Academic literature on the topic 'Median regression, quantile regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Median regression, quantile regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Median regression, quantile regression"
Koenker, Roger, and Kevin F. Hallock. "Quantile Regression." Journal of Economic Perspectives 15, no. 4 (November 1, 2001): 143–56. http://dx.doi.org/10.1257/jep.15.4.143.
Full textAviral, Kumar Tiwari, and Krishnankutty Raveesh. "Determinants of Capital Structure: A Quantile Regression Analysis." Studies in Business and Economics 10, no. 1 (April 1, 2015): 16–34. http://dx.doi.org/10.1515/sbe-2015-0002.
Full textCAI, YUZHI. "A COMPARATIVE STUDY OF MONOTONE QUANTILE REGRESSION METHODS FOR FINANCIAL RETURNS." International Journal of Theoretical and Applied Finance 19, no. 03 (April 21, 2016): 1650016. http://dx.doi.org/10.1142/s0219024916500163.
Full textChiu, Yohann Moanahere, Fateh Chebana, Belkacem Abdous, Diane Bélanger, and Pierre Gosselin. "Cardiovascular Health Peaks and Meteorological Conditions: A Quantile Regression Approach." International Journal of Environmental Research and Public Health 18, no. 24 (December 16, 2021): 13277. http://dx.doi.org/10.3390/ijerph182413277.
Full textUTHAMI, IDA AYU PRASETYA, I. KOMANG GDE SUKARSA, and I. PUTU EKA NILA KENCANA. "REGRESI KUANTIL MEDIAN UNTUK MENGATASI HETEROSKEDASTISITAS PADA ANALISIS REGRESI." E-Jurnal Matematika 2, no. 1 (January 30, 2013): 6. http://dx.doi.org/10.24843/mtk.2013.v02.i01.p021.
Full textI. O., Ajao,, Obafemi, O. S., and Osunronbi, F.A. "MEASURING THE IMPACT OF TAU VECTOR ON PARAMETER ESTIMATES IN THE PRESENCE OF HETEROSCEDASTIC DATA IN QUANTILE REGRESSION ANALYSIS." INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER RESEARCH 11, no. 01 (January 31, 2023): 3220–29. http://dx.doi.org/10.47191/ijmcr/v11i1.15.
Full textConaway, Mark. "Reference data and quantile regression." Muscle & Nerve 40, no. 5 (October 13, 2009): 751–52. http://dx.doi.org/10.1002/mus.21562.
Full textPan, Wen-Tsao, and Yungho Leu. "An Analysis of Bank Service Satisfaction Based on Quantile Regression and Grey Relational Analysis." Mathematical Problems in Engineering 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/1475148.
Full textSánchez, Luis, Víctor Leiva, Helton Saulo, Carolina Marchant, and José M. Sarabia. "A New Quantile Regression Model and Its Diagnostic Analytics for a Weibull Distributed Response with Applications." Mathematics 9, no. 21 (November 1, 2021): 2768. http://dx.doi.org/10.3390/math9212768.
Full textOlsen, Cody S., Amy E. Clark, Andrea M. Thomas, and Lawrence J. Cook. "Comparing Least-squares and Quantile Regression Approaches to Analyzing Median Hospital Charges." Academic Emergency Medicine 19, no. 7 (July 2012): 866–75. http://dx.doi.org/10.1111/j.1553-2712.2012.01388.x.
Full textDissertations / Theses on the topic "Median regression, quantile regression"
RADAELLI, PAOLO. "La Regressione Lineare con i Valori Assoluti." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2004. http://hdl.handle.net/10281/2290.
Full textGuo, Mengmeng. "Generalized quantile regression." Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2012. http://dx.doi.org/10.18452/16569.
Full textGeneralized quantile regressions, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We denote $v_n(x)$ as the kernel smoothing estimator of the expectile curves. We prove the strong uniform consistency rate of $v_{n}(x)$ under general conditions. Moreover, using strong approximations of the empirical process and extreme value theory, we consider the asymptotic maximal deviation $\sup_{ 0 \leqslant x \leqslant 1 }|v_n(x)-v(x)|$. According to the asymptotic theory, we construct simultaneous confidence bands around the estimated expectile function. We develop a functional data analysis approach to jointly estimate a family of generalized quantile regressions. Our approach assumes that the generalized quantiles share some common features that can be summarized by a small number of principal components functions. The principal components are modeled as spline functions and are estimated by minimizing a penalized asymmetric loss measure. An iteratively reweighted least squares algorithm is developed for computation. While separate estimation of individual generalized quantile regressions usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 150 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations
Yu, Keming. "Smooth regression quantile estimation." Thesis, Open University, 1996. http://oro.open.ac.uk/57655/.
Full textSanches, Nathalie C. Gimenes Miessi. "Quantile regression approaches for auctions." Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8146.
Full textJeffrey, Stephen Glenn. "Quantile regression and frontier analysis." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/47747/.
Full textChao, Shih-Kang. "Quantile regression in risk calibration." Doctoral thesis, Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17223.
Full textQuantile regression studies the conditional quantile function QY|X(τ) on X at level τ which satisfies FY |X QY |X (τ ) = τ , where FY |X is the conditional CDF of Y given X, ∀τ ∈ (0,1). Quantile regression allows for a closer inspection of the conditional distribution beyond the conditional moments. This technique is par- ticularly useful in, for example, the Value-at-Risk (VaR) which the Basel accords (2011) require all banks to report, or the ”quantile treatment effect” and ”condi- tional stochastic dominance (CSD)” which are economic concepts in measuring the effectiveness of a government policy or a medical treatment. Given its value of applicability, to develop the technique of quantile regression is, however, more challenging than mean regression. It is necessary to be adept with general regression problems and M-estimators; additionally one needs to deal with non-smooth loss functions. In this dissertation, chapter 2 is devoted to empirical risk management during financial crises using quantile regression. Chapter 3 and 4 address the issue of high-dimensionality and the nonparametric technique of quantile regression.
Elseidi, Mohammed. "Quantile regression-based seasonal adjustment." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3423191.
Full textLiu, Xi. "Some new developments for quantile regression." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16204.
Full textKecojevic, Tatjana. "Bootstrap inference for parametric quantile regression." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/bootstrap-inference-for-parametric-quantile-regression(194021d5-e03f-4f48-bfb8-5156819f5900).html.
Full textWaldmann, Elisabeth Anna [Verfasser]. "Bayesian Structured Additive Quantile Regression / Elisabeth Waldmann." München : Verlag Dr. Hut, 2013. http://d-nb.info/1045126268/34.
Full textBooks on the topic "Median regression, quantile regression"
Hao, Lingxin, and Daniel Naiman. Quantile Regression. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 2007. http://dx.doi.org/10.4135/9781412985550.
Full textDavino, Cristina, Marilena Furno, and Domenico Vistocco. Quantile Regression. Oxford: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118752685.
Full textMarilena, Furno, and Vistocco Domenico. Quantile Regression. Chichester, UK: John Wiley & Sons Ltd, 2018. http://dx.doi.org/10.1002/9781118863718.
Full textHao, Lingxin. Quantile regression. Thousand Oaks, Calif: Sage Publications, 2007.
Find full textChernozhukov, Victor. Instrumental variable quantile regression. Cambridge, MA: Massachusetts Institute of Technology, Dept. of Economics, 2006.
Find full textCleophas, Ton J., and Aeilko H. Zwinderman. Quantile Regression in Clinical Research. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82840-0.
Full textMcMillen, Daniel P. Quantile Regression for Spatial Data. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31815-3.
Full textFitzenberger, Bernd, Roger Koenker, and José A. F. Machado, eds. Economic Applications of Quantile Regression. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-662-11592-3.
Full textChernozhukov, Victor. Quantile regression with censoring and endogeneity. Cambridge, MA: National Bureau of Economic Research, 2011.
Find full textLing, Wodan. Quantile regression for zero-inflated outcomes. [New York, N.Y.?]: [publisher not identified], 2019.
Find full textBook chapters on the topic "Median regression, quantile regression"
Cleophas, Ton J., and Aeilko H. Zwinderman. "Quantile Regression." In Regression Analysis in Medical Research, 453–67. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61394-5_27.
Full textFahrmeir, Ludwig, Thomas Kneib, Stefan Lang, and Brian Marx. "Quantile Regression." In Regression, 597–620. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34333-9_10.
Full textČížek, Pavel. "Quantile Regression." In XploRe® - Application Guide, 19–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57292-0_1.
Full textAwange, Joseph L., Béla Paláncz, Robert H. Lewis, and Lajos Völgyesi. "Quantile Regression." In Mathematical Geosciences, 359–404. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67371-4_12.
Full textHooten, Mevin B., and Trevor J. Hefley. "Quantile Regression." In Bringing Bayesian Models to Life, 205–20. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429243653-18.
Full textBuchinsky, Moshe. "Quantile Regression." In The New Palgrave Dictionary of Economics, 11065–73. London: Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_2795.
Full textBuchinsky, Moshe. "Quantile Regression." In The New Palgrave Dictionary of Economics, 1–9. London: Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_2795-1.
Full textBuchinksy, Moshe. "Quantile Regression." In Microeconometrics, 202–13. London: Palgrave Macmillan UK, 2010. http://dx.doi.org/10.1057/9780230280816_25.
Full textJurečková, Jana. "Regression Quantile and Averaged Regression Quantile Processes." In Analytical Methods in Statistics, 53–62. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51313-3_3.
Full textCleophas, Ton J., and Aeilko H. Zwinderman. "Kernel Regression Versus Quantile Regression." In Quantile Regression in Clinical Research, 241–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82840-0_25.
Full textConference papers on the topic "Median regression, quantile regression"
Formoso, Carolina Rodrigue, Raphael Machado Castilhos, Wyllians Vendramini Borelli, Matheus Zschornack Strelow, and Marcia Fagundes Chaves. "ANTICHOLINERGIC BURDEN IN DEMENTIA." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda031.
Full textHuang, Liqi, Xin Wei, Peikang Zhu, Yun Gao, Mingkai Chen, and Bin Kang. "Federated Quantile Regression over Networks." In 2020 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2020. http://dx.doi.org/10.1109/iwcmc48107.2020.9148186.
Full textKevin Michael Brannan and Donald Paul Butcher. "TMDL Development Using Quantile Regression." In TMDL 2010: Watershed Management to Improve Water Quality Proceedings, 14-17 November 2010 Hyatt Regency Baltimore on the Inner Harbor, Baltimore, Maryland USA. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.35780.
Full textBhat, Harish S., Nitesh Kumar, and Garnet J. Vaz. "Towards scalable quantile regression trees." In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7363741.
Full textNatesan Ramamurthy, Karthikeyan, Kush R. Varshney, and Moninder Singh. "Quantile regression for workforce analytics." In 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, 2013. http://dx.doi.org/10.1109/globalsip.2013.6737097.
Full textFagundes, Roberta A. A., Renata M. C. R. de Souza, and Yanne M. G. Soares. "Quantile regression of interval-valued data." In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900025.
Full textBallings, Michel, Dries Benoit, and Dirk Van den Poel. "RFM Variables Revisited Using Quantile Regression." In 2011 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2011. http://dx.doi.org/10.1109/icdmw.2011.148.
Full textDichandra, D., I. Fithriani, and S. Nurrohmah. "Parameter estimation of Bayesian quantile regression." In PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0059103.
Full textZhou Lihui. "Quantile regression model and application profile." In 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccasm.2010.5622905.
Full textde Oliveira, Augusto Born, Sebastian Fischmeister, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. "Why you should care about quantile regression." In the eighteenth international conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2451116.2451140.
Full textReports on the topic "Median regression, quantile regression"
Carlier, Guillaume, Alfred Galichon, and Victor Chernozhukov. Vector quantile regression. Institute for Fiscal Studies, December 2014. http://dx.doi.org/10.1920/wp.cem.2014.4814.
Full textLee, Sokbae (Simon), and Le-Yu Chen. Sparse Quantile Regression. The IFS, June 2020. http://dx.doi.org/10.1920/wp.cem.2020.3020.
Full textChetverikov, Denis, Yukun Liu, and Aleh Tsyvinski. Weighted-Average Quantile Regression. Cambridge, MA: National Bureau of Economic Research, May 2022. http://dx.doi.org/10.3386/w30014.
Full textGraham, Bryan, Jinyong Hahn, Alexandre Poirier, and James Powell. Quantile Regression with Panel Data. Cambridge, MA: National Bureau of Economic Research, March 2015. http://dx.doi.org/10.3386/w21034.
Full textPowell, James L., Alexandre Poirier, Bryan S. Graham, and Jinyong Hahn. Quantile regression with panel data. Institute for Fiscal Studies, March 2015. http://dx.doi.org/10.1920/wp.cem.2015.1215.
Full textKoenker, Roger. Quantile regression 40 years on. The IFS, August 2017. http://dx.doi.org/10.1920/wp.cem.2017.3617.
Full textChernozhukov, Victor, Tetsuya Kaji, and Ivan Fernandez-Val. Extremal quantile regression: an overview. The IFS, December 2017. http://dx.doi.org/10.1920/wp.cem.2017.6517.
Full textChernozhukov, Victor, Iván Fernández-Val, and Amanda Kowalski. Quantile Regression with Censoring and Endogeneity. Cambridge, MA: National Bureau of Economic Research, April 2011. http://dx.doi.org/10.3386/w16997.
Full textFernandez-Val, Ivan, Victor Chernozhukov, and Amanda Kowalski. Quantile regression with censoring and endogeneity. Institute for Fiscal Studies, May 2011. http://dx.doi.org/10.1920/wp.cem.2011.2011.
Full textCarlier, Guillaume, Alfred Galichon, and Victor Chernozhukov. Vector quantile regression: an optimal transport approach. Institute for Fiscal Studies, September 2015. http://dx.doi.org/10.1920/wp.cem.2015.5815.
Full text