To see the other types of publications on this topic, follow the link: MEF2D.

Dissertations / Theses on the topic 'MEF2D'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'MEF2D.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Schlenker, Friderike [Verfasser], and Boris [Akademischer Betreuer] Fehse. "Der Einfluss der Transkriptionsfaktoren Mef2c und Mef2d auf die Hämatopoese / Friderike Schlenker ; Betreuer: Boris Fehse." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2019. http://d-nb.info/1175584606/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schlenker, Friderike Verfasser], and Boris [Akademischer Betreuer] [Fehse. "Der Einfluss der Transkriptionsfaktoren Mef2c und Mef2d auf die Hämatopoese / Friderike Schlenker ; Betreuer: Boris Fehse." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2019. http://nbn-resolving.de/urn:nbn:de:gbv:18-95067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

AROSIO, ALESSANDRO. "Study of transcriptional alterations in Amyotrophic Lateral Sclerosis." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/94396.

Full text
Abstract:
Amyotrophic Lateral Sclerosis (ALS) is a progressive fatal neuromuscular disease characterized by selective motorneurons loss. Since mutations in TARDBP and FUS genes were discovered to cause familial form of ALS and TDP-43 and FUS proteins play important roles in RNA metabolism, transcriptional alterations emerged as potential pathogenic mechanism. RNA metabolism include several aspects of RNA regulation such as RNA transcription, maturations and regulation. In this study we have investigated two different fields of RNA metabolism: the first one concerns to microRNAs (miRNA) which regulate translation of several mRNAs, and the second one is related to a specific muscular and neuronal transcription factor potential involved in ALS. First, we have assessed any selected miRNAs with neuronal functions in human neuroblastoma cell lines expressing the pathological SOD1(G93A) mutation and we found a small group of altered miRNAs. Subsequently, we explored these miRNAs in the spinal cord of transgenic SOD1(G93A) mice identified a panel of targets commonly altered in SOD1 ALS models. Furthermore, we assessed the expression levels of a panel of selected miRNAs in circulating cells obtain from patients affected by sporadic ALS form (sALS). This approach let us to identify two microRNAs (miR129-5p and miR200c) that were up-regulated in both SOD1 ALS models and in blood cells of patients with sporadic form of disease, evidencing two possible parameters potentially involved in the pathogenesis of both the sporadic and the familial form of ALS. Moreover, we also identified HuD protein as a potential molecular target of miR129-5p; this protein has been previously reported to play a role in neuronal plasticity and in recovery from axonal injury. Indeed, in a cell line stably overespressing mir129-5p we found a reduction in neurite outgrowth and decreased expression levels of differentiation markers with respect to control cells. Taken together these data strongly suggest that microRNAs play a role in ALS pathogenesis and in particular that mir129-5p can affect neuronal plasticity by modulating HuD levels. In the second part of the study we investigated the possible involvement of two members of myocyte enhancer factor 2 (MEF2) family in the pathogenesis of ALS. MEF2D and MEF2C are transcriptional factors playing crucial roles both in muscle and in neuron development and maintenance. We have performed gene expression analysis in peripheral blood mononuclear cells (PBMCs), we showed a strong increased in MEF2D and MEF2C levels both in sporadic and in familial ALS (SOD1+) patients and a direct correlation between MEF2D and MEF2C mRNA levels was observed in patients and controls. Although protein levels were unchanged, a different pattern of distribution for MEF2D-MEF2C proteins in patient cells was found, suggesting a possible lack of their function. To evaluate the transcriptional activity of MEF2 proteins mRNA levels of their downstream targets BDNF, KLF6, RUFY3 and NPEPPS were assessed. Our results showed a significant down-regulation of BDNF, KLF6 and RUFY3 levels confirming that transcriptional activity of both MEF2D and MEF2C isoforms was altered in sporadic and familial ALS patients. In conclusion, our results evidenced a systemic alteration of MEF2D and MEF2C pathways in ALS patients independently from the presence of SOD1 gene mutations, highlighting a possible common feature between the sporadic and the familiar form of disease which are characterized by a different clinical phenotype and pathological hallmarks.
APA, Harvard, Vancouver, ISO, and other styles
4

Rakopoulos, Patricia. "Deciphering the Role of MEF2D Splice Forms During Skeletal Muscle Differentiation." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19900.

Full text
Abstract:
Members of the Mef2 transcription factor family are extensively studied within the muscle field for their ability to cooperate with the myogenic regulatory factors MyoD and myogenin during muscle differentiation. Although it is known that Mef2 pre-mRNAs undergo alternative splicing, the different splice forms have not been functionally annotated. In this thesis, my studies aimed to characterize three Mef2D splice forms: MEF2Dα'β, MEF2Dαβ, MEF2Dαø. Our results show that MEF2D splice forms can be differentially phosphorylated by p38 MAPK and PKA in vitro. Gene expression analysis using cell lines over-expressing each Mef2D splice form suggests that they can differentially activate desmin, myosin heavy chain and myogenin expression. Mass spectrometry analyses from our pull-down assays reveal known and novel MEF2D binding partners. Our work suggests that Mef2D splice forms have overlapping but distinct roles and provides new insight into the importance of Mef2D alternative splicing during skeletal myogenesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Chan, Shing Fai. "ATM phosphorylates and activates the transcription factor MEF2D for neuronal survival in response to DNA damage." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3359980.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed July 22, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 73-92).
APA, Harvard, Vancouver, ISO, and other styles
6

Lima, Guilherme Alves de. "O diabetes abole o aumento da expressão do gene SLC2A4 induzido pela contração muscular \"in vitro\": participação das cinases AMPK E CAMKII e dos fatores transcricionais MEF2D, GEF, HIF-1a e TRa." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/42/42137/tde-23012012-165455/.

Full text
Abstract:
O gene SLC2A4 codifica a proteína GLUT4, fundamental na homeostasia glicêmica. OBJETIVO: Investigar o efeito do diabetes na expressão do GLUT4 pela atividade contrátil. MÉTODOS: Músculos sóleos de ratos não diabéticos (ND) e diabéticos tratados com insulina (DI) ou salina (DS) foram incubados e contraídos. A expressão de GLUT4, pAMPK e CAMKII foram analisados por PCR e Western blotting, e a atividade de MEF2D, GEF, HIF-1a e TRa1 por gel shift. Células C2C12 transfectadas com plasmídeos contendo os sítios de ligação para MEF2, HIF, e TR foram tratadas com AICAR ou cafeína. RESULTADOS: Em animais ND e DI, a contração aumentou o conteúdo de GLUT4, mas não nos DS. Em animais ND, a contração aumentou a atividade da AMPK e dos fatores MEF2D, GEF e TRa1, mas não nos DS. Em animais ND, os inibidores de AMPK e CAMKII aboliram o aumento do GLUT4 e da atividade de MEF2D e GEF. Em células C2C12 a cafeína e a AMPK ativaram os 3 sítios. CONCLUSÃO: O diabetes abole o aumento da expressão do GLUT4 sob a atividade contrátil devido a redução da atividade de MEF2D, GEF e TRa1 e AMPK.
The SLC2A4 gene encodes the GLUT4 protein, which is essential in glucose homeostasis. OBJECTIVE: To investigate the diabetes effect on muscle contraction-induced in SLC2A4 gene expression. METHODS: Soleus muscles of Non diabetic rats (ND) and diabetic treated with insulin (DI) or saline (DS) were incubated and contracted. The GLUT4, pAMPK and CAMKII expressions were analyzed by PCR and Western blotting, and the MEF2D, GEF, HIF-1a and TRa1 activity by gel shift. C2C12 cells transfected with plasmids containing the binding sites for MEF2, HIF, and TR were treated with AICAR or caffeine. RESULTS: Contraction increased the GLUT4 amount in animals ND and DI, but not in DS. In ND animals, contraction increased AMPK, MEF2D, GEF and TRa1 activity, but not in DS. In ND animals, AMPK and CAMKII inhibitors abolished the GLUT4 increase as like MEF2D and GEF activity. In C2C12 cells AMPK and caffeine activated the 3 sites. CONCLUSION: Diabetes abolishes the muscle contraction-induced GLUT4 increase due to reduced of MEF2D, GEF, TRa1 and AMPK activity.
APA, Harvard, Vancouver, ISO, and other styles
7

Pon, Julia. "The MEF2B regulatory network." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/53973.

Full text
Abstract:
Myocyte enhancer factor 2B (MEF2B) is a transcription factor with somatic mutation hotspots at K4, Y69 and D83 in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The recurrence of these mutations indicates that they may drive lymphoma development. However, inferring the mechanisms by which they may drive lymphoma development was complicated by our limited understanding of MEF2B’s normal functions. To expand our understanding of the cellular activities of wildtype and mutant MEF2B, I developed and addressed two hypotheses: (1) identifying genes regulated by wildtype MEF2B will allow identification of cellular phenotypes affected by MEF2B activity and (2) contrasting the DNA binding sites, effects on gene expression and effects on cellular phenotypes of mutant and wildtype MEF2B will indicate mechanisms through which MEF2B mutations may contribute to lymphoma development. To address these hypotheses, I first identified genome-wide MEF2B binding sites and transcriptome-wide gene expression changes mediated by MEF2B. Using these data I identified and validated novel MEF2B target genes. I found that target genes of MEF2B included the cancer genes MYC, TGFB1, CARD11, NDRG1, RHOB, BCL2 and JUN. The identification of target genes led to findings that MEF2B promotes expression of mesenchymal markers, promotes HEK293A cell migration, and inhibits DLBCL cell chemotaxis. I then investigated how K4E, Y69H and D83V mutations change MEF2B’s activity. I found that K4E, Y69H and D83V mutations decreased MEF2B’s capacity to promote gene expression in both HEK293A and DLBCL cells. These mutations also reduced MEF2B’s capacity to alter HEK293A and DLBCL cell movement. Overall, these data support the concept that MEF2B mutations may promote lymphoma development by reducing expression of MEF2B target genes that would otherwise function to help confine germinal centre B-cells to germinal centres. My research demonstrates how observations from genome-scale data can aid in the functional characterization of candidate driver mutations. Moreover, my work provides a unique resource for exploring the role of MEF2B in cell biology. I map for the first time the MEF2B regulome, demonstrating connections between a relatively understudied transcription factor and genes significant to oncogenesis.
Science, Faculty of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
8

Reilly, Katherine. "MEF2 Isotypes During Skeletal Myogenesis." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33406.

Full text
Abstract:
The MEF2 family of transcription factors (MEF2A, MEF2C, and MEF2D) are crucial during skeletal muscle differentiation. Although the roles of MEF2D isoforms are well established, the roles of MEF2A and MEF2C are not as well understood. This thesis, we investigated the expression, localization, and function of MEF2A and MEF2C, using specific antibodies. While MEF2A is expressed in both proliferating and differentiated myoblasts, protein levels of MEF2C were only detected during differentiation. During early stages of differentiation MEF2A is expressed in both the cytoplasm and the nucleus. However during later stages of differentiation, it is localized predominately in the nucleus. MEF2C appears to be localized differently depending on which isoform is being investigated. Using an affinity purification and mass spectrometry based approach we identified PRMT1 as a unique interacting protein with MEF2A during skeletal muscle differentiation. PRMT1 is a protein arginine methyltransferase which mediates the addition of methyl groups onto various proteins including histone H4 arginine 3 (H3R4) which is associated with gene activation. Both MEF2A and PRMT1 occupy genomic targets of MEF2A. Inhibition of PRMT1 with a specific inhibitor delays C2C12 myoblast differentiation in the early stages of differentiation but no effect was observed during late stage differentiation. The MEF2 family of transcription factors show distinct but overlapping function during skeletal muscle differentiation.
APA, Harvard, Vancouver, ISO, and other styles
9

Lazzarano, Stefano. "On MEF2C regulation of the chondrocyte phenotype." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/44016.

Full text
Abstract:
Articular cartilage is a highly specialised tissue composed of a mechanically competent matrix and a single cell population - the chondrocytes. The maintaining of a specialised phenotype requires the integration of intracellular signalling, that in response to appropriate extracellular stimuli, results in expression of cell-specific genes. Previous work in our laboratory has identified hypoxia as one such key stimulus, which through HIF-2α, enhances expression of cartilage master regulator SOX9 and its matrix-encoding target genes (COL2A1, AGC and COL9A1). MEF2C transcription factor is known to be involved in muscle and cardiovascular development; however, recently it has been shown to play a key role in chondrocyte hypertrophy co-ordinately with SOX9. In a previous microarray analysis, we found that MEF2C was upregulated during hypoxia-induced re-dedifferentiation of human articular chondrocytes (HACs); interestingly where its suggested genetic target - COL10A1 - was barely detectable. In this research we therefore investigated a possible new and unknown function of MEF2C transcription factor as a potential genetic regulator of the permanent articular chondrocyte phenotype. In this study, MEF2C protein was detected with a nuclear localisation in chondrocytes in situ in intact healthy human articular cartilage. Experiments in isolated HACs revealed that, at both gene and protein levels, hypoxia enhances MEF2C expression in a HIF-2α and SOX9 dependent fashion. Subsequently, depletion experiments of MEF2C indicated that it is required for SOX9 gene expression both in normoxia and hypoxia. Our results, therefore suggest a mutual positive regulation between MEF2C and SOX9 transcription factors in articular cartilage. Thus, based on our studies a new and critical function for transcription factor MEF2C in HACs has been identified, where it helps promote expression of the differentiated chondrocyte phenotype through mutual regulation with SOX9. These findings give important new insights into our understanding of the transcription factor networks that regulate expression of the articular chondrocyte phenotype.
APA, Harvard, Vancouver, ISO, and other styles
10

Agarwal, Pooja. "Transcriptional control of neural crest development by MEF2C." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3390029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hancock, Daniel H. "Role of Mef2 in Drosophila muscle development." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/55033/.

Full text
Abstract:
Muscle differentiation is a complex process involving the transition from undifferentiated mesoderm to a final functional musculature. Mef2 is an essential positive regulator central to the co-ordination of this process. It targets a plethora of key genes both early and late in the differentiation program and its activity must be tightly controlled (Pothoff and Olson, 2007). The aim of my research was to investigate the role of Mef2 in orchestrating Drosophila muscle differentiation. I did this by analysing the formation of the larval somatic musculature under conditions that either increased or decreased Mef2 activity using gain and loss-of -function of either Mef2 itself, Him, a repressor of Mef2 activity (Liotta et al, 2007) or of Zfhl, a potential regulator of Mef2 expression (Postigo et al, 1999). Part of this investigation involved the generation and characterisation of Mef2 dominant negative proteins and isolation of a Him mutant. Detailed analysis revealed a distinct subset of somatic muscles that are missing when Mef2 activity is reduced and another subset of muscles that are duplicated when Mef2 activity is increased. This suggests a role for Mef2 in patterning of the musculature that has not been established previously. In addition, I identified a role for Mef2 in the regulation of Him expression, revealing a mechanism whereby Mef2 could be involved in its own repression. I also investigated the role of mesol8E in muscle differentiation a previously uncharacterised novel gene identified as an early target of Mef2 (Taylor, 2000). I found this to be a Myb-like domain containing protein that is a direct target of Mef2. Over-expression caused a severe disruption to the somatic musculature, revealing a potential role for mesol8E in muscle guidance. Generation of mesol8E mutant alleles by FRT element mediated recombination showed the gene to be essential for development.
APA, Harvard, Vancouver, ISO, and other styles
12

Rowan, Andrea Leah Margaret. "hDREF, a MEF2 sensitive regulator of DNA synthesis." Thesis, University of Ottawa (Canada), 2003. http://hdl.handle.net/10393/26393.

Full text
Abstract:
The Myocyte Enhancing Factor 2 (MEF2) family of proteins have been implicated in a wide variety of cellular mechanisms including: muscle and neuronal differentiation, inhibition of apoptosis, upregulation of c jun expression, and embryonic and post-natal cardiac development. In the course of my research I have identified a novel MEF2-responsive gene referred to as h&barbelow;uman D&barbelow;NA R&barbelow;eplication Related E&barbelow;lement F&barbelow;actor (hDREF). Three putative MEF2 consensus-binding sites have been found within the two untranslated regions (UTRs) of the hDREF sequence (which lie 5' and 3' to the open reading frame). Using CHromatin I&barbelow;mmunolP&barbelow;recipitation (CHIP) assays I have shown that MEF2 proteins associate with the MEF2 binding site found within the 5'UTR of hDREF under both growth and differentiation conditions. Furthermore, mutation of the MEF2 binding sites results in a failure to repress expression, which indicated that MEF2 acts to negatively regulate hDREF expression during differentiation. Endogenous expression studies indicate that hDREF is highly expressed during growth and downregulated during differentiation. Functional studies suggest that hDREF is directly involved in regulating DNA synthesis, and that overexpression of hDREF leads to aberrant DNA replication in post-mitotic cells leading to polyploidy. Based on my research I propose that hDREF represents a novel MEF2 regulated gene, and that the primary function of hDREF is to ensure DNA synthesis with the cell cycle.
APA, Harvard, Vancouver, ISO, and other styles
13

Perin, Stefano <1995&gt. "Sintesi di inibitori peptidici per interazione MEF2-HDAC." Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/19004.

Full text
Abstract:
I peptidi sono sempre più impiegati come agenti terapeutici per diverse malattie. Possiedono caratteristiche intermedie tra i farmaci chimici e biologici come dimensioni inferiori, sintetizzabili chimicamente, facilmente modificabili, con bassa tossicità, antigenicità ridotta, affinità di legame e specificità. Queste caratteristiche uniche li rendono una modalità attraente per lo sviluppo di inibitori di interazioni proteina-proteina. Lo scopo del progetto è sviluppare nuovi inibitori a base di peptidi in grado di bloccare l’interazione del fattore di trascrizione “myocyte enhancer 2” (MEF2) con alcuni membri della classe IIa delle istone deacetilasi (HDAC), una sottofamiglia di quattro proteine (HDAC4, HDAC5, HDAC7 e HDAC9) che sono state collegate ad una varietà di tumori solidi ed ematologici. A tal fine sono stati prodotti una serie di peptidi HDAC della classe II impiegando un sistema automatizzato di sintesi peptidica su fase solida, purificati con HPLC su fase inversa e caratterizzati via spettroscopia di massa e dicroismo circolare. L’affinità di legame dei peptidi verso MEF2 è stata testata con saggi di Polarizzazione di Fluorescenza. Infine l’affinità di legame di un peptide è stata incrementata inserendo una struttura sintetica intramolecolare (un braccio), che aiuta a bloccare il peptide in una conformazione specifica, in modo tale da ridurre l’entropia conformazionale.
APA, Harvard, Vancouver, ISO, and other styles
14

Santelli, Eugenio. "The binding of MEF2A to DNA : biochemical and structural characterization /." [S.l.] : [s.n.], 2000. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=13752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Carmichael, Ruth Ellen. "The role of the transcription factor MEF2A in AMPAR trafficking." Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Khiem, Dustin. "The transcription factor MEF2C regulates B cell maturation, proliferation, and function." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3324616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Khan, Abrar Ul Haq. "Cellular Metabolism Regulates Anti-Oxidant Response Through ERK5-MEF2 Pathway." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT036/document.

Full text
Abstract:
Le métabolisme cellulaire est la source principale d’énergie et les cellules cancéreuses ont un métabolisme différent des cellules non transformées. La cellule tumorale a tendance à éviter l’activité mitochondriale et ainsi la phosphorylation oxydative, pour lui préférer la voie de la glycolyse pour la production d’énergie (Effet Warburg). Cette altération du métabolisme est si bénéfique pour les cellules en croissance que cela favorise la croissance tumorale et supprime la réponse immunitaire anticancéreuse. La spécificité de ce métabolisme en fait une cible intéressante pour le développement de thérapies anticancéreuses. Mon travail de thèse comporte deux parties. La première partie décrit que lorsque les cellules cancéreuses sont forcées à utiliser la voie mitochondriale comme source d’énergie à travers l’oxydation phosphorylative, elles initient un mécanisme antioxydant pour tolérer les effets délétères des espèces oxygénées réactives (EOR ou ROS pour reactive oxygene species) produites au cours de l’activité mitochondriale. La stimulation mitochondriale entraîne l’activation de la voie de signalisation ERK5-MEF2, et cette dernière engendre un mécanisme antioxydant de deux façons.Initialement, nous avons observé que MEF2 régule positivement l’expression de miR23a, et ce dernier inhibe l’expression de KEAP1. Cette protéine est responsable de la dégradation ubiquitine dépendante de NRF2, un régulateur clé de la réponse antioxydante cellulaire. L’inhibition de KEAP1 empêche la dégradation cytoplasmique de NRF2. Consécutivement à cela la concentration cytoplasmique en NRF2 augmente ce qui engendre sa translocation dans le noyau où il se lie à une séquence élément de réponse antioxydant (ARE) dans la région promotrice de nombreux gènes antioxydants, initiant ainsi leur transcription. Plus tard nous avons observé que l’activation de la voie ERK5-MEF2 induisait directement la synthèse de novo de NRF2, induisant sa translocation nucléaire et un mécanisme antioxydant. L’inhibition de la voie ERK5-MEF2 altère la réponse antioxydante, sensibilisant ainsi les cellules au stress oxydant.La seconde partie de mon travail a exploré les mécanismes à l’origine des effets hypolipémiants du dichloroacétate (DCA). Le DCA est une petite molécule qui inhibe la PDK1 et permet au pyruvate d’entrer dans la mitochondrie. Il a été utilisé en clinique dans le passé pour baisser les taux plasmatiques de cholestérol mais le mécanisme n’était pas clair et nous l’avons décris. Le DCA force les cellules à entrer en oxydation phosphorylative ce qui active la voie ERK5-MEF2. Cette voie augmente directement l’expression du LDLR (Low Density Lipoprotein Receptor ; récepteur aux lipoprotéines de basse densité) qui permet l’endocytose des LDL riches en cholestérol qui sont responsables de la plupart des maladies cardiovasculaires. L’inhibition de cette voie supprime l’afflux de lipides et par conséquent serait une cible intéressante pour de futures recherches puisque de hauts taux de cholestérols sont directement corrélés avec une augmentation du risque d’athérosclérose et de toutes les complications mortelles qu’il entraine.Notre prochain objectif est d’explorer les autres mécanismes cellulaires régulés par la voie ERK5-MEF2. Sur la base de nos résultats préliminaires, nous proposons que cette voie non seulement régule l’expression du LDLR mais aussi celle de nombreux autres gènes qui sont impliqués directement ou indirectement dans le métabolisme des lipides
Cellular metabolism is the main source of energy and cancer cells has different metabolism than non-transformed cells. Tumor cell tends to avoid mitochondrial activity and oxidative phosphorylation (OXPHOS) and prefer glycolysis for energy production (Warburg effect). This alteration in metabolism is beneficial for growing cells in many ways that promote tumor growth and suppress the anti-cancer immune response. This specific metabolism is an auspicious target for the better development of cancers chemotherapies.My thesis work comprises two parts. The first portion describes that when cancer cells are forced to utilize their mitochondria in order to obtain the energy from OXPHOS they initiate an antioxidant mechanism to cope with the deleterious effects of reactive oxygen species (ROS) produced during mitochondrial activity. Mitochondrial stimulation leads to activation of ERK5-MEF2 signaling pathway, which triggers the antioxidant mechanism by at least two ways.Initially we observed that MEF2 up regulates the expression of miR23a, which inhibits KEAP1 expression. This protein is responsible for ubiquitinational degradation of NRF2, a master regulator of the antioxidant response in cells. The inhibition of KEAP1 prevents the NRF2 cytoplasmic degradation. This results in high built up of NRF2 in cytoplasm that translocates to nucleus where it binds to ARE (antioxidant response element) in the upstream promoter region of many antioxidant genes hence initiates their transcription. Latter we observed that activation of ERK5-MEF2 pathway directly results in de novo synthesis of NRF2, resulting in nuclear translocation and triggering of the antioxidative mechanism. Inhibition of ERK5-MEF2 pathway impairs the cellular antioxidant response, thus sensitizing cells towards oxidative stress.The second part of my work explored the mechanism behind the lipid lowering effects of dichloroacetate (DCA). DCA is a small molecule, which inhibits the PDK1 and enables pyruvate to enter the mitochondria. It was used clinically in past to lower the plasma cholesterol level but the underlying mechanism was not clear and we describe it here. DCA forces cells to perform OXPHOS, which activate the ERK5-MEF2 pathway. This pathway directly up-regulates the expression of Low Density Lipoprotein Receptors (LDLR) that are mainly involved in the endocytosis of cholesterol-rich low density lipoproteins, which are responsible for the majority of cardiovascular diseases. Inhibition of this pathway suppresses lipid influx and hence, it would be an interesting target of future investigation since high cholesterol level is the main cause of various life threatening diseases and the development of atherosclerosis.Our next goal is to exploit other possible cellular mechanism regulated by ERK5-MEF2 pathway. Based on our preliminary data, we propose that this pathway not only regulate the LDLR expression but many other genes, which are directly or indirectly involved in lipid metabolism
APA, Harvard, Vancouver, ISO, and other styles
18

Andzelm, Milena Maria. "Functional and genomic analysis of MEF2 transcription factors in neural development." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13070059.

Full text
Abstract:
Development of the central nervous system requires the precise coordination of intrinsic genetic programs to instruct cell fate, synaptic connectivity and function. The MEF2 family of transcription factors (TFs) plays many essential roles in neural development; however, the mechanisms of gene regulation by MEF2 in neurons remain unclear. This dissertation focuses on the molecular mechanisms by which MEF2 binds to the genome, activates enhancers, and regulates gene expression within the developing nervous system. We find that one MEF2 family member in particular, MEF2D, is an essential regulator of the development and function of retinal photoreceptors, the primary sensory neurons responsible for vision. Despite being expressed broadly across many tissues, in the retina MEF2D binds to retina-specific enhancers and regulates photoreceptor-specific transcripts, including critical retinal disease genes. Functional genome-wide analyses demonstrate that MEF2D achieves tissue-specific binding and action through cooperation with a retina-specific TF, CRX. CRX recruits MEF2D away from canonical MEF2 binding sites by promoting MEF2D binding to retina-specific enhancers that lack a strong consensus MEF2 binding sequence. MEF2D and CRX then synergistically co-activate these enhancers to regulate a cohort of genes critical for normal photoreceptor development. These findings demonstrate that MEF2D, a broadly expressed TF, contributes to retina-specific gene expression in photoreceptor development by binding to and activating tissue-specific enhancers cooperatively with CRX, a tissue-specific co-factor. A major unresolved feature of MEF2D function in the retina is that the number of MEF2D binding sites significantly exceeds the number of genes that are dependent on MEF2D for expression. We investigated causes of this discrepancy in an unbiased manner by characterizing the activity of MEF2D-bound enhancers genome-wide. We find that many MEF2D-bound enhancers are inactive. Furthermore, less than half of active MEF2D-bound enhancers require MEF2D for activity, suggesting that significant redundancies exist for TF function within enhancers. These findings demonstrate that observed TF binding significantly overestimates direct TF regulation of gene expression. Taken together, our results suggest that the broadly expressed TF MEF2D achieves tissue specificity through competitive recruitment to enhancers by tissue-specific TFs and activates a small subset of enhancers to regulate genes.
APA, Harvard, Vancouver, ISO, and other styles
19

Cardoso, Alisson Campos 1983. "Regulação do fator de transcrição MEF2C pela quinase de adesão focal = implicações na homeostase dos cardiomiócitos = Regulation of transcription factor MEF2C by focal adhesion kinase: implications in the homeostasis of cardiomyocytes." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/311516.

Full text
Abstract:
Orientador: Orientador : Kleber Gomes Franchini
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-21T12:58:21Z (GMT). No. of bitstreams: 1 Cardoso_AlissonCampos_D.pdf: 4487510 bytes, checksum: eec48cf16c52d89f7324a6a56476ca59 (MD5) Previous issue date: 2012
Resumo: Durante os primeiros dias do desenvolvimento pós-natal, os miócitos cardíacos perdem a capacidade de proliferação, sendo o crescimento adicional do coração decorrente de hipertrofia e não hiperplasia dos miócitos cardíacos. No entanto, em situações de estresse os miócitos cardíacos diferenciados podem apresentar desdiferenciação e reestabelecimento do ciclo celular. Os mecanismos envolvidos nesse fenômeno são ainda pouco compreendidos. No presente estudo, demonstramos que a ativação do fator de transcrição MEF2C (Myocyte Enhancer Factor 2-C) tem papel crítico no processo de desdiferenciação de miócitos cardíacos. Essa conclusão foi obtida por meio de experimentos de ganho de função pela superexpressão de MEF2C em miócitos ventriculares de ratos neonatos em cultura (MVRNs). Demonstramos que a superexpressão de MEF2C em MVRNs induziu a desdiferenciação e a ativação de mecanismos envolvidos na progressão do ciclo celular. Esses resultados foram obtidos por meio de experimentos de microarranjo de DNA, PCR em tempo real, western blotting e análise do fenótipo celular por microscopias de luz, confocal e eletrônica de transmissão. Esses fenômenos foram atenuados pela superexpressão da quinase de adesão focal (FAK), uma proteína que reconhecidamente exerce efeitos pró-hipertróficos em miócitos cardíacos adultos. Experimentos in vivo e in vitro demonstraram a interação direta entre o fator de transcrição MEF2C e a FAK. Estudos com base em ensaios de reação cruzada associada à espectrometria de massas, dinâmica molecular, espalhamento de raios-X a baixos ângulos e mutação sítio dirigida, demonstraram que as hélices 1 e 4 do domínio FAT da FAK interagem diretamente com a domínio de ligação ao DNA do dímero de MEF2C. Estudos de afinidade e de gel shift demonstraram que a porção FAT da FAK desloca a interação MEF2C/DNA in vitro. Ensaios de gene repórter demonstraram que a FAK, mediada pela região C-terminal, diminui a atividade transcricional de MEF2C em células C2C12. O conjunto de dados demonstra que a ativação do fator de transcrição MEF2C em MVRNs induz a desdiferenciação e ativação de mecanismos de progressão do ciclo celular e que a FAK impede esses efeitos através da interação inibitória no domínio de ligação de MEF2C ao DNA
Abstract: During the first days of postnatal development, cardiac myocytes lose their ability to proliferate, and the further growth of the heart is due to hypertrophy and not hyperplasia of cardiac myocytes. However, in response to stress, cardiac myocytes may have dedifferentiation and re-establishment of the cell cycle. The mechanisms involved in this phenomenon are still poorly understood. In the present study, we demonstrated that activation of the transcription factor MEF2C (myocyte enhancer factor 2-C) plays a critical role in the process of dedifferentiation of cardiac myocytes. This conclusion was obtained by gain-of-function experiments through overexpressing MEF2C in neonatal rat ventricular myocytes in culture (NRVMs). We also showed that overexpression of MEF2C in NRVMs induced the dedifferentiation and activation of mechanisms involved on cell cycle progression. These results were obtained by DNA microarray experiments, real time PCR, western blotting and cell phenotype analysis by light microscopy, confocal and electronic transmission. These effects were attenuated by overexpression of focal adhesion kinase (FAK) protein known to exert pro-hypertrophic effects on adult cardiac myocytes. In vivo and in vitro experiments demonstrated the direct interaction between the transcription factor MEF2C and FAK. A model based on crosslinking technology coupled with mass spectrometry, small angle X-ray scattering and the site directed mutation analyses indicated that alpha-helices 1 and 4 of FAK FAT domain interacts directly with the DNA binding domain of MEF2C dimer. Affinity studies and gel shift assay demonstrated that the FAK FAT domain displaces the MEF2C/DNA interaction in vitro. Reporter gene assays demonstrated that FAK, mediated by the C-terminal region, decreases the transcriptional activity of MEF2C in C2C12 cells. The data set shows that the activation of the transcription factor MEF2C in MVRNs induces dedifferentiation and activation of cell cycle progression and that FAK prevents these effects by inhibitory interaction with DNA binding domain of MEF2C
Doutorado
Biologia Estrutural, Celular, Molecular e do Desenvolvimento
Doutor em Ciências
APA, Harvard, Vancouver, ISO, and other styles
20

Pereira, Ana Helena Macedo 1980. "Avaliação molecular e fenotípica da superexpressão e do silenciamento de MEF2C em miócitos cardíacos." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/310203.

Full text
Abstract:
Orientador: Kleber Gomes Franchini
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-23T03:46:54Z (GMT). No. of bitstreams: 1 Pereira_AnaHelenaMacedo_D.pdf: 4791935 bytes, checksum: 1afe275f0fa4f53003b18816bc5c27cb (MD5) Previous issue date: 2013
Resumo: Os fatores MEF2 (Myocyte Enhancer Factor 2) pertencem à família MADS Box (MCM1-Agamous-Deficiens-Serum response factor) e foram descritos pela primeira vez como fatores de transcrição que se ligam a sequencias de DNA ricas em A/T nos promotores de vários genes músculo específicos. Existem 4 genes da família MEF2 que foram identificados em vertebrados: MEF2A, B, C e D que são expressos de forma distinta durante a embriogênese e nos tecidos adultos. Estudos anteriores do nosso laboratório demonstraram que o fator de transcrição MEF2 é ativado por estiramento mecânico e influencia a expressão de genes relacionados à hipertrofia cardíaca. Utilizando a tecnologia de siRNA para MEF2C (siRNAMEF2C) demonstramos a atenuação da hipertrofia cardíaca induzida por coarctação da aorta nos animais que receberam o siRNAMEF2C. Por outro lado trabalhos demonstraram que animais transgênicos com a superexpressão de MEF2A ou de MEF2C e submetidos à sobrecarga de pressão por coarctação da aorta, não apresentam hipertrofia cardíaca compensatória. Nesses animais a superexpressão de MEF2A ou de MEF2C no coração está associada à deterioração cardíaca funcional e estrutural e o desenvolvimento de cardiomiopatia dilatada. Contudo, a caracterização fenotípica e os mecanismos moleculares envolvidos na superexpressão de MEF2C em miócitos cardíacos ainda são desconhecidos. Da mesma forma não é conhecido o papel do fator de transcrição MEF2C na resposta hipertrófica do miócito cardíaco após coarctação da aorta. No presente trabalho foi demonstrado que a superexpressão de MEF2C em miócitos cardíacos de ratos neonatos (NRMV), com o uso de partículas adenovirais, induziu a desdiferenciação celular e a ativação de mecanismos envolvidos na progressão do ciclo celular. Esses resultados foram obtidos por meio de experimentos de microarranjo de DNA, proteoma, PCR em tempo real e western blotting. A análise do fenótipo celular por microscopias de luz, confocal e eletrônica de transmissão demonstra que NRMV possuem aumento na binucleação e desorganização sarcomérica, alterações coerentes com o quadro de desdiferenciação celular e ativação da progressão do ciclo celular. Por meio da técnica de incorporação de iodeto de propídeo e citometria de fluxo confirmamos o aumento de células em ciclo celular. Para confirmar os achados nos cardiomiócitos neonatos passamos a investigar o efeito da superexpressão de MEF2C em cardiomiócitos de ratos adultos. Para isso padronizamos a técnica de isolamento destas células e tratamos com AdMEF2C. Sendo assim o tratamento com AdMEF2C em miócitos cardíacos de ratos adultos resultou em aumento da expressão de MEF2C após 48 horas de tratamento. O efeito observado foi semelhante ao encontrado em cardiomiócitos neonatos, sendo que os adultos apresentaram aumento da expressão de genes relacionados ao ciclo celular e diminuição dos genes estruturais. O nível ultraestrutural observado por microscopia eletrônica de transmissão no tempo de 48 horas de tratamento não observamos diferenças na estrutura sarcomérica das células tratadas com AdMEF2C. Por fim demonstramos que o silenciamento de MEF2C pela injeção de lentivírus no coração demonstrou ser capaz de impedir o desenvolvimento da hipertrofia cardíaca em camundongos coarctados por 15 dias. A hipertrofia do coração foi avaliada por meio da espessura da parede posterior do ventrículo esquerdo e gravimetria do ventrículo esquerdo e dos pulmões. O conjunto de dados demonstra que a superexpressão de MEF2C leva a alterações estruturais no miócito cardíaco compatíveis com quadro de deterioração e insuficiência cardíaca e que o silenciamento de MEF2C no coração impede o desenvolvimento da hipertrofia cardíaca decorrente da coarctação da aorta
Abstract: The factors MEF2 (myocyte enhancer factor 2) belong to the family MADS box (MCM1-Agamous-deficiens-Serum response factor) and were first described as transcription factors that bind DNA sequences rich in A / T in the promoters of multiple muscle-specific genes. There are four MEF2 family genes that were identified in vertebrates MEF2A, B, C and D are expressed differently during embryogenesis and in adult tissues. Previous studies from our laboratory demonstrated that the transcription factor MEF2 is activated by mechanical stretch and influences the expression of genes related to cardiac hypertrophy. Using siRNA technology to MEF2C (siRNAMEF2C) demonstrated attenuation of cardiac hypertrophy induced by aortic coarctation in animals that received siRNAMEF2C. On the other hand studies have demonstrated that transgenic mice with overexpression of MEF2A or MEF2C and subjected to pressure overload by aortic coarctation show no compensatory cardiac hypertrophy. In these animals the overexpression of MEF2A or MEF2C in the heart is associated with structural and functional cardiac deterioration and development of dilated cardiomyopathy. However, the phenotypic and molecular mechanisms involved in the overexpression of MEF2C in cardiac myocytes are still unknown. Likewise, there is known the role of the transcription factor MEF2C in cardiac myocyte hypertrophic response after aortic coarctation. In the present study it was shown that overexpression of MEF2C in neonatal rat cardiac myocytes (NRMV) with the use of adenoviral particles, and cellular dedifferentiation induced activation mechanisms involved in cell cycle progression. These results were obtained by DNA microarray experiments, proteomics, real time PCR and western blotting. The analysis of cell phenotype by light microscopy, confocal and transmission electron shows that NRMV have increased binucleation and sarcomeric disorganization, changes consistent with the framework of cellular dedifferentiation and activation of cell cycle progression. By means of the propidium iodide incorporation technique and flow cytometry, confirmed increasing cells in the cell cycle. To confirm the findings in neonatal cardiomyocytes we investigate the effect of overexpression of MEF2C in cardiomyocytes of adult rats. For this standardized technique and isolation of these cells treated with AdMEF2C. Thus treatment with AdMEF2C in adult rat cardiac myocytes resulted in increased expression of MEF2C after 48 hours of treatment. The observed effect was similar to that found in cardiomyocytes neonates, adults who showed increased expression of genes related to cell cycle and decreased structural genes. The ultrastructural level observed by transmission electron microscopy in the time of 48 hours of treatment showed no difference in sarcomeric structure of cells treated with AdMEF2C. Finally we show that MEF2C silencing by lentivirus injection in the heart has been shown to prevent the development of cardiac hypertrophy in mice after 15 days of pressure overload. The heart hypertrophy was evaluated by the thickness of the posterior wall of the left ventricle and the left ventricle gravity and lungs. The data set shows that overexpression of MEF2C leads to structural changes in the cardiac myocyte compatible framework of deterioration and failure, and MEF2C silencing of the heart prevents the development of cardiac hypertrophy due to aortic coarctation
Doutorado
Biologia Estrutural, Celular, Molecular e do Desenvolvimento
Doutora em Ciências
APA, Harvard, Vancouver, ISO, and other styles
21

Andreucci, John J. "Regulation of the c-jun enhancer/promoter by MEF2 proteins during myogenesis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq22842.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Barker, Scarlett J. V. (Scarlett Jazmine). "Cognitive resilience is mediated by the MEF2 network in mice and humans." Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130809.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, February, 2021
Cataloged from the official PDF version of thesis. "February 2021."
Includes bibliographical references (pages 119-126).
Recent increases in human longevity have been accompanied by a rise in the incidence of dementia. While a large proportion of aged individuals display pathological hallmarks of neurodegenerative disease, a small number of these individuals are able to maintain healthy cognitive function even in the presence of extensive brain pathology. The molecular mechanisms that govern this neuro-protected state remain unknown, but individuals that exhibit cognitive resilience (CgR) represent a unique source of insight into potential therapies that could preserve brain function in the face of neurodegenerative disease. Here, we employ a two-pronged approach to dissect the mechanism underlying CgR. First, using multiple integrated repositories of clinical and brain transcriptomic data we identified individuals who maintained normal cognition despite harboring a large burden of Alzheimer's disease (AD) pathology.
We observe significant up-regulation of MEF2 family members in these resilient patients when compared to patients whose cognition declined in the presence of pathology. Second, we utilize the only existing animal model of CgR -- environmental enrichment --
to investigate the molecular mechanisms involved in the induction of resilience. Accessibility of Mef2 binding sites, and expression of Mef2 targets are significantly increased upon enrichment. Additionally, knockdown of Mef2 family members just prior to the initiation of enrichment block its cognitive benefits, demonstrating the necessity of Mef2 activity for achieving the enhanced cognitive potential afforded by enrichment. Neurons lacking Mef2 are hyperexcitable, which is also one of the earliest pathological alterations observed in AD. These results suggest a potential mechanistic link between the Mef2 transcriptional network induced by enrichment and the prevention of disease-associated hyperexcitability. To determine the causal impact of Mef2 on cognition in the context of neurodegeneration, we use a viral approach to manipulate the PS19 mouse model of tauopathy.
Remarkably, in the absence of enrichment, Mef2 overexpression alone is sufficient to improve cognition and reduce hyperexcitability in PS19 mice. Overall, our findings reveal a novel role for MEF2 transcription factors in promoting cognition throughout life, and maintaining cognitive resilience in the context of neurodegenerative disease.
by Scarlett J.V. Barker.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences
APA, Harvard, Vancouver, ISO, and other styles
23

Li, Zhen. "MEF2 as a neurogenic, anti-apoptotic transcription factor in murine ES cells /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2005. http://wwwlib.umi.com/cr/ucsd/fullcit?p3166400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Murray, Alexander James. "The Interaction of Early Growth Response Gene 1 and Myocyte Enhancer Factor 2C in the Murine Brain Cortex." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/105007.

Full text
Abstract:
Early growth response gene – 1 (Egr1) encodes a protein widely present in mammalian body, such as connective tissue, cardiac tissue, the liver, and the brain. As a transcription factor (TF), it is involved in processes that take place in the endocrine, digestive, immune, musculo-skeletal and central nervous systems, for instance, B cell maturation upon B cell receptor activation, tendon repair upon mechano-stimulation, and long-term spatial memory formation. In mammalian brains, EGR1 controls the responses to environmental stimuli such as chronic stress and physical contact. It also participates in processes such as long-term memory consolidation and synapse re-structuring. It plays a role in enacting responses and qualities of gene transcription cascades upon neuronal stimulation. Inside the epigenetic realm, EGR1 recruits Ten-eleven translocation methylcytosine dioxygenase 1 (TET1) to remove DNA methylation at target loci. Due to its critical functions during brain development and upon neuronal activation, mis-regulation of EGR1 is associated with neuropsychological disorders such as post-traumatic stress disorder (PTSD) and schizophrenia (SCZ) in humans. In this study, we performed bioinformatics analysis with brain methylomes and predicted EGR1 may interact with myocyte enhancer factor 2C (MEF2C), which is known to be involved in many similar processes as EGR1, such as synapse architecture, cell migration, and learning and memory. EGR1 and MEF2C ChIP-seq data derived from mouse frontal cortex suggest these two proteins may regulate a common set of downstream genes. To begin, co-immunoprecipitation experiments were performed with HEK293T cells co-transfected with EGR1-FLAG and MEF2C-HA tagged constructs, allowing for specific interaction identification without endogenous protein expression interference. Furthermore, co-immunoprecipitation experiments performed with brain tissues additionally indicated the two proteins interact with each other endogenously. Altogether, this study provides protein-protein interaction evidence for EGR1 and MEF2C in cultured HEK293 cells and in the cortices of adult male mice. This information provides a foundation for future examinations of how these two TFs interact to initiate cascading events following neuronal stimulation.
Master of Science
Early growth response gene – 1 (EGR1) encodes a protein that can be found in animals such as fruit flies, mice, rats, and humans. In mammals, it is widely expressed in the cardiovascular, endocrine, digestive, immune, musculo-skeletal and central nervous systems (CNS). Within the CNS, EGR1 is known as an essential transcription factor involved in brain development. More specifically, EGR1 plays a role in how the early brain develops in response to environmental stimuli, formation of synapse architecture and certain types of memories. Many gene networks involved in growth and development rely on EGR1 to regulate functions such as synapse reformation after exposure to the environment. EGR1 is known to have numerous partners with whom it interacts to execute its functions. It is also involved in epigenetic regulation, which is a process by which genes are silenced or activated without changing DNA sequences in the genome. EGR1 may directly interact with TET1 to demethylate EGR1 target sites in the genome, and to increase gene transcription. In memory development, EGR1 plays a key role ensuring short-term auditory fear memory can be converted to long-term memory, and also ensures long-term spatial memory. In this study, our computational analyses suggest that EGR1 may interact with MEF2C. This work provides evidence of a protein-protein interaction of EGR1 and MEF2C in cultured cells and in the brain cortical areas of mice. Such an interaction may explain why these two genes regulate overlapped biological processes within the brain and sheds lights on how cascading events are initiated following neuronal stimulation.
APA, Harvard, Vancouver, ISO, and other styles
25

Pereira, Ana Helena Macedo 1980. "Influencia do fator de transcrição MEF2C na hipertrofia miocardica induzida por sobrecarga pressorica em camundongos." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/310214.

Full text
Abstract:
Orientador: Kleber Gomes Franchini
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-11T20:15:36Z (GMT). No. of bitstreams: 1 Pereira_AnaHelenaMacedo_M.pdf: 6567293 bytes, checksum: b9a8c070b3b65fe7a4fb095ccfc59d42 (MD5) Previous issue date: 2008
Resumo: Doenças do coração são freqüentemente associadas à hipertrofia miocárdica. Estímulos mecânicos induzem o crescimento hipertrófico e contribuem para a degeneração e morte dos miócitos cardíacos. Dentre os fatores de transcrição envolvidos no processo de hipertrofia miocárdica, estão os da família MEF2 (Myocyte Enhancer Factor-2), que é composto por 4 membros, MEF2A, B, C e D. O MEF2C é descrito como o principal transcrito no miocárdio. Tanto a deleção quanto a hiperexpressão de seu gene causam efeitos deletérios na formação e na função do músculo cardíaco. Estudos anteriores do nosso laboratório demonstraram que o MEF2 é ativado por estiramento de cardiomiócitos e influencia a expressão de genes do programa hipertrófico. O presente estudo tem como objetivo avaliar os efeitos do silenciamento gênico do MEF2C nas alterações estruturais e funcionais do ventrículo esquerdo de camundongos submetidos à sobrecarga pressórica. Para isso, utilizamos a técnica de interferência por RNA para o MEF2C. A padronização constituiu de: 1) avaliação do silenciamento do MEF2C em cultura de células C2C12 e no ventrículo esquerdo de camundongos Swiss; 2) determinação da dose necessária de siRNA para o silenciamento da expressão protéica do MEF2C; 3) determinação do curso temporal do silenciamento; 4) avaliação dos efeitos do tratamento com molécula irrelevante de siRNA direcionada para a proteína exógena GFP; 5) avaliação da especificidade do silenciamento (off-targets) pela análise do RNAm para o MEF2A e das proteínas FAK, GAPDH, JNK1/2 e SHP2; 6) avaliação do silenciamento em outros órgãos, como pulmão e rim; 7) avaliação da efetividade do silenciamento de MEF2C em miócitos cardíacos isolados do ventrículo esquerdo de camundongos. O tratamento com siRNA diminuiu a expressão protéica do MEF2 em 70% das células C2C12. Também verificamos que o tratamento com siRNA silenciou 85% da expressão protéica e do RNAm do MEF2C no ventrículo esquerdo de camundongos em até 4 dias de seguimento. Não foi verificada alteração na expressão de RNAm para o MEF2A e das proteínas FAK, GAPDH, JNK1/2 e SHP2. O silenciamento foi efetivo no pulmão e nos cardiomiócitos isolados do ventrículo esquerdo de camundongos tratado com siRNAMEF2C. Após a padronização do silenciamento, procedeu-se à determinação dos efeitos do silenciamento na estrutura e na função do ventrículo esquerdo de camundongos submetidos à sobrecarga pressórica crônica. Para isso, realizaram-se as análises ecocardiográfica, hemodinâmica, gravimétrica e morfométrica do ventrículo esquerdo de camundongos submetidos à coarctação da aorta com seguimento de 15 dias. Demonstramos que o tratamento com siRNAMEF2C atenuou a hipertrofia cardíaca nos animais coarctados. Esta conclusão foi baseada em dados de ecocardiografia que revelaram menor espessura da parede posterior (30% menor) e por gravimetria que revelou atenuação de aproximadamente 45% da massa do ventrículo esquerdo. Apesar de ter havido aumento do gradiente sistólico nos animais coarctados, a pressão arterial sistêmica não apresentou diferença estatisticamente significativa com o tratamento do siRNAMEF2C. Morfologicamente, o siRNA atenuou a fração de colágeno no ventrículo esquerdo de camundongos coarctado com 15 dias de seguimento. Entretanto, o diâmetro dos miócitos e o infiltrado de células inflamatórias foram comparáveis dentre os grupos. Somente os animais coarctados por 24 horas tiveram maior expressão de ß- MHC, e quando tratados com siRNAMEF2C apresentaram menor razão ATP/ADP. Dessa forma, esses dados sugerem que o MEF2C regula múltiplos aspectos da hipertrofia cardíaca induzida por sobrecarga pressórica tais como a expressão de genes sarcoméricos e genes envolvidos na adaptação metabólica do músculo cardíaco.
Abstract: Heart diseases are frequently associated with myocardial hypertrophy. Mechanical stimuli can trigger hypertrophic growth as well as degeneration and death of the cardiac myocytes. The MEF2C family of transcription factors plays a role in the process of myocardial hypertrophy. It is composed by 4 members, MEF2A, B, C and D, and the MEF2C is the main transcript in the heart. Both the deletion and overexpression of mef2c induce deleterious effects in the formation and function of the heart. Previous studies of the our laboratory has shown that the transcription factor MEF2C is activated by mechanical stretch in cardiomyocytes and regulates the expression of genes related to cardiac hypertrophy. This study was performed to address the effects of MEF2C gene silencing in the structural and functional changes of the left ventricle (LV) induced by pressure overload in mice. To silence MEF2C, it was employed the RNA interference technique, specific siRNA target to MEF2C was administered through the mice jugular vein. To optimize the MEF2C knockdown, it was necessary to 1) analyze the MEF2C silencing in C2C12 cells, 2) determine the dose required to induce significant MEF2C silencing in LV of mice, 3) determine the time course of gene silencing, 4) assess the effects of the treatment with irrelevant siRNA target to the protein GFP, 5) evaluate the specificity of gene silencing by siRNAMEF2C through the expression analysis of the transcription factor MEF2A and other non-related proteins, 6) analyze of the MEF2C knockdown in other organs, 7) determine the effectiveness of the MEF2C silencing in cardiac myocytes harverst from the LV of mice treated systemically with siRNAMEF2C. Treatment with 100ng/mL of siRNAMEF2C induced MEF2C silencing (~70%) in C2C12 cells. Intrajugular delivery of 30µg of siRNAMEF2C in mice induced the reduction in the mRNA and protein levels (~85%) until 4 days after the injection. The treatment with siRNAMEF2C did not affect the expression of MEF2A and other non-related proteins. The MEF2C silencing was effective in lung and in cardiac myocytes harverst from LV of mice treated with siRNAMEF2C. After knockdown optimization, echocardiographic, hemodynamic, gravimetric and morphometric analysis was performed to address the effects of MEF2C silencing in the structure and function of the LV from 15 days aorticbanded mice. Myocardial MEF2C silencing attenuated the load-induced hypertrophy in banded mice, indicated by the reductions of the wall thickness and the mass (~45%) of the LV. An increase in transconstriction gradient was observed in banded mice but the systemic blood pressure did not shown a significant statistically difference with the siRNAMEF2C treatment. The siRNAMEF2C injection reduced the collagen fraction in the LV of 15 days banded mice. On the other hand, the myocytes diameter and inflammatory cells level were comparable between the groups. Only the 24 hours banded mice showed an increase in the â-MHC expression and the treatment with siRNAMEF2C reduced ATP/ADP ratio. This study indicate that MEF2C regulates many aspects of the cardiac hypertrophy induced by pressure overload, like the expression of sarcomeric genes and genes involved in metabolic adaptation of the heart muscle.
Mestrado
Medicina Experimental
Mestre em Fisiopatologia Médica
APA, Harvard, Vancouver, ISO, and other styles
26

Snyder, Christine Marie. "WNT signaling in skeletal muscle regeneration is modulated by a MEF2A-regulated miRNA mega-cluster." Thesis, Boston University, 2012. https://hdl.handle.net/2144/12634.

Full text
Abstract:
Thesis (Ph.D.)--Boston University
Skeletal muscle regenerates in response to disease or injury through the activation of quiescent muscle stem cells and their subsequent differentiation into multi-nucleated myotubes. Understanding the molecular mechanisms of regeneration is critical to exploit this pathway for use in tissue repair. Data shown here demonstrate that MEF2A plays an essential role in skeletal muscle regeneration in adult mice. Regenerating muscle from MEF2A knockout mice displays widespread necrosis, reduced myofiber cross-sectional area, and a significant reduction in Pax7-positive progenitors. The existence of activated progenitor cells that co-express MEF2A and Pax7 is also documented in adult regenerative myogenesis. MEF2A controls this process through its direct regulation of the largest known mammalian rnicroRNA (rniRNA) cluster, the Gtl2-Dio3 locus. All miRNAs (>40) within this cluster are coordinately downregulated in MEF2A-deficient regenerating muscle, and a subset of the Gtl2-Dio3 rniRNAs represses secreted Frizzled- related proteins (sFRPs), inhibitors of Wnt signaling. Consistent with downregulation of this rniRNA cluster, expression of sFRPs is upregulated and Wnt signaling is inhibited in MEF2A-deficient regenerating muscle. Furthermore, overexpression of Gtl2-Dio3 miRNAs, miR-433 and miR-410, restores myotube formation in MEF2A-deficient myoblasts. Thus, miRNA-mediated modulation of Wnt signaling by MEF2A is a requisite step for proper muscle regeneration, and represents an attractive pathway for enhancing regeneration of diseased muscle.
APA, Harvard, Vancouver, ISO, and other styles
27

Moraes, Paulo Alexandre de Carvalho. "A participação da proteína cinase mTOR (mammalian target of rapamycin) e do fator transcricional NF-kB na regulação da expressão do GLUT4 em músculo sóleo de ratos." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/42/42137/tde-23052012-092050/.

Full text
Abstract:
A insulina regula a expressão de GLUT4, porém os mecanismos envolvidos nesta regulação não estão definidos. Alguns fatores de transcrição e proteínas cinases estão relacionados com a expressão de GLUT4. Assim, o objetivo desta pesquisa foi investigar a participação dos fatores de transcrição MEF2, HIF-1a e NF-kB, e das proteínas cinases mTOR, PI3K e AKT na regulação da expressão de Slc2a4/GLUT4 induzida pela insulina. Para isso, músculos sóleos de ratos foram incubados por 3 horas em tampão Krebs, tratados ou não com insulina, wortmanina, rapamicina, ML-9 ou TNF-a. Nesses tecidos foram avaliados o conteúdo das proteínas GLUT4 e mTOR (Western), o conteúdo de mRNA de GLUT4, NF-kB1, HIF-1a e MEF2A/C/D (PCR) e a atividade de ligação de proteínas nucleares no sítio de ligação de NF-kB, AT-rich element e E-Box do promotor do gene Slc2a4 (EMSA). O tratamento com insulina aumentou a expressão de Slc2a4/GLUT4 no músculo sóleo, in vitro, ativando os fatores de transcrição MEF2A/D e possivelmente MyoD, através da via da PI3K/AKT e diminuindo a expressão e atividade de NF-kB.
Insulin regulates the GLUT4 expression, but the mechanisms involved in this regulation are not defined. Some transcription factors and protein kinases are related to the expression of GLUT4. Thus, the aim of this research was to investigate the role of the transcription factors MEF2, HIF-1a and NF-kB, and the proteins kinases mTOR, PI3K and AKT, in regulation of Slc2a4 and GLUT4 expression by insulin. For this, rat soleus muscles were incubated for 3 hours in Krebs buffer, treated or not with insulin, wortmanina, rapamycin, ML-9 or TNF-a. In these tissues were evaluated the GLUT4 and mTOR protein content (Western), the content of GLUT4, NF-kB1, HIF-1a and MEF2A/C/D mRNAs (PCR) and the binding activity of protein nuclear in binding site of NF-kB, AT-rich element and E-Box in the promoter of the gene Slc2a4 (EMSA). Insulin treatment increased the expression of Slc2a4/GLUT4 in the soleus muscle in vitro, activating the transcription factors MEF2A/D and possibly MyoD, via PI3K/AKT and decreasing the expression and activity of NF-kB.
APA, Harvard, Vancouver, ISO, and other styles
28

Bhagavatula, Maniragava Sai Krishna. "Role of transcription factor MEF2A in development of coronary artery disease (CAD) and myocardial infarction (MI)." Cleveland, Ohio : Cleveland State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1210015594.

Full text
Abstract:
Thesis (Ph.D.)--Cleveland State University, 2008.
Abstract. Title from PDF t.p. (viewed on July 9, 2008). Includes bibliographical references (p. 107-116). Available online via the OhioLINK ETD Center. Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
29

BHAGAVATULA, MANI RAGAVA SAI KRISHNA Dr. "ROLE OF TRANSCRIPTION FACTOR MEF2A IN DEVELOPMENT OF CORONARY ARTERY DISEASE (CAD) AND MYOCARDIAL INFARCTION (MI)." Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1210015594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Meiling. "MOLECULAR DEFECTS OF MEF2 FAMILY PROTEINS AND NAC PROTEINS THAT BLOCK MYOGENESIS AND PROMOTE TUMORIGENESIS IN RHABDOMYOSARCOMA." OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1079.

Full text
Abstract:
Rhabdomyosarcoma (RMS) is a highly malignant pediatric cancer that is the most common form of soft tissue tumors in children. RMS cells have many features of skeletal muscle cells, yet do not differentiate. Thus, our studies have focused on the molecular defects present in these cells that block myogenesis. We have found MEF2D is absent in RMS cell lines representing both major subtypes of RMS and primary cells derived from an embryonal RMS mice model. We have shown that the down regulation of MEF2D is a major cause for the failure of RMS cells to differentiate. We find MEF2D cannot bind to muscle specific gene promoters. Exogenous expression of MEF2D activates muscle specific luciferase constructs, upregulates p21 expression and increases muscle specific gene expression including the expression of myosin heavy chain, a marker for skeletal muscle differentiation. Restoring expression of MEF2D also inhibits proliferation, cell motility, anchorage independent growth in vitro, and tumor growth in vivo by xenograft assay. We also have found MEF2C is deregulated in rhabdomyosarcoma with the aberrant alternative splicing. We have shown that exon α in MEF2C is aberrantly alternatively spliced in RMS cells, with the ratio of α2/α1 being highly downregulated in RMS cells compared with normal myoblasts. We find that MEF2Cα1 is the ubiquitously expressed isoform which exhibits no myogenic activity and that MEF2Cα2, the muscle specific MEF2C isoform, is required for efficient differentiation. Compared with MEF2Cα2, MEF2Cα1 more strongly interacts with and recruits HDAC5 to myogenic gene promoters to repress muscle specific genes. Overexpression of the MEF2Cα2 isoform in RMS cells increases myogenic activity and promotes differentiation in RMS cells. We have also identified a serine protein kinase, SRPK3, which is downregulated in RMS cells and found that expression of SRPK3 promoted the splicing of the MEF2Cα2 isoform and induced differentiation. Restoration of either MEF2Cα2 or SPRK3 inhibited both proliferation and anchorage independent growth of RMS cells. The NAC complex performs many diverse biological functions, and the deregulation of its subunits has been correlated with many cancers. We sought to understand the function of the NAC complex in normal myogenesis and tumor progression in rhabdomyosarcoma cells. We found that the muscle specific subunit of the NAC complex, skNAC, which is the alternatively spliced isoform of NACα, was induced in normal cells and downregulated in RMS cells, while BTF3, also known as NACβ, was induced in normal cells and severely downregulated in RMS cells. We also showed that skNAC associated with muscle specific promoters together with BTF3 in differentiated normal cells, and this association was dependent on the expression of BTF3. We further investigated the involvement of skNAC in RMS progression. We found that the muscle specific expressed methyltransferase Smyd1 was nuclear localized in RMS cells and its interaction partner skNAC was switched with corepressors (HDAC1 and TBX2). We also confirmed the expression of skNAC was regulated by the splicing factor kinase SRPK3 and overexpression of SPRK3 induced skNAC expression and muscle differentiation in RMS cells. We also confirmed the overexpression of BTF3 in patient RMS tumors and depletion of BTF3 induced apoptosis in RMS cells and decrease RMS cell survival. BTF3 depletion also sensitized TRAIL induced cell apoptosis in RMS cells. However, BTF3 played a different role in normal cells. Deletion of BTF3 in C2C12 cells does not induce cell apoptosis, which suggests BTF3 functions as an anti-apoptosis factor in RMS cells and could be used as a cancer specific therapeutic target in RMS cells.
APA, Harvard, Vancouver, ISO, and other styles
31

Gumede, Dimakatso. "Over-expression of NRF-1 in C2C12 myotubes increases GLUT4 content via a transcriptional cascade involving MEF2A." Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/11772.

Full text
Abstract:
Includes abstract.
Includes bibliographical references.
Previous studies have shown that over-expression of nuclear respiratory factor (NRF)-1 in mice increases glucose transporter (GLUT)-4 and myocyte enhancer factor (MEF-) 2A content, but the mechanisms have not been elucidated. Because NRF-1 has a binding site on the mef2a gene, and MEF2A binds the glut4 gene as a MEF2A-MEF2D heterodimer, the aims of this study were to determine whether NRF-1 over-expression a) enhanced GLUT4 expression indirectly via MEF2A and b) alters MEF2A-MEF2D dimer formation in C2C12 myotubes.
APA, Harvard, Vancouver, ISO, and other styles
32

Chan, Jonathan Ka Lok. "Functional characterization of the regulation of transcription factor MEF2C by histone acetyltransferase p300 and histone deacetylase 4 /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?BICH%202004%20CHANJ.

Full text
Abstract:
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2004.
Includes bibliographical references (leaves 135-159). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
33

Colonna, Stefania. "Identification of High Risk Coronary Artery Disease patient by Molecular Techiniques: the MEF-2A paradigm." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425522.

Full text
Abstract:
Background. The coronary artery disease (CAD) and its clinical manifestations (angina and myocardial infarction, MI) are the first cause of death in most industrialized societies. Current guidelines used to detect those susceptible to heart attack fail to identifying many high-risk individuals. In recent years, a number of new candidate risk factors or markers have been proposed. Among risk factors, family history is one of the most significant independent risk factor for CAD/MI. Only one disease-causing gene, myocyte enhancer factor-2 (MEF2A), encoding a member of the MEF2 family of transcription factors, has been identified for primary CAD and MI without other accompanying clinical feature Aim of the Study. Available evidences suggest that MEF2A plays a role in vascular ontogeny and shows its predominant expression in the coronary artery endothelium. Considering the pivotal role played by the latter in atherogenesis, we investigated: 1. the prevalence of MEF2A deleted gene in a large case-control study (GENICA Study) 2. if the deletion might be associated with coronary artery structural and functional abnormalities; 3. if it might be associated with widespread endothelial dysfunction; 4. if either one or the other or both alterations might eventually result into clinically relevant coronary artery disease. Methods. We developed techniques suitable high throughout genotyping based on FRET () and HMRA (). After validation of these techniques vs sequencing, we prospectively genotyped 2 cohorts of healthy subjects, a cohort of primary hypertensive patients and the vast cohort of the GENICA Study. Results. In the present study, the prevalence rate of the MEF2A deletion resulted 0 individuals in healthy subjects of 2 cohorts (n= 170 pts) and in primary hypertensive patients (n=131 pts); to be very low in the vast majority of the GENICA Study (n=1141 pts) cohort. In this study we found the MEF2A deletion in only one of 1142 consecutive patients referred for coronary artery angiography. Therefore, the prevalence in the latter was 8.7 per 10.000 (<1 ‰) patients. Then we investigated of his pedigree and found that the deletion has been transmitted to one of the subject of the third generation. The MEF2A deleted-gene patient showed a clear endothelial impairment, and, at cardiac Magnetic Resonance a first passage hypoperfusion in the postero-lateral wall with a late enhancement as a post-ischemic fibrotic tissue. Discussion. To our knowledge, our pedigree is the first to be identified in Europe. The significance of identification of MEF2A as the first disease-causing gene for CAD and MI makes genetic testing possible for many individuals with a very high risk for CAD and MI. and wise to extend screening to pedigree of subjects with acute myocardial infarct or acute coronary syndrome and few or no risk factors.
APA, Harvard, Vancouver, ISO, and other styles
34

Martis, Prithy Caroline. "RENCA macrobeads inhibit tumor cell growth via EGFR activation and regulation of MEF2 isoform expression." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1597229612949836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Daems, Caroline. "MEF2 (Myocyte Enhancer Factor 2) un nouveau facteur de transcription clé pour la cellule de Leydig." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/25712.

Full text
Abstract:
Les cellules de Leydig sont les principales cellules stéroïdogéniques dans le testicule. La stéroïdogenèse est un mécanisme crucial pour la masculinisation pendant l’embryogenèse et la puberté ainsi que pour le maintien des caractéristiques mâles durant l’âge adulte. Elle est donc finement régulée par l’axe hypothalamo-hypophysaire mais également directement dans la cellule de Leydig. Un des mécanismes majeurs, ayant lieu dans la cellule de Leydig, est la régulation de l’expression des gènes stéroïdogéniques par des facteurs de transcription. Pendant ma thèse, j’ai caractérisé la présence des facteurs de transcription MEF2 dans les cellules de Leydig. Ces facteurs font partie de la famille des facteurs de transcription MEF2 qui compte quatre membres : MEF2A, 2B, 2C et 2D. J’ai mis en évidence que les facteurs MEF2, et plus précisément les facteurs MEF2A et MEF2D, sont présents dans la lignée cellulaire de Leydig MA-10 et qu’ils activent l’expression du gène Nr4a1 ainsi que du gène Star. NR4A1 est connu comme un régulateur de l’expression de gènes stéroïdogéniques et STAR comme réalisant une étape limitante de la stéroïdogenèse. De plus, MEF2 régule l’expression de ces gènes en coopération avec la CAMKI, la forskoline ou l’AMPc. Ces molécules sont connues pour mimer l’activation par la LH ou faire partie d’une des voies activées par la LH. De plus, MEF2 est exprimé dans le testicule tout au long du développement embryonnaire et de la vie adulte mais à aucun de ces stades dans l’ovaire. Ceci suggère un/des rôle(s) bien particulier(s) de MEF2 dans le développement et la fonction de la gonade mâle. Afin de mieux comprendre son (ses) rôle(s), des expériences de micropuces ont été réalisées à partir de cellules de Leydig dans lesquelles l’expression de MEF2 a été diminuée par des petits ARN interférents. Ces expériences ont permis d’identifier des nouveaux gènes cibles de MEF2 dans les cellules de Leydig. Ma thèse a donc permis d’identifier un nouveau facteur de transcription dans les cellules de Leydig et de commencer à décrypter son rôle dans ces cellules.
Leydig cells are the main steroidogenic cells in the testis. Steroidogenesis is an essential mechanism for the development of male characteristics during embryogenesis and puberty and their maintenance throughout adulthood. Therefore, steroidogenesis is tightly regulated by the hypothalamo-pituitary axis, but also directly within the Leydig cell. One mechanism that occurs in Leydig cells is the regulation of steroidogenic gene expression by transcription factors. During my PhD, I have identified MEF2 as new transcription factors present in Leydig cells. These factors are member of the MEF2 family of transcription factors which contains four members: MEF2A, 2B, 2C and 2D. MEF2 factors and more specifically MEF2A and MEF2D factors are present in the MA-10 Leydig cell line and they activate Nr4a1 and Star gene expression. NR4A1 is known as a key regulator of several steroidogenic genes and STAR is essential for the rate-limiting step in steroidogenesis. Furthermore, MEF2 was found to regulate expression of these genes in cooperation with CAMKI, cAMP or forskolin. These molecules are known to mimic the LH activation pathways. Moreover, MEF2 is present in the testis throughout embryonic development and into adulthood whereas MEF2 expression was not detected at any stage in the ovary. This suggests broad roles for MEF2 factors in male gonadal formation and function. To better understand the role(s) of MEF2, microarray experiments were performed using Leydig cells in which MEF2 expression was downregulated by siRNA. These experiments lead to the identification of several new MEF2 target genes in Leydig cells. In conclusion, during my doctoral work, I was able to identify a novel transcription factor in Leydig cells and to characterize its role in these cells.
APA, Harvard, Vancouver, ISO, and other styles
36

Di-Luoffo, Mickaël. "Myocyte enhancer factor 2 (MEF2) : un facteur impliqué dans le maintien des fonctions stéroïdogéniques des cellules de Leydig." Doctoral thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26389.

Full text
Abstract:
Chez l’homme, les cellules de Leydig sont les principales productrices d’hormones stéroïdiennes dans le testicule. Ces hormones, dont font partie la testostérone, la dihydroprogestérone (DHP) et la dihydrotestostérone (DHT), sont indispensables à la spermatogenèse, au développement des caractéristiques sexuelles primaires et secondaires ainsi qu'au maintien de la fertilité masculine. Les niveaux d’hormones stéroïdiennes produits par ces cellules doivent être étroitement régulés au cours du développement. En outre, la stéroïdogenèse est source de formation d'espèces réactives de l'oxygène (ERO). La présence d'ERO en excès dans les cellules de Leydig, inhibe la stéroïdogenèse. Notre laboratoire a récemment identifié un nouveau facteur de transcription, myocyte enhancer factor 2 (MEF2), présent dans le testicule, tout au long de la vie. Ce facteur, premièrement identifié dans le cœur et le cerveau, est essentiel à l'organogenèse ainsi qu'à la différenciation cellulaire. Dans un premier temps, mon travail de doctorat met en évidence le rôle clé du facteur MEF2 dans la régulation de l’expression génique dans la lignée de cellules de Leydig MA-10. Dans un second temps, ce travail caractérise le rôle de MEF2 dans la régulation de l’expression des gènes impliqués dans les mécanismes de détoxification cellulaire, qui permettent l’élimination des ERO produites par la stéroïdogenèse. Le facteur MEF2 régule, seul ou en coopération avec la Ca2+/calmoduline-dependent protein kinase I (CAMKI), l’expression du gène Gsta1 qui code pour une enzyme antioxydante, la glutathion-S transférase A1. De plus, MEF2 n’est pas le seul facteur de transcription présent dans les cellules de Leydig et la coopération entre différents facteurs de transcription permet la régulation de l’expression des gènes. Ainsi, dans un troisième temps, mon travail de doctorat met en évidence une nouvelle coopération entre les facteurs de transcription MEF2 et COUP-TFII dans les cellules de Leydig MA-10. MEF2 et COUP-TFII régulent l’expression du gène Akr1c14 codant pour une 3α-hydroxystéroïde déshydrogénase, permettant la régulation des niveaux de DHP et DHT qui sont des stéroïdes métaboliquement très actifs. En conclusion, mes travaux mettent en évidence le rôle du facteur MEF2 sur l’expression des gènes impliqués dans le maintien et la régulation des fonctions stéroïdogéniques des cellules de Leydig.
In male, the Leydig cells are the main producer of steroid hormones in the testis. These steroids, including testosterone, DHT and DHP, are essential for spermatogenesis, for the development of primary and secondary male sexual characteristics and for the maintenance of male fertility. The steroid levels produced by these cells must be tightly regulated throughout fetal and adult life. In addition to synthesizing steroids, steroidogenesis produces a significant amount of reactive oxygen species (ROS), which in turn disrupt steroid production. Our lab has recently identified the presence of a novel transcription factor, myocyte enhancer factor 2 (MEF2), in the mouse testis, throughout fetal and adult life. MEF2 factor is an important regulator of organogenesis and cell differentiation in various tissues and was first identified in the heart and the brain. Initially, my Ph.D. work highlights the key role of MEF2 factor in the regulation of gene expression in the MA-10 Leydig cell line. Secondly, my work characterized the role of MEF2 in the regulation of genes involved in cellular detoxification mechanisms, which seek the elimination of ROS produced by steroidogenesis. The transcription factor MEF2 regulates, alone or in cooperation with the Ca2+/calmodulin-dependent protein kinase I (CAMKI), the expression of Gsta1 gene that encodes for an antioxidant enzyme, glutathione S-transferase A1. Furthermore, MEF2 is not the sole transcription factor present in Leydig cells and the cooperation between different transcription factors allows for proper regulation of steroidogenic gene expression. Thereby, the third part of my Ph.D. work highlighted a new cooperation between two transcription factors, MEF2 and COUP-TFII in MA-10 Leydig cells. In these cells, MEF2 and COUP-TFII cooperate to regulate Akr1c14 gene expression. This gene encode for a 3α-hydroxysteroid dehydrogenase that regulates the bioavailabilities of DHP and DHT, which are potent steroids. In conclusion, my work identifies novel important roles for MEF2 factor in the expression of genes involved in the maintenance and regulation of Leydig cell functions.
APA, Harvard, Vancouver, ISO, and other styles
37

Tangirala, Padmavathi. "Regulation of MEF2 transcription factors by components of the MAP kinase and PKC signal transduction pathways." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ33512.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cardoso, Alisson Campos 1983. "FAK interage com MEF2 e ativa região intronica regulatoria do fosfolamban em resposta ao estimulo mecanico." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/310213.

Full text
Abstract:
Orientador: Kleber Gomes Franchini
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-11T19:13:47Z (GMT). No. of bitstreams: 1 Cardoso_AlissonCampos_M.pdf: 1504948 bytes, checksum: 1996e50c40d74c7a53a5058831fb03ab (MD5) Previous issue date: 2008
Resumo: Estudos anteriores demonstraram que em miócitos cardíacos submetidos a estímulos mecânicos ocorre pronta fosforilação e ativação da FAK. Resultados de estudos recentes, realizados em corações de ratos indicaram que em resposta a estímulos mecânicos, a FAK, além de ser ativada, localiza-se no núcleo dos miócitos cardíaco. Estudos conduzidos em corações de ratos Wistar adultos, utilizando a técnica de Imunoprecipitação de cromatina (ChIP) com anticorpo anti- FAK, identificaram uma seqüência intrônica de 182pb do gene fosfolambam (plnil), contendo sítio para a ligação do fator de transcrição MEF2. Portanto, no presente estudo, investigamos se a região intrônica do gene que codifica o fosfolamban tem função regulatória transcricional. Utilizando técnicas de EMSA (Ensaio de retardamento da mobilidade eletroforética), ensaios de Precipitação e de gene reporter, avaliamos a interação entre a FAK e plnil além da função regulatória transcricional dessa seqüência. Como resultado, demonstramos que ocorre pronta ativação da FAK e seu acúmulo no núcleo de miócitos cardíacos de ventrículo esquerdo de ratos submetidos a coarctação da aorta. Através de ensaios de EMSA, demonstramos que proteínas nucleares de ventrículo esquerdo de ratos submetidos a sobrecarga pressórica, apresentaram um aumento na interação com a sonda plni1 em relação aqueles de ratos controles. Também, ensaios de EMSA indicaram uma interação entre MEF2 e a sonda plnil, mas não entre a FAK ou seus domínios (FERM e Cterminal) com a sonda plnil. Ensaios de precipitação com fragmentos recombinantes da FAK (GST-FERM e GSTCterminal) com extratos nucleares de coração de ratos coarctados indicaram uma associação entre FAK e MEF2. Ensaios adicionais demonstraram que a interação entre FAK e MEF2 é dependente do domínio Cterminal e do estado fosforilado da FAK. Estudos de transfecção com gene reporter, utilizando plasmídeo contendo a seqüência plnil, em cultura de miócitos cardíacos submetidos ao estiramento, demonstraram que a região intrônica plnil possui função regulatória transcricional e esse papel é dependente da ligação do fator de transcrição MEF2 ao seu sítio específico no DNA. Portanto, esses dados indicam que FAK e MEF2 podem estar envolvidos na regulação da expressão do gene pln através de regulação mediado pela região intrônica plnil.
Abstract: Previous studies have shown that mechanical stress induces phosphorylation and activation of FAK in cardiac myocytes. Recent studies carried out in rat overloaded hearts indicated that FAK re-locates in the nucleus of the cardiac myocytes. By assays in the nuclei of overloaded cardiac myocytes with chromatin immunoprecipitation (ChIP) approach with anti-FAK antibody, we identified an intronic sequence of phospholamban gene (plnil), containing a MEF2 consensus site. In the present study, we investigated whether Plnil has any regulatory function in the pln. To accomplish this, we combinated techniques such as EMSA (Electrophoreses Mobility Shift Assay), reporter gene and pulldown assays. FAK was shown to be rapidly activated and to accumulate in the nuclei of cardiac myocytes taken from overloaded left ventricle. Using EMSA assays, we demonstrated that nuclear extracts of left ventricle rats overloaded, interacted with the plnil probe. EMSA assays, also indicated an interaction between MEF2 and the plnil probe, but no interaction was found between FAK or its domains (FERM and Cterminal) with the plni1. Pulldown assays with FAK recombinant fragments (GST-FERM and GST-Cterminal) and nuclear extracts from left ventricle overloaded indicated that FAK and MEF2 physically interact through FAK Cterminal domain. Reporter gene assays, using a construction of plnil coupled luciferase transfected to cardiac myocytes culture underwent stretching, had demonstrated that the intronic region has transcriptional regulatory function and this role is dependent of the transcription factor MEF2 binding site in the DNA. Therefore, these data indicate that FAK and MEF2 interact in the nuclei of cardiac myocytes and that FAK/MEF2 complex may regulate phospholamban gene expression through the plnil.
Mestrado
Medicina Experimental
Mestre em Fisiopatologia Médica
APA, Harvard, Vancouver, ISO, and other styles
39

Tomc, Lyn Kathryn. "Role of MEF2 proteins in the activation of the c-jun and MCK genes in skeletal muscle /." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0018/MQ56210.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kobarg, Claudia Bandeira. "Expressão e regulação dos fatores de transcrição da familia MEF2 em miocitos cardiacos submetidos a estimulo mecanico." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/310230.

Full text
Abstract:
Orientador: Kleber Gomes Franchini
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-04T04:26:43Z (GMT). No. of bitstreams: 1 Kobarg_ClaudiaBandeira_D.pdf: 12392053 bytes, checksum: 66c2ce6a08c2f6b19b841868e0e5815d (MD5) Previous issue date: 2005
Resumo: As proteínas da família MEF2 são fatores de transcrição do tipo MADS-box que desempenham papéis importantes na regulação da miogênese e da morfogênse do miocárdio. Trabalhos desenvolvidos no nosso laboratório anteriormente, demonstraram que a rápida ativação de MEF2 por estímulo hipertrófico exerce um papel principal na ativação de c-jun, sugerindo sua importância na regulação da expressão de genes de resposta imediata por estímulo hipertrófico. o presente trabalho teve como objetivo estudar a expressão e regulação dos fatores MEF2 frente à sobrecarga mecânica. Foi demonstrado que os fatores MEF2 são ativados em resposta à sobrecarga mecânica em coração de rato. Essa ativação não ocorreu por um aumento na expressão de MEF2, mas provavelmente, por alguma modificação póstranscricional na proteína, aumentando assim a afinidade ao seu DNA consenso em ensaio de EMSA o método de duplo-híbrido em levedura foi utilizado para encontrar proteínas que interajam com MEF2 e atuem na sua regulação em resposta ao estímulo mecânico. Numa triagem de biblioteca de coração de rato previamente submetido à coarctação da aorta com uma "isca" de MEF2C, foram encontrados 4 c1ones de cDNA contendo a região C-terminal de miosina de cadeia pesada e 4 c1onescontendo a região Nterminal da proteína regulatória Ki-1I57. A interação entre MEF2C e miosina foi confirmada por imunoprecipitação em coração de rato e a interação entre MEF2C e Ki-1I57 foi confirmada por imunoprecipitação, ensaio de co-precipitação e análise microscópica de imunolocalização. A interação entre MEF2 e Ki-1I57 é dependente de estímulo mecânico no coração. Um ensaio de imunoprecipitação com anticorpo anti-MEF2 demonstrou uma associação basal entre essas duas proteínas no ventrículo esquerdo de ratos controle. No entanto, o estímulo mecânico causou uma redução significativa nesta associação. Ki-l/57 se apresentou co-Iocalizado com MEF2 no núcleo de miócitos de ratos controle. Porém, ao submeter ratos a coarctação da aorta, essa co-Iocalização não foi mais observada no núcleo dos miócitos. Ki-1I57 também exerce um efeito inibitório sobre a ligação de MEF2 a sua região consenso de DNA em ensaio de EMSA Esses resultados sugerem que a interação de Ki-l/57 com :MEF2é inibitória e que esteja envolvida com a regulação de MEF2 em resposta ao estímulo mecânico no coração
Abstract: The MEF2 proteins family is composed of MADS box transcription factors that plays important roles in the regulation of myogenesis and morphogenesis of myocardium. Previous work developed in our laboratory showed that the early activation of MEF2 proteins by mechanical overload plays a main role in the actívation of c-jun, suggestíng its importance in the regulation of irnmediate early genes response to mechanical overload The present work objective was to study the expression and regulatíon of MEF2 factors in face of mechanical overload. 1t was demonstrated that the MEF2 factors are activated in response to mechanical overload in rat heart This activation did not occur by an increase in MEF2 expression, but probably by some kind of post-transcriptíonal modification in the protein, raising the affinity ofMEF2 to its DNA in EMSA experiments. The yeast two-hybrid system was used to find proteins that interact with MEF2 and act in its regulation in response to mechanical overload In a rat heart library screening witb MEF2C as bait, four cDNA c1ones encoding a C-terminal region of Myosin Heavy Chain were isolated, as well as four c1ones encoding the N-terminaI region of the regulatory protein Ki-l/57. Tbe interaction between MEF2C and myosin was confirmed by irnmunoprecipitation in rat beart and the interactíon between MEF2C and Ki-1I57 was confirmed by immunoprecipitation, pull down assay and immunlocalization by laser confocaI microscopic analysis. The interactíon of :MEF2with Ki-l/57 is dependent on mechanical overload in the beart. An immunoprecipitation assay using anti-MEF2 antibody sbowed a basal association between these two proteins in left ventric1eof control rats. However, the mecbanical overload caused a significant reduction in this association. Ki-l/57 co-Iocalizes with MEF2 in the nuc1eusof myocytes of control rats. On the other hand, after submitting the animais to transverse aortic constriction, this co-Iocalization in the nucleus was no longer observed. Ki-1I57 also exerts an inhibitory effect upon MEF2C's DNA binding activity. These results suggest that the interaction between MEF2 and Ki-l/57 is inhibitory and that it may be involved in the regulation ofMEF2 in response to mechanical stimulus in the heart
Doutorado
Medicina Experimental
Doutor em Fisiopatologia Medica
APA, Harvard, Vancouver, ISO, and other styles
41

Jabet, Carole. "L'expression génique au sein du tissu musculaire squlettique : analyse du complexe multigénique codant les isoformes de chaînes lourdes de myosine humaines : étude des mécanismes de régulation transcriptionnelle du gêne codant l'énolase beta de souris, ex vivo." Châtenay-Malabry, Ecole centrale de Paris, 1996. http://www.theses.fr/1996ECAP0492.

Full text
Abstract:
Les processus de détermination myogénique et de différenciation au sein du tissu musculaire squelettique, peuvent être abordés par l'étude de l'expression de gènes qui codent des protéines de structure comme les isoformes de chaine lourde de myosine (MyHC) ou du métabolisme comme la sous-unité béta de l'énolase (enzyme de la glycolyse), spécifiques de ce tissu. Afin de voir s'il existe une corrélation entre la position des 5 gènes MyHC squelettiques humains groupés sur le chromosome 17 et leur expression temporelle, nous nous sommes intéressés à la régulation transcriptionnelle du gène MyHC embryonnaire. Nous avons aussi étudié la régulation transcriptionnelle du gene de l'enolase beta de souris en culture. Nous avons caracterise un promoteur proximal de 120 paires de bases actif dans les myoblastes et les fibroblastes et inactif dans les myotubes et un amplificateur de 230 paires de bases spécifique du stade myotube, très conservé entre l'homme et la souris, localisé à l'extrémité 3' du premier intron du gène de l'enolase béta. L'activation transcriptionnelle de ce gène dans les myotubes dépend d'interactions multiples entre des facteurs activateurs des familles MEF2 et MYoD, fixés sur l'amplificateur musculaire intronique, et des facteurs transcriptionnels ubiquitaires des familles Nf1 et Sp1, fixés sur le promoteur.
APA, Harvard, Vancouver, ISO, and other styles
42

Chetty, Kovin Ashley. "Involvement of p300 in caffeine-induced hyper-acetylation of histones at the MEF2 binding domain on the Glut4 gene." Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/3068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Caine, Charlotte. "Etude des interactions entre MEF2 et la voie de signalisation Notch au cours de la myogenèse adulte chez Drosophila melanogaster." Paris 7, 2012. http://www.theses.fr/2012PA077248.

Full text
Abstract:
La myogenèse des muscles indirects du vol (IFM) chez Drosophila melanogaster suit un schéma développemental précis. Au cours de l'embryogenèse, un groupe de cellules, les Précurseurs adultes Musculaires (AMP) se spécifient. Ces cellules deviennent des myoblastes qui prolifèrent au cours des stades larvaires et donneront par la suite les IFM adultes. Nos travaux se sont concentrés sur les interactions requises lors de la transition de myoblastes qui prolifèrent au statut de myoblaste différencié prêt à fusionner à la fibre musculaire. Il a été montré que les myoblastes qui prolifèrent ont une voie Notch active et que cette voie est inhibée dans les fibres en cours de différenciation. De plus, il a également été montré que les facteurs de transcription Myocyte Enhancer Factor 2 (MEF2), Vestigial (VG) et Scalloped (SD) sont nécessaires pour le développement des IFM et que VG est requis pour la répression de la voie Notch dans les fibres. Cette étude porte sur les interactions entre la voie Notch et MEF2 et les mécanismes mis en jeu pour réprimer la voie au cours de la différenciation. Nous avons montré que MEF2 peut réprimer la voie Notch dans des contexgtes non-musculaires. En utilisant un crible récent pour identifier des cibles potentielles de MEF2, nous avons cherché ceux qui sont également des cibles de SD. Parmi les résultats, deux cibles ont présenté un intérêt particulier, Delta et neuralized, deux composants de la voie de signalisation Notch. Nos résultats montrent dans un contexte ex vivo que les séquences enhancers de DI et neur sont régulées par MEF2/SD et MEF2/NOTCH respectivement. In vivo ces enhancers sont actifs dans les fibres des IFM en cours de différenciation pour DI et au cours de la différentiation tardive pour neur. Au cours de ma thèse, j'ai pu étudier l'effet de MEF2 sur la régulation de ces cibles pour comprendre leur rôle au cours de la différentiation des IFM
Myogenesis of indirect flight muscles (IFM) in Drosophila melanogaster follows a well defined cellular developmental scheme. During embryogenesis, a subset of cells, the Adult Muscle Precursors (AMPs), are specified. These cells will become proliferating myoblasts during the larval stages which will then give rise to the adult IFM. Our work focused on the interactions required during the transition between proliferating myoblasts to differentiated myoblasts ready to fuse to the muscle fiber. It has been previously shown that proliferating myoblasts express the Notch pathway, and that this pathway is inhibited in developing muscle fibers. On the other hand, it has also been shown that the Myocyte Enhancing Factor 2 (MEF2), Vestigial (VG) and Scalloped (SD) transcription factors are necessary for IFM development and that VG is required for Notch pathway repression in differentiating fibers. Our study focuses on the interactions between Notch and MEF2 and mechanisms by which the Notch pathway is inhibited during differentiation. Here we show that MEF2 is capable of inhibiting the Notch pathway in non myogenic cells. A previous screen for MEF2 potential targets identified Delta and Neuralized, two components of the Notch pathway. Both are expressed in developing fibers where MEF2, SD and VG are expressed. Our preliminary results show that MEF2 is required for Delta expression in developing IFMs and that this regulation is potentially dependent on an enhancer to which MEF2 and SD bind. We have identified a similar neuralized enhancer that seems to be potentially regulated by MEF2 and NICD. During my thesis I studied the effect of MEF2 on these targets in vivo and in vitro to understand the rote they play during IFM differentiation
APA, Harvard, Vancouver, ISO, and other styles
44

Colomer-Lahiguera, Sara 1981. "The role of CDKN1B-p27kip1 deregulation in the pathogenesis of pediatric T-cell acute lymphoblastic leukemia." Doctoral thesis, Universitat Pompeu Fabra, 2015. http://hdl.handle.net/10803/523487.

Full text
Abstract:
T-cell acute lymphoblastic leukemia (T-ALL) accounts for 10 15% of pediatric ALL. The oncogenic transformation of T-cell precursors is driven by a broad spectrum of genetic abnormalities. We have confirmed the high frequency of heterozygous loss of the haploinsufficient tumor suppressor CDKN1B in pediatric T ALL samples as well as its reduced transcription also in patients without any evidence of CDKN1B deletions. Although we did not find a correlation between alterations in genes involved in CDKN1B regulation and frequently mutated in T ALL and low CDKN1B transcript levels, we determined that CDKN1B-deleted patients have a significantly lower incidence of CDKN2A/B deletions and preferentially arise in immature/MEF2C-dysregulated T ALL. We also show that MEF2C overexpression is not exclusively found in early immature T ALL but is significantly associated with a poor response to glucocorticoid treatment. Furthermore, we investigated the effects of two small molecule inhibitors of SKP2 alone and in combinations with other therapeutic agents in T ALL cell lines. Our results highlight the importance of defining the cell type-specific and genetic background-dependent biological effects of such compounds.
La leucemia linfoblástica aguda de células T (LLA-T) representa el 10 15% de las leucemias pediátricas. La transformación oncogénica de precursores de células T es causada por un amplio espectro de complejas anomalías genéticas. En nuestro estudio hemos podido confirmar la alta frecuencia de la pérdida heterocigota del gen supresor de tumores CDKN1B en muestras de LLA-T pediátrica así como su reducida transcripción en pacientes que no mostraban evidencia de deleciones en CDKN1B. A pesar de no hallar una correlación entre alteraciones en genes involucrados en la regulación de CDKN1B, y frecuentemente mutados en LLA-T, y los bajos niveles de CDKN1B, determinamos que los pacientes que presentan deleción en CDKN1B tienen una menor incidencia de deleciones en CDKN2A/B y muestran una mayor preferencia por los subtipos inmaduros/MEF2C-desregulados de LLA-T. También demostramos que la sobrexpresión de MEF2C no se encuentra limitada exclusivamente al subtipo “precursor temprano T”, pero sí está significativamente asociada con una pobre respuesta al tratamiento con glucocorticoides. Además, investigamos los efectos de dos moléculas inhibidoras de SKP2, solas o en combinación con otros agente terapéuticos, en líneas celulares de LLA-T. Nuestros resultados resaltan la importancia de definir el trasfondo genético y especificidad celular de los efectos biológicos producidos por dichos compuestos.
APA, Harvard, Vancouver, ISO, and other styles
45

Dutrieux, Francois Xavier. "Etude du rôle des proteines QkiA et QkiC dans la myofibrillogénèse précoce et la maturation des fibres musculaires lentes chez le Poisson Zèbre." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066576/document.

Full text
Abstract:
Chez le poisson zèbre, le muscle squelettique axial est composé de deux types de fibres musculaires différentes, les fibres lentes et les fibres rapides, organisées le long de l’axe antéro-postérieur et délimités par des frontières somitiques. Les cellules cuboïdes adaxiales, précurseurs des fibres lentes, sont les premières cellules musculaires à se différencier. En cours de somitogenèse elles s’allongent et migrent à partir de la notochorde radialement vers l’extérieur du somite formant une couche monocellulaire de fibres lentes mononuclées. Au sein de ces précurseurs en cours de réarrangement, se déroule l’initiation de la myofibrillogénèse. Ces premières étapes de formation des myofibrilles sont peu connues et nous aimerions comprendre les mécanismes sous-jacents liés à cette initiation. La structure et la composition du sarcomère sont conservées au cours de l’évolution, offrant la possibilité d’utiliser le poisson zèbre comme model afin de mieux comprendre les processus de myofibrillogénèse chez les Vertébrés et potentiellement d’expliquer l’origine des Myopathies Myofibrillaires qui affectent le développement des myofibrilles chez l’Homme. Récemment, nous avons montré que la perte de fonction la protéine Quaking A chez le poisson zèbre perturbait, entre autre, la maturation finale des fibres musculaires lentes. Cette protéine de liaison aux ARN fait partie de la famille des protéines à domaine STAR, elle possède généralement d’autres isoformes chez les Vertébrés. Au cours de ma thèse, j’ai identifié chez le poisson zèbre, par comparaison de séquence in silico, un homologue du gène qkiA que nous avons nommé qkiC. L’expression des gènes qkiA et qkiC est recouvrante sur le territoire des cellules adaxiales. Bien que la perte de fonction de QkiC n’ait aucuns effets sur développement des fibres lentes, la perte de fonction conjointe de QkiA et QkiC induit un phénotype cellulaire autonome sévère et ce, dès les stades précoce de myofibrillogénèse. Ensemble nos données suggèrent une interaction fonctionnelle des deux homologues dans les cellules adaxiales que nous avons cherché à comprendre et à décrire. Un phénotype similaire est induit par la perte de fonction des protéines Mef2C/D, Nous avons montré que ces deux voies agissent en parallèle afin d’initier et d’accompagner le programme de myofibrillogénèse. A 24hpf, une accumulation des protéines de Myosine et une dissection/désolidarisation des filaments épais sont observées dans les fibres lentes, fortement lié à une destruction importante de la bande-Z. Ces phénotypes sont similaires à ceux utilisés par les pathologistes pour décrire les Myopathies Myofibrillaires. Ainsi, notre étude montre un nouveau type de régulation précoce de la myofibrillogénèse et offre un model potentiel pour étudier chez le poisson zèbre les myopathies myofibrillaire
In zebrafish, myotomes are organized along the antero-posterior axis within repeated units called somites. Contractile fibers are subdivided into two muscle cell types, the slow muscle fibers and the fast muscle fibers. The slow muscle cells are located on the surface of the embryo body while the fast muscle cells are located deeper in the somite, underneath the slow muscle cells. Myogenesis correspond to transitions from unspecified mesodermal cells to mature and functional muscle fibers. These cellular transitions have been extensively studied. However relatively little is known about early developmental mechanisms that are required to form premyofibrils, neither about maturation processes, during which premyofibrils evolved in contractile myofibers. This process called myofibrillogenesis involved a dynamic assembly of the elementary components of the sarcomere that occurred first in adaxial cells, the muscle precursors of slow muscle fibers. Here we show that QkiA and QkiC, two RNA-binding proteins with STAR domain, are required during the early step of myofibrillogenesis where Moysin proteins are not correctly assembled. This early phenotype leads to a strong and specific alteration in the maturation of thick Myosin filaments at 24hpf. The combined QkiA/QkiC loss of function induced a dissection of thick filaments followed by the accumulation of Myosin proteins at the tip of slow muscle cells in a cell autonomous manner. Interestingly, the loss of function of Mef2C/D, two myogenic enhancers from the same family, induced a similar phenotype. However we have shown that Quaking and Mef2 proteins act in parallel ways to control and regulate myofibrillogenesis. Remarkably, we have seen that the accumulation of Myosin, the dissection of thick filaments and the alteration of the Z-disk, induced by QkiA/C loss of function, are the pathologic phenotypes found in Human Myofibrillar Myopathies (MFM). This subgroup of myopathies has been created recently and very few is known about mechanisms involved in those diseases. We propose that QkiA and QkiC is another regulated system that is required to initiated and maintained myofibrillogenesis
APA, Harvard, Vancouver, ISO, and other styles
46

Relat, Pardo Joana. "Control transcripcional i al·lostèric del gen carnitina palmitoïl-transferasa 1B(CPT1B)." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/1049.

Full text
Abstract:
CATALÀ:

L'enzim carnitina palmitoïltransferasa1 (CPT1), localitzat a la membrana mitocondrial externa, constitueix el principal punt de control de l'entrada d'àcids grassos de cadena llarga (LCFA) al mitocondri i és clau en el manteniment d'àcids grassos circulants. Existeixen tres isotips descrits (CPT1A, CPT1B i CPT1C) que codifiquen per enzims amb diferents característiques cinètiques i patrons d'expressió.

1.- Mecanismes de control transcripcional del gen CPT1B humà.

El promotor humà de la CPT1B inclou un element de resposta a PPAR i un lloc d'unió a MEF-2. Hem investigat el paper d'aquests elements de resposta i la possible interacció entre PPARα i MEF2C en la regulació transcripcional d'aquest promotor. Dels resultats obtinguts podem concloure que la resposta del promotor a PPARα depèn: del context cel·lular, de l'element de resposta a MEF-2 i de la disposició espacial d'aquest respecte al PPRE. La combinació d'aquests elements cis en el promotor de la CPT1B indueix l'expressió màxima del gen en resposta a diferents senyals. La concurrència de senyals metabòlics i miogènics en aquest promotor genera una conformació transcripcional permissiva d'aquest promotor que porta a una activació sinèrgica del promotor en aquells teixits on es troben els corresponents factors de transcripció (MEF2C, PPARα/RXRα) i el substrat metabòlic de l'enzim, els àcids grassos que activen PPARα. En la mateixa una regió promotor una zona rica en GC capaç d'unir Sp1 ha resultat fonamental per l'expressió basal del gen i per la transactivació per PPARα però no per la de PPARδ.

2.- Relació estructura/funció de l'enzim CPT1 de porc.

A nivell cinètic, les CPT1A mostren una alta afinitat per la carnitina i una baixa sensibilitat al malonil-CoA mentre que les CPT1B presenten característiques contràries. Una excepció a aquesta relació és la CPT1A de porc (PLCPT1) que es comporta com una quimera natural entre els isotips A i B, presentant afinitats pels substrats similars a les CPT1A i una IC50 pel malonil-CoA típica de les CPT1B.

Utilitzant quimeres entre la CPT1A de rata i la CPT1A de porc hem demostrat que l'extrem C-terminal de les CPT1A es comporta com un únic domini que dicta la sensibilitat total a malonil-CoA de l'enzim. El grau de sensibilitat a l'inhibidor ve determinat per l'estructura adoptada per aquest domini. Utilitzant mutants delecionats hem mostrat que la sensibilitat a malonil-CoA també depèn de la interacció d'aquest únic domini carboxil amb els primers 18 aminoàcids de la proteïna. D'aquests resultats podem concloure que les CPt1A de rata i porc presenten diferent sensibilitats a malonil-CoA perquè els primers 18 aminoàcids dels enzims interaccionen diferent amb el domini C-terminal.

Hem aïllat l'isotip muscular de la CPT1 de porc (PMCPT1), una proteïna de 772 aminoàcids molt similar a les CPT1B. Expressada en Pichia pastoris la CPt1B de porc ha resultat ser un enzim amb característiques cinètiques pròximes a les CPT1A.

3.- Efecte de C75 sobre el sistema CPT.

Els enzims CPT1 i CPT2 són components del sistema llançadora CPT. Aquest sistema es troba finament regulat pels nivells de malonil-CoA, un inhibidor reversible de la CPT1. Per la seva capacitat d'inhibir la sintasa d'àcids grassos (FAS), el C75 és capaç d'incrementar els nivells intracel·lular de malonil-CoA intracel·lular. Paradoxalment també activa l'oxidació d'àcids grassos de cadena llarga. Per tal d'identificar la diana exacta del C75 en el sistema CPT vam analitzar l'activitat enzimàtica de CPT1A, CPT1B i CPT2 davant el tractament amb C75. Els resultats d'aquests experiments indiquen que el C75 actua sobre el sistema CPT activant CPT1A, CPT1B i CPT2 de manera independent de malonil-CoA.
The outer mitochondrial membrane enzyme carnitine palmitoyltransferase1 (CPTI) catalyzes the initial and regulatory step in the β-oxidation of long-chain fatty acids. There are three characterized isotypes: CPT1A, CPT1B and CPT1C.

The human CPT1B promoter includes a functional PPAR responsive element and a myocite-specific site that binds MEF2C. We investigated the roles of these sites and the potential interaction between PPARα and MEF2C regulating this promoter. The combination of cis elements in the promoter of the CPT1B maximally induces the expression of this gene in response to a combination of signals. The concurrence of myogenic and metabolic signals generates a transcriptionally permissive conformation of the promoter that gives rise to a synergistic transcription of the gene in tissues containing the corresponding transcription factors and fatty acids that activate PPARα.

Kinetic hallmarks of the CPT1A are high affinity for carnitine and low sensitivity to malonyl-CoA inhibition, while the opposite characteristics are intrinsic to the CPT1B isotype. Pig and rat CPT1A share common Km values for their substrates but differ in their sensitivity to malonyl-CoA inhibition. Using chimeras between rat CPT1A and pig CPT1A, we show that the C-terminal region behaves as a single domain, which dictates the overall malonyl-CoA sensitivity of this enzyme. Using deletion mutation analysis, we show that malonyl-CoA sensitivity also depends on the interaction of this single domain with the first 18 N-terminal amino acid residues. Pig and rat CPT1A have different malonyl-CoA sensitivity, because the first 18 N-terminal amino acids interact differently with the C-terminal domain.

Pig CPT1B is a protein of 772 amino acids that shares extensive sequence identity with CPT1B. Expressed in Pichia pastoris, pig CPT1B shows kinetic characteristics similar to those of the CPT1A isotype.

CPT1 and CPT2 enzymes are components of the CPT shuttle system. This system is tightly regulated by malonyl-CoA. Because of its ability to inhibit fatty acid synthase, C75 is able to increase malonyl-CoA intracellular levels. Paradoxically it also activates β-oxidation. To identify the exact target of C75 within the CPT system, we expressed CPT1 and CPT2 in Pichia pastoris. We show that C75 acts on recombinant CPT1A, CPT1B and CPT2.
APA, Harvard, Vancouver, ISO, and other styles
47

Fair, Joel Vincent. "Gli2 Accelerates Cardiac Progenitor Gene Expression During Mouse Embryonic Stem Cell Differentiation." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31579.

Full text
Abstract:
The Hedgehog (HH) signalling pathway and its primary transducer, GLI2, regulate cardiomyogenesis in vivo and in differentiating P19 embryonal carcinoma (EC) cells. To further assess the role of HH signalling during mouse embryonic stem (mES) cell differentiation, we studied the effects of GLI2 overexpression during mES cell differentiation. GLI2 overexpression resulted in temporal enhancement of cardiac progenitor genes, Mef2c and Nkx2-5, along with enhancement of Tbx5, Myhc6, and Myhc7 in day 6 differentiating mES cells. Mass spectrometric analysis of proteins that immunoprecipitate with GLI2 determined that GLI2 forms a complex with BRG1 during mES cell differentiation. Furthermore, modulation of HH signalling during P19 EC cell differentiation followed by chromatin immunoprecipitation with an anti-BRG1 antibody determined that HH signalling regulates BRG1 enrichment on Mef2c. Therefore, HH signalling accelerates cardiac progenitor gene expression during mES cell differentiation potentially by recruiting a chromatin remodelling factor to at least one cardiac progenitor gene.
APA, Harvard, Vancouver, ISO, and other styles
48

Relat, Pardo Joana. "Control transcripcional i al.lostèric del gen carnitina palmitoïl-transferasa 1B(CPT1B)." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/1049.

Full text
Abstract:
CATALÀ:L'enzim carnitina palmitoïltransferasa1 (CPT1), localitzat a la membrana mitocondrial externa, constitueix el principal punt de control de l'entrada d'àcids grassos de cadena llarga (LCFA) al mitocondri i és clau en el manteniment d'àcids grassos circulants. Existeixen tres isotips descrits (CPT1A, CPT1B i CPT1C) que codifiquen per enzims amb diferents característiques cinètiques i patrons d'expressió.1.- Mecanismes de control transcripcional del gen CPT1B humà.El promotor humà de la CPT1B inclou un element de resposta a PPAR i un lloc d'unió a MEF-2. Hem investigat el paper d'aquests elements de resposta i la possible interacció entre PPARα i MEF2C en la regulació transcripcional d'aquest promotor. Dels resultats obtinguts podem concloure que la resposta del promotor a PPARα depèn: del context cel·lular, de l'element de resposta a MEF-2 i de la disposició espacial d'aquest respecte al PPRE. La combinació d'aquests elements cis en el promotor de la CPT1B indueix l'expressió màxima del gen en resposta a diferents senyals. La concurrència de senyals metabòlics i miogènics en aquest promotor genera una conformació transcripcional permissiva d'aquest promotor que porta a una activació sinèrgica del promotor en aquells teixits on es troben els corresponents factors de transcripció (MEF2C, PPARα/RXRα) i el substrat metabòlic de l'enzim, els àcids grassos que activen PPARα. En la mateixa una regió promotor una zona rica en GC capaç d'unir Sp1 ha resultat fonamental per l'expressió basal del gen i per la transactivació per PPARα però no per la de PPARδ. 2.- Relació estructura/funció de l'enzim CPT1 de porc.A nivell cinètic, les CPT1A mostren una alta afinitat per la carnitina i una baixa sensibilitat al malonil-CoA mentre que les CPT1B presenten característiques contràries. Una excepció a aquesta relació és la CPT1A de porc (PLCPT1) que es comporta com una quimera natural entre els isotips A i B, presentant afinitats pels substrats similars a les CPT1A i una IC50 pel malonil-CoA típica de les CPT1B. Utilitzant quimeres entre la CPT1A de rata i la CPT1A de porc hem demostrat que l'extrem C-terminal de les CPT1A es comporta com un únic domini que dicta la sensibilitat total a malonil-CoA de l'enzim. El grau de sensibilitat a l'inhibidor ve determinat per l'estructura adoptada per aquest domini. Utilitzant mutants delecionats hem mostrat que la sensibilitat a malonil-CoA també depèn de la interacció d'aquest únic domini carboxil amb els primers 18 aminoàcids de la proteïna. D'aquests resultats podem concloure que les CPt1A de rata i porc presenten diferent sensibilitats a malonil-CoA perquè els primers 18 aminoàcids dels enzims interaccionen diferent amb el domini C-terminal.Hem aïllat l'isotip muscular de la CPT1 de porc (PMCPT1), una proteïna de 772 aminoàcids molt similar a les CPT1B. Expressada en Pichia pastoris la CPt1B de porc ha resultat ser un enzim amb característiques cinètiques pròximes a les CPT1A. 3.- Efecte de C75 sobre el sistema CPT. Els enzims CPT1 i CPT2 són components del sistema llançadora CPT. Aquest sistema es troba finament regulat pels nivells de malonil-CoA, un inhibidor reversible de la CPT1. Per la seva capacitat d'inhibir la sintasa d'àcids grassos (FAS), el C75 és capaç d'incrementar els nivells intracel·lular de malonil-CoA intracel·lular. Paradoxalment també activa l'oxidació d'àcids grassos de cadena llarga. Per tal d'identificar la diana exacta del C75 en el sistema CPT vam analitzar l'activitat enzimàtica de CPT1A, CPT1B i CPT2 davant el tractament amb C75. Els resultats d'aquests experiments indiquen que el C75 actua sobre el sistema CPT activant CPT1A, CPT1B i CPT2 de manera independent de malonil-CoA.
The outer mitochondrial membrane enzyme carnitine palmitoyltransferase1 (CPTI) catalyzes the initial and regulatory step in the β-oxidation of long-chain fatty acids. There are three characterized isotypes: CPT1A, CPT1B and CPT1C. The human CPT1B promoter includes a functional PPAR responsive element and a myocite-specific site that binds MEF2C. We investigated the roles of these sites and the potential interaction between PPARα and MEF2C regulating this promoter. The combination of cis elements in the promoter of the CPT1B maximally induces the expression of this gene in response to a combination of signals. The concurrence of myogenic and metabolic signals generates a transcriptionally permissive conformation of the promoter that gives rise to a synergistic transcription of the gene in tissues containing the corresponding transcription factors and fatty acids that activate PPARα.Kinetic hallmarks of the CPT1A are high affinity for carnitine and low sensitivity to malonyl-CoA inhibition, while the opposite characteristics are intrinsic to the CPT1B isotype. Pig and rat CPT1A share common Km values for their substrates but differ in their sensitivity to malonyl-CoA inhibition. Using chimeras between rat CPT1A and pig CPT1A, we show that the C-terminal region behaves as a single domain, which dictates the overall malonyl-CoA sensitivity of this enzyme. Using deletion mutation analysis, we show that malonyl-CoA sensitivity also depends on the interaction of this single domain with the first 18 N-terminal amino acid residues. Pig and rat CPT1A have different malonyl-CoA sensitivity, because the first 18 N-terminal amino acids interact differently with the C-terminal domain. Pig CPT1B is a protein of 772 amino acids that shares extensive sequence identity with CPT1B. Expressed in Pichia pastoris, pig CPT1B shows kinetic characteristics similar to those of the CPT1A isotype. CPT1 and CPT2 enzymes are components of the CPT shuttle system. This system is tightly regulated by malonyl-CoA. Because of its ability to inhibit fatty acid synthase, C75 is able to increase malonyl-CoA intracellular levels. Paradoxically it also activates β-oxidation. To identify the exact target of C75 within the CPT system, we expressed CPT1 and CPT2 in Pichia pastoris. We show that C75 acts on recombinant CPT1A, CPT1B and CPT2.
APA, Harvard, Vancouver, ISO, and other styles
49

Voronova, Anastassia. "The Transcriptional Regulation of Stem Cell Differentiation Programs by Hedgehog Signalling." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23223.

Full text
Abstract:
The Hedgehog (Hh) signalling pathway is one of the key signalling pathways orchestrating intricate organogenesis, including the development of neural tube, heart and skeletal muscle. Yet, insufficient mechanistic understanding of its diverse roles is available. Here, we show the molecular mechanisms regulating the neurogenic, cardiogenic and myogenic properties of Hh signalling, via effector protein Gli2, in embryonic and adult stem cells. In Chapter 2, we show that Gli2 induces neurogenesis, whereas a dominant-negative form of Gli2 delays neurogenesis in P19 embryonal carcinoma (EC) cells, a mouse embryonic stem (ES) cell model. Furthermore, we demonstrate that Gli2 associates with Ascl1/Mash1 gene elements in differentiating P19 cells and activates the Ascl1/Mash1 promoter in vitro. Thus, Gli2 mediates neurogenesis in P19 cells at least in part by directly regulating Ascl1/Mash1 expression. In Chapter 3, we demonstrate that Gli2 and MEF2C bind each other’s regulatory elements and regulate each other’s expression while enhancing cardiomyogenesis in P19 cells. Furthermore, dominant-negative Gli2 and MEF2C proteins downregulate each other’s expression while imparing cardiomyogenesis. Lastly, we show that Gli2 and MEF2C form a protein complex, which synergistically activates cardiac muscle related promoters. In Chapter 4, we illustrate that Gli2 associates with MyoD gene elements while enhancing skeletal myogenesis in P19 cells and activates the MyoD promoter in vitro. Furthermore, inhibition of Hh signalling in muscle satellite cells and in proliferating myoblasts leads to reduction in MyoD and MEF2C expression. Finally, we demonstrate that endogenous Hh signalling is important for MyoD transcriptional activity and that Gli2, MEF2C and MyoD form a protein complex capable of inducing skeletal muscle-specific gene expression. Thus, Gli2, MEF2C and MyoD participate in a regulatory loop and form a protein complex capable of inducing skeletal muscle-specific gene expression. Our results provide a link between the regulation of tissue-restricted factors like Mash1, MEF2C and MyoD, and a general signal-regulated Gli2 transcription factor. We therefore provide novel mechanistic insights into the neurogenic, cardiogenic and myogenic properties of Gli2 in vitro, and offer novel plausible explanations for its in vivo functions. These results may also be important for the development of stem cell therapy strategies.
APA, Harvard, Vancouver, ISO, and other styles
50

XU, JIAN. "TRANSCRIPTIONAL REGULATION OF CARDIAC HYPERTROPHY AND HEART FAILURE." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1148396901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!