de recombinación entre humanos y gatos. Así, en gatos se ha determinado la ausencia de picos de recombinación en las regiones subteloméricas, un menor efecto inhibidor del centrómero y una distribución más uniforme a lo largo de los brazos cromosómicos. Estas dos últimas observaciones están relacionadas con la menor interferencia observada en esta especie. Se han observado características sinápticas propias de gatos macho, no descritas hasta el momento, como la presencia de un reservorio de proteína SYCP3 desde leptoteno hasta paquiteno inicial, la separación prematura de los elementos laterales a partir del paquiteno tardío o la morfología propia y cambiante del cuerpo sexual que, al igual que en humanos, puede asociarse al subestadio de esta fase meiótica. Se han detectado anomalías sinápticas en humanos, gatos y perros, aunque la incidencia de asinapsis, gaps y MSUC varió entre especies. Además, se ha descrito por primera vez en estas tres especies el fenómeno de MSUC en individuos sin alteraciones cromosómicas de poblaciones salvajes. En el cuerpo sexual, se ha detectado presencia de proteína SYCP1 más allá de la región PAR en las tres especies analizadas. Esta presencia podría relacionarse con un proceso de polimerización por defecto de la proteína SYCP1, que ayudaría a la reparación de los DSBs situados en el cromosoma X.
- Introduction: Meiosis is a type of cell division intimately linked to gametogenesis in higher eukaryotes, the aim is the reduction of the chromosome number from diploid to haploid (from 2n to n) in the nucleus of the gametes. In the present thesis, we have analysed the processes of synapsis and recombination in three species of mammals: humans, cats and dogs. - Content of the research: For the analysis of synapsis and recombination in three species of mammals (humans, cats and dogs) the immunocytogenetic technique has been used. It allowed to determine the quantitative values and the qualitative characteristics of these processes. - Conclusion: Infertility attributable to alterations in processes of recombination and chromosomal synapsis in autosomes and the sexual body is restricted to those individuals who present extreme deviations from the control range of these parameters. There is a recurrent meiotic phenotype characterized by an arrest in the zygotene to pachytene transition. The application of NGS techniques (exome analysis) in this infertile individual has allowed to locate a mutation in the TEX11 gene, probably pathogenic and responsible for the characteristics associated with this phenotype. The analysis of the relationship of the allelic variants of the PRDM9 gene with fertility problems and generation of de novo syndromes did not detect a significant association in any case. The influence of the RNF212 gene on the interindividual variability of recombination observed in the present study is associated with the presence of a genetic polymorphisms in that gene. Thus, each copy of the T allele in the SNP rs3796619 of this gene implies a mean decrease in the recombination rate of 132.5 cM compared to the C allele. There is a complex relationship between the PRDM9 genotypes and the rate of recombination, which appears to be determined by the length of the alleles, by the homozygosity or heterozygosity, and by dominance effects. There is significant intraindividual variability of the quantitative and qualitative aspects of recombination and synapsis in the three species analysed. This variability suggests that, in mammals, these processes and the factors controlling them must be flexible enough to generate diversity, albeit within margins that guarantee genomic stability. Significant differences have been observed in recombination processes between humans and cats. Thus, in cats the absence of recombination peaks has been determined in the subtelomeric regions, a lower inhibitory effect of the centromere and a more uniform distribution along the chromosome arms. These last two observations are related to the lower interference observed in this species. Synaptic characteristics of male cats, not previously described, have been observed. These include the presence of a reservoir of SYCP3 protein from leptotene to initial pachytene, premature separation of lateral elements from late pachytene or the changing morphology of the sexual body, which, as in humans, may be associated with the substage of this meiotic phase. Synaptic abnormalities have been detected in humans, cats and dogs, although the incidence of asynapsis, gaps and MSUC varied between species. In addition, the MSUC phenomenon has been described for the first time in these three species in individuals without chromosomal alterations of wild populations. In the sexual body, SYCP1 protein has been detected beyond the PAR region in the three species analysed. This presence could be related to a default polymerization process of SYCP1 protein, which would aid in the repair of DSBs located on the X chromosome.
Bhuiyan, Hasanuzzaman. "Chromosome synapsis and recombination in yeast meiosis /." Stockholm : Institutionen för molekylärbiologi och funktionsgenomik, Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-225.
Full textHunter, Neil. "The role of mismatch repair in meiosis." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337599.
Full textMcGuinness, Barry E. "Chromosome Segregation during Mammalian Mitosis and Meiosis." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490111.
Full textYe, Jinpei. "Signalling pathways controlling meiosis in porcine oocytes." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273192.
Full textChang, Heng-Yu. "The progression of meiosis in mouse oocytes." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427346.
Full textPaterson, Lesley Ann. "Reinitiation of meiosis in polychaete (annelida) oocytes." Thesis, University of St Andrews, 1999. http://hdl.handle.net/10023/14564.
Full textSavelkoul, Elizabeth Jennings. "Molecular evolution of meiosis genes in fungi." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/6635.
Full textMartínez, Marchal Ana. "Regulation of the oocyte pool in mammals." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667797.
Full textDuring mammalian oogenesis, oogonia proliferate forming the so-called cysts. The oogonia enter meiosis progressing through prophase I and the cysts break down concomitantly to massive perinatal oocyte death. During meiotic prophase I, double strand breaks (DSBs) are induced throughout the genome and repaired by homologous recombination to promote the synapsis of the homologous chromosomes. In response to errors in these processes, different response pathways are activated triggering cell cycle arrest or even apoptosis. The DNA damage response (DDR) is activated in response of meiocytes with recombination failure in the recombination checkpoint; while errors in synapsis trigger the synapsis checkpoint. We aimed to characterize the roles of the DDR and synapsis checkpoint in mammalian oogenesis. Contrary to what occurs in spermatocytes, oocytes present high numbers of unrepaired DSBs at pachynema, at the time of the massive oocyte death and cyst breakdown. In order to know if the recombination checkpoint participates in the regulation of the oocyte number in mammals, we analyzed the presence of DSBs, the oocyte number in both perinatal and adult females, the cyst breakdown, the formation of follicles and the reproductive lifespan using control and mutant mice for the effector kinase of the DNA damage response pathway, CHK2. Our data revealed the involvement of CHK2 in the regulation of the oocyte number but only in fetal ovaries prior to birth, raising the question of a possible alternative regulator acting just after birth. Our studies using in vitro ovarian cultures using inhibitors, suggest that CHK1 may compensate the loss of CHK2 perinatally in vivo. Thus, revealing that the DDR pathway controls the oocyte number in mammals. Furthermore, we found an increased number of oocytes in elder Chk2 mutant females suggesting that the DDR controls the reproductive lifespan extension in mammals. Finally, we studied the possible involvement of TRIP13 in the synapsis checkpoint. The protein TRIP13 is required for recombination, but it is also needed for the synapsis of sex chromosomes and the sex body formation. Thus, suggesting a possible role in the synapsis checkpoint. We analyzed the oocyte number in females from Spo11-/- Trip13mod/mod and Dmc1-/- Chk2-/- Trip13mod/mod ovaries in order to infer if TRIP13 is required to implement the synapsis checkpoint in females. Our data revealed a rescue in the number of oocytes in the triple mutant, but not in the double mutant. These results leave open the possibility of a participation of TRIP13 in the synapsis checkpoint, but as an alternative, they could be compatible with a possible role of TRIP13 regulating the DSB repair pathway choice.
Ernst, Christina. "Transcriptional and developmental consequences of aneuploidy during male meiosis." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/278212.
Full textFinsterbusch, Friederike. "Analysis of gene expression data from Massive Parallel Sequencing identifies so far uncharacterised regulators for meiosis with one candidate being fundamental for prophase I in male and female meiosis." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202144.
Full textOelschlägel, Tobias. "Meiosis-specific Regulation of the Anaphase-Promoting Complex." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1143717017741-21454.
Full textDie Meiose ist ein spezialisierter Zellzyklus, der zum Ziel hat haploide Gameten aus diploiden Vorläuferzellen zu produzieren. Dafür erfolgen nach der prä-meiotischen DNA Replikation zwei aufeinanderfolgende Kernteilungen. In der ersten meiotischen Teilung erfolgt die Trennung der homologen Chromosomen. In einer zweiten meiotischen Teilung werden dann die Schwesterchromatiden getrennt. Die Trennung der Chromosomen wird durch den Anaphase-Promoting Complex oder Cyclosome (APC/C), einer Ubiquitin Ligase, reguliert. Der APC/C initiiert den Abbau von Securin/Pds1, einem Inhibitor der Thiol-Protease Separase, welche für die Trennung der Chromosomen zum Beginn der Anaphase verantwortlich ist. In einer im Vergleich zur Mitose extrem langen meiotischen Prophase I findet Rekombination zwischen maternalen und paternalen Chromosomen statt. Für diesen Vorgang, sowie für die beiden folgenden meiotischen Teilungen, wird Kohäsion zwischen den Schwesterchromatiden benötigt. Ein frühzeitiger Verlust der Kohäsion führt zur frühzeitigen Trennnung der Schwesterchromatiden, wodurch aneuploide Gameten produziert werden können. Daher muss die Aktivität des APC/C während der meiotischen Prophase I inhibiert werden. Wie der APC/C während der Prophase I inaktiviert wird, war bisher unbekannt. Einsicht in dieses Problem ergab sich aus der Untersuchung der APC/C Untereinheit Mnd2 aus der Bäckerhefe Saccharomyces cerevisiae. Es wird gezeigt, dass Mnd2 für den Verbleib der Kohäsion zwischen den Schwesterchromatiden während der meiotischen S- und Prophase I benötigt wird. Während dieser Phase verhindert Mnd2 die frühzeitige Aktivierung der Meiose-spezifischen Form des APC/C-Ama1. In meiotischen Zellen, die kein Mnd2 besitzen, löst das APC/C-Ama1 Enzym die Ubiquitin-abhängige Zerstörung von Pds1 aus. Dies führt zu einer frühzeitigen Aktivierung von Separase, welches die Trennung der Schwesterchromatiden schon während der meiotischen S- und Prophase I zur Folge hat. Die korrekte Verteilung der Chromosomen hängt daher sowohl von der Inhibierung als auch der Aktivierung des APC/C ab
Percy, Melanie Joan. "Meiosis-associated proteins in male Stauroderus scalaris (Orthoptera)." Thesis, Queen's University Belfast, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335446.
Full textRiaz, Abida. "Cyclin B in fission yeast mitosis and meiosis." Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286160.
Full textTiang, Choon Lin. "The role of SYN1 in early Arabidopsis meiosis." Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/1341/.
Full textCarlile, Thomas M. (Thomas Marshal) Jr. "Cyclin-Dependent Kinase regulation and function during meiosis." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57557.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references.
Meiosis is the process by which haploid gametes are produced from a diploid progenitor cell. Accurate completion of the meiotic divisions requires a variety of modifications to the mitotic chromosome segregation machinery, which allow the reductional meiotic chromosome segregation program to occur. Oscillations in the activity of Cyclin- Dependent Kinases (CDKs) drive virtually every event in the mitotic cell cycle, including events such as cell cycle entry, DNA replication, and chromosome segregation. While much is known about the activity of CDKs, the regulation of CDK activity, and the mechanisms by which CDK activity promotes cell cycle events during vegetative growth in Saccharomyces cerevisiae, relatively little is known about the roles of CDKs during the meiotic divisions. This work examines CDK activity during meiosis, the regulation of CDK activity during meiosis, and mechanisms by which CDKs regulate proper meiotic chromosome segregation. First, a striking diversity in Clb-CDK activity is observed during meiosis, including the identification of Clb1-CDK, and Clb3-CDK as meiosis I and meiosis II specific Clb-CDKs respectively. Second, Clb3 protein is shown to be restricted to meiosis II by translational control mediated by the 5'UTR of the CLB3 message. Finally, premature production of Clb3 results in the premature separation of sister-chromatids during meiosis I.
by Thomas M. Carlile.
Ph.D.
Hochwagen, Andreas. "Analysis of cell cycle surveillance mechanisms in meiosis." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/33214.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Vita.
Includes bibliographical references.
Numerous DNA double-strand breaks (DSBs) are introduced into the genome in the course of meiotic recombination. This poses a significant hazard to the genomic integrity of the cell. Studies in a number of organisms have unveiled the existence of surveillance mechanisms or checkpoints that couple DNA repair and microtubule integrity to meiotic cell cycle progression. Through their action, aberrant meiocytes are delayed in their meiotic progression to facilitate repair of meiotic DSBs, or are culled through programmed cell death, thereby protecting the germline from aneuploidies that could lead to spontaneous abortions, birth defects and cancer predisposition in the offspring. Two such surveillance mechanisms are analyzed in this thesis. The first is the meiotic recombination checkpoint, which delays meiotic cells in G2/prophase if recombination intermediates remain unrepaired. The extent of the delay is modulated by protein phosphatase 1 (PP1), whose activity allows cells to overcome the checkpoint dependent delay in a process called adaptation. In this work, experiments in the budding yeast Saccharomyces cerevisiae are described that show that premature adaptation is prevented by the FK506-binding protein Fpr3, which associates with and counteracts PP1 in vivo.
(cont.) The checkpoint activity of Fpr3 can be inhibited by the small molecule inhibitor rapamycin and requires the proline isomerase domain of Fpr3, but not its catalytic activity. The second surveillance mechanism analyzed here is a spindle checkpoint independent arrest response of meiotic cells to microtubule perturbation. This arrest is caused by down-regulation of the meiotic transcriptional program and occurs at one of two possible stages, in meiotic G1 prior to entry into the meiotic program, or in meiotic G2/prophase after pre-meiotic DNA replication. Both mechanisms described in this work may be conserved in other organisms, including mammals. The findings presented herein are incorporated into a general model of the surveillance mechanisms of meiotic recombination.
by Andreas Hochwagen.
Ph.D.
Barlow, Andrew Leslie. "Immuno and molecular cytogenetic analysis of human meiosis." Thesis, University of Birmingham, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.668171.
Full textTibbles, Katherine L. "Regulation of Clb1 during meiosis in Saccharomyces cerevisiae." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/60444/.
Full textOelschlägel, Tobias. "Meiosis-specific Regulation of the Anaphase-Promoting Complex." Doctoral thesis, Technische Universität Dresden, 2005. https://tud.qucosa.de/id/qucosa%3A24682.
Full textDie Meiose ist ein spezialisierter Zellzyklus, der zum Ziel hat haploide Gameten aus diploiden Vorläuferzellen zu produzieren. Dafür erfolgen nach der prä-meiotischen DNA Replikation zwei aufeinanderfolgende Kernteilungen. In der ersten meiotischen Teilung erfolgt die Trennung der homologen Chromosomen. In einer zweiten meiotischen Teilung werden dann die Schwesterchromatiden getrennt. Die Trennung der Chromosomen wird durch den Anaphase-Promoting Complex oder Cyclosome (APC/C), einer Ubiquitin Ligase, reguliert. Der APC/C initiiert den Abbau von Securin/Pds1, einem Inhibitor der Thiol-Protease Separase, welche für die Trennung der Chromosomen zum Beginn der Anaphase verantwortlich ist. In einer im Vergleich zur Mitose extrem langen meiotischen Prophase I findet Rekombination zwischen maternalen und paternalen Chromosomen statt. Für diesen Vorgang, sowie für die beiden folgenden meiotischen Teilungen, wird Kohäsion zwischen den Schwesterchromatiden benötigt. Ein frühzeitiger Verlust der Kohäsion führt zur frühzeitigen Trennnung der Schwesterchromatiden, wodurch aneuploide Gameten produziert werden können. Daher muss die Aktivität des APC/C während der meiotischen Prophase I inhibiert werden. Wie der APC/C während der Prophase I inaktiviert wird, war bisher unbekannt. Einsicht in dieses Problem ergab sich aus der Untersuchung der APC/C Untereinheit Mnd2 aus der Bäckerhefe Saccharomyces cerevisiae. Es wird gezeigt, dass Mnd2 für den Verbleib der Kohäsion zwischen den Schwesterchromatiden während der meiotischen S- und Prophase I benötigt wird. Während dieser Phase verhindert Mnd2 die frühzeitige Aktivierung der Meiose-spezifischen Form des APC/C-Ama1. In meiotischen Zellen, die kein Mnd2 besitzen, löst das APC/C-Ama1 Enzym die Ubiquitin-abhängige Zerstörung von Pds1 aus. Dies führt zu einer frühzeitigen Aktivierung von Separase, welches die Trennung der Schwesterchromatiden schon während der meiotischen S- und Prophase I zur Folge hat. Die korrekte Verteilung der Chromosomen hängt daher sowohl von der Inhibierung als auch der Aktivierung des APC/C ab.
Joshi, Neeraj. "CONTROL OF INTERACTIONS BETWEEN HOMOLOGOUS CHROMOSOMES DURING MEIOSIS." Cleveland State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=csu1403797339.
Full textLabrador, Gonzalez Leticia. "Roles of SPD-3 during C. elegans meiosis." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9563.
Full textBeekman, Danielle Jeanine. "The evolution and expression of Drosophila meiosis genes." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/1545.
Full textPyatnitskaya, Alexandra. "Interplay between meiotic crossing-overs and chromosome architecture : role of the meiosis specific complex Zip2-Zip4-Spo16." Electronic Thesis or Diss., Université Paris sciences et lettres, 2021. http://www.theses.fr/2021UPSLS061.
Full textMeiosis is a highly conserved mechanism among organisms with sexual development. This process consists in producing four haploid gametes from one diploid cell by executing two successive rounds of cell division. During the first meiotic division, reciprocal exchanges of parental DNA strands, also known as crossing-overs (COs), ensure the faithful segregation of homologous chromosomes. COs arise from a specific type of DNA repair, homologous recombination. This pathway is initiated by the simultaneous induction of hundreds of double strand breaks (DSBs) in the genome. In budding yeast, the major CO pathway is promoted by a family of eight conserved proteins, named ZMMs (acronym for Zip1/2/3/4-Msh4/5-Mer3-Spo16), involved in recognizing and stabilizing DNA intermediates formed during homologous recombination. We showed that the Zip4 protein forms a stable tripartite complex with two other ZMM proteins, Zip2 and Spo16. Our data suggests that the Zip2-Zip4-Spo16 (ZZS) complex binds recombination intermediates through its XPF-ERCC1-like domain and drives them towards a CO fate. The homologs of Zip2 and Zip4 in mammals, SHOC1 and TEX11 respectively, have been described, but no Spo16 homolog has been found so far. We could identify the homolog of Spo16 in mammals by an in silico screen, MmSPO16. In addition, I could co-purify MmSPO16 with the XPF domain of SHOC1, thus revealing the potential conservation of the entire ZZS complex in mammals. ZMM-dependent COs are formed within the context of a meiosis-specific structure, named synaptonemal complex (SC). The SC is a proteinaceous structure composed of two axial elements physically maintained together at a precise distance of 100 nm by a central region. The central region encompasses a central element, composed of the two proteins Ecm11 and Gmc2, and the transverse filaments composed of Zip1. The transverse filaments from opposing axial elements overlap and bind head-to-head in the central element. However, despite evidence of a close relationship between SC assembly and CO formation, nothing is known about a direct link that could coordinate these two events spatially and temporally. During my PhD, I found a new interaction between the SC protein Ecm11 and the ZMM protein Zip4. This newly discovered interaction is necessary for Ecm11 association and polymerization on chromosomes, the SC assembly and the homolog disjunction in meiosis I. Our results suggest a direct connection that ensures SC assembly from CO sites through the Zip4-Ecm11 interaction. This way, ensuring SC polymerization from emerging CO sites could be a way of fine-tuning CO distribution, by participating to CO interference and/or by regulating nearby DSB formation. Moreover, I could identify an interaction between the mammalian ortholog of Zip4, TEX11, and one of the five members composing the SC central element, TEX12, raising the possibility that this mechanism synchronizing CO formation and SC polymerization could be conserved
Frenk, Stephen. "Investigating the role of transcriptomic changes in meiosis and ageing." Thesis, University of Cambridge, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709201.
Full textGonzalo, Adrian. "Voies de formation des crossovers méiotiques chez une espèce allopolyploïde, le colza (Brassica napus)." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS352.
Full textMeiotic recombination ensures, through the formation of crossovers (COs), both faithful chromosome transmission and allelic shuffling over generations; it is at the heart of Mendelian heredity, evolution and plant breeding. Two crossover pathways co-exist in plants. The main pathway (class I) is dependent on MSH4 (and additional proteins). The secondary pathway produces only a few MSH4-independent (class II) crossovers during wild-type meiosis that are limited in number by anti-crossover proteins such as FANCM. These pathways have been extensively described in diploid species, disregarding one of the most pervasive features of crop genomes: polyploidy. This is a major gap in our understanding because the presence of more than two related sets of chromosomes leads both to extra partners for crossover formation and additional copies for all meiotic genes, which make meiotic recombination more intricate. This thesis aims at exploring the interplay between meiotic recombination pathways and polyploidy using mutants for two recombination genes in allotetraploid Brassica napus (AACC; 2n=38) and its diploid progenitor, B. rapa (AA; 2n=20). I have first tested the extent to which class I and class II pathways contribute to inter-homolog and inter-homoeolog (between A and C chromosomes) crossover formation by analyzing how crossovers are affected as the number of functional MSH4 copies decreases. I showed that inter-homolog crossover formation is impaired only when the two MSH4 copies are lost, any other combination of msh4 mutations resulting in wild-type crossover numbers. I also observed that, when class I crossovers are completely abolished in B. napus, the highest frequency of class II crossover ever reported among plant msh4 mutants is observed. I reproduced this result using B. rapa msh4 mutants, thereby demonstrating that increased class II crossover frequencies is not specific to B.napus, but could instead be a general feature of the Brassicaceae. In B. napus allohaploids (AC), where crossovers are forced to occur between homeologs, MSH4 copies no longer complement each other perfectly; counter to the situation in euploids, the number of MSH4-dependent crossovers formed between homoeologs fluctuates with MSH4 dosage in these plants, and approximate zero when all MSH4 copies are depleted. Altogether, my results illustrate two novel specific properties of inter-homeolog crossovers: a greater sensitivity to MSH4 dosage for class I pathway and a lower efficiency for class II.Next, I characterized cytologically B. napus fancm mutants to confirm that boosting class II crossovers would not be detrimental to B. napus meiosis. However, a prudential interpretation of these results is demanded since the B. napus fancm alleles retained residual anti-crossover activity. This has prompted me to set up a TILLING-by-sequencing procedure in order to produce new recombination mutants in B. napus. I also combined the B. rapa fancm and msh4 mutations to test whether the former is sufficient to fix the meiotic defects resulting from the latter. I showed that, similarly to what had been observed in Arabidopsis thaliana, fancm mutation boost COs to such a point that it restores bivalent formation in B. rapa msh4 background. My results therefore confirmed that the function of FANCM is conserved in B. rapa. Overall, the findings and achievements of this thesis make a step forward dissection of CO pathways during allopolyploid meiosis. They indicate that meiotic adaptation to allopolyploidy mainly involve the class I crossover pathway and could be achieved by limiting its efficiency (e.g. by decreasing gene copy number)
Wolf, Peter G. [Verfasser], and Olaf [Akademischer Betreuer] Stemmann. "Meiosis made simple : Mechanisms of meiotic chromosome dynamics elucidated in somatic cells / Peter G. Wolf ; Betreuer: Olaf Stemmann." Bayreuth : Universität Bayreuth, 2017. http://d-nb.info/113220092X/34.
Full textGonzález, Pérez Laura. "Role of the atypical CDK activator RINGO beyond meiosis." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668658.
Full textEl cicle cel·lular és orquestrat per l’activació periòdica de les quinases dependents de ciclines (CDKs). L’activitat enzimàtica de les CDKs depèn de la seva associació amb ciclines, no obstant hi ha excepcions on aquestes quinases poden ser activades per proteïnes no englobades en la família de les ciclines. RINGO n’és un exemple; aquesta proteïna és un activador atípic de CDKs que regula la maduració meiòtica dels oòcits de Xenopus. A més, recentment també s’ha descrit com a essencial en la profase meiòtica i progrés meiòtic en ratolins. RINGO, com a activador de CDKs, té un rol potencial en la regulació del cicle cel·lular. La regulació d’aquestes quinases per RINGO s’ha estudiat en detall in vitro però poc se sap de la implicació de RINGO en processos cel·lulars. A més no se sap gairebé res de la funció de RINGO in vivo més enllà de la meiosi. En aquesta tesi s’estudia la rellevància funcional de les proteïnes RINGO de mamífers en cèl·lules somàtiques, durant condicions homeostàtiques i càncer. S’han caracteritzat els efectes del knock-down de RingoA en cèl·lules humanes i trobat canvis en la viabilitat i cicle cel·lular d’aquestes. Amb l’objectiu de revelar l’interactoma de RINGO, s’ha utilitzat un cribratge de proteòmica que ha permès la identificació del complex de cohesines i la proteïna ANKRD11 com interactors de RingoA. A més, s’ha descrit l’expressió de RingoA durant el cicle cel·lular de cèl·lules humanes i descobert que està present en nuclear speckles. L’estudi de l’expressió de RingoA utilitzant un sistema reporter i l’anàlisis de l’expressió gènica ha permès la identificació del cervell com el teixit somàtic amb més expressió de RingoA. Mitjançant l’estudi de models de ratolí modificats genèticament s’ha demostrat que RingoA i RingoB no són essencials per la homeòstasi de teixits somàtics. No obstant, RingoA s’expressa en la zona sub-ventricular del cervell adult i és important per la renovació de cèl·lules mare ex vivo. Per últim, utilitzant el model tumoral Polyoma middle T, que permet la generació de tumors mamaris en ratolí, s’ha demostrat que RingoA i RingoB són importants en el creixement tumoral.
Srayko, Martin Anthony. "The role of mei-2 in Caenorhabditis elegans meiosis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0019/NQ54812.pdf.
Full textColas, Isabelle. "A study of the mechanisms of meiosis in wheat." Thesis, University of East Anglia, 2008. https://ueaeprints.uea.ac.uk/10625/.
Full textLightfoot, James William. "The roles of SCC-2 during C. elegans meiosis." Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554218.
Full textSeres, Karmen Bianka. "Characterisation of a novel spindle domain in mammalian meiosis." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288373.
Full textNewcombe, Sonya. "The role of the Smc5/6 complex in meiosis." Thesis, University of Sussex, 2017. http://sro.sussex.ac.uk/id/eprint/69253/.
Full textJohnson, Dominic. "Investigating double-strand break formation and repair in meiosis." Thesis, University of Sussex, 2017. http://sro.sussex.ac.uk/id/eprint/68428/.
Full textHua, Hui. "Regulation of DNA replication during meiosis in fission yeast." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:5d4d66ab-5441-4e96-adb1-28f4b51a975b.
Full textCherry, Sheila M. "ELUCIDATION OF FACTORS IMPACTING HOMOLOGOUS RECOMBINATION IN MAMMALIAN MEIOSIS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1154979383.
Full textCatlett, Michael G. "Fission yeast MCMs, meiosis, and the recombination protein Rdh54 /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3090446.
Full textCunliffe, Lesley. "Transcription during meiosis in the fission yeast Schizosaccharomyces pombe." Thesis, University of Glasgow, 2004. http://theses.gla.ac.uk/30900/.
Full text