Academic literature on the topic 'Mechanoreception'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanoreception.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mechanoreception"
Zhou, Yao, Li-Hui Cao, Xiu-Wen Sui, Xiao-Qing Guo, and Dong-Gen Luo. "Mechanosensory circuits coordinate two opposing motor actions in Drosophila feeding." Science Advances 5, no. 5 (May 2019): eaaw5141. http://dx.doi.org/10.1126/sciadv.aaw5141.
Full textMoayedi, Yalda, Masashi Nakatani, and Ellen Lumpkin. "Mammalian mechanoreception." Scholarpedia 10, no. 3 (2015): 7265. http://dx.doi.org/10.4249/scholarpedia.7265.
Full textSachs, Frederick. "Biophysics of Mechanoreception." Membrane Biochemistry 6, no. 2 (January 1986): 173–95. http://dx.doi.org/10.3109/09687688609065448.
Full textL�gier-Visser, M. F., J. G. Mitchell, A. Okubo, and J. A. Fuhrman. "Mechanoreception in calanoid copepods." Marine Biology 90, no. 4 (March 1986): 529–35. http://dx.doi.org/10.1007/bf00409273.
Full textKamardin, N. N. "Probable mechanoreceptor structures of osphradia in marine Caenogastropoda." Ruthenica, Russian Malacological Journal 30, no. 1 (February 11, 2020): 33–39. http://dx.doi.org/10.35885/ruthenica.2021.30(1).4.
Full textPettigrew, J. D. "Electroreception in monotremes." Journal of Experimental Biology 202, no. 10 (May 15, 1999): 1447–54. http://dx.doi.org/10.1242/jeb.202.10.1447.
Full textVan Doren, Clayton L., Ronald T. Verrillo, George A. Gescheider, and Bradley F. Sklar. "A triplex model of cutaneous mechanoreception." Journal of the Acoustical Society of America 77, S1 (April 1985): S51—S52. http://dx.doi.org/10.1121/1.2022384.
Full textFujiu, Kenta, Yoshitaka Nakayama, Hidetoshi Iida, Masahiro Sokabe, and Kenjiro Yoshimura. "Mechanoreception in motile flagella of Chlamydomonas." Nature Cell Biology 13, no. 5 (April 10, 2011): 630–32. http://dx.doi.org/10.1038/ncb2214.
Full textHiggs, D., and L. Fuiman. "Ontogeny of visual and mechanosensory structure and function in Atlantic menhaden Brevoortia tyrannus." Journal of Experimental Biology 199, no. 12 (December 1, 1996): 2619–29. http://dx.doi.org/10.1242/jeb.199.12.2619.
Full textThurm, Ulrich, Martin Brinkmann, Rainer Golz, Matthias Holtmann, Dominik Oliver, and Thiemo Sieger. "Mechanoreception and synaptic transmission of hydrozoan nematocytes." Hydrobiologia 530-531, no. 1-3 (November 2004): 97–105. http://dx.doi.org/10.1007/s10750-004-2679-z.
Full textDissertations / Theses on the topic "Mechanoreception"
Lehmkuhl, Andrew M. II. "Characterizing the mechanoreception of water waves in the leech Hirudo verbana." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1468509670.
Full textMarschand, Rachel E. "Effects of Airway Pressure, Hypercapnia, and Hypoxia on Pulmonary Vagal Afferents in the Alligator (Alligator Misssissippiensis)." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407750/.
Full textPender-Healy, Larisa Alexandra. "Tracking response of the freshwater copepod Hesperodiaptomus shoshone: Importance of hydrodynamic features." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52253.
Full textClavijo-Ayala, John Alejandro. "Ontogenia do sistema sensorial de pacu Piaractus mesopotamicus (Holmberg, 1887) (Characidae: Serrasalmidae) /." Jaboticabal : [s.n.], 2008. http://hdl.handle.net/11449/86695.
Full textBanca: Irene Bastos Franceschini Vicentini
Banca: Marcos Antonio Cestarolli
Resumo: O pacu Piaractus mesopotamicus é uma das espécies de maior relevância na piscicultura de águas quentes no Brasil, destacando-se pela qualidade de sua carne e desempenho em sistemas de cultivo. Apesar do avanço no estudo da biologia, anatomia e morfologia da espécie, os aspectos relacionados com o desenvolvimento inicial do sistema sensorial são praticamente desconhecidos. Este estudo teve por objetivo descrever o desenvolvimento inicial de pacu Piaractus mesopotamicus, com ênfase na ontogenia das estruturas sensoriais. Para isto, amostras seriadas de embriões e larvas em desenvolvimento foram coletadas desde as 9 horas pós fertilização (hpf) até os 25 dias pós eclosão (dpe), e destinadas para análises morfológicas, histológicas e de microscopia eletrônica de varredura. O desenvolvimento embrionário da espécie é rápido, e cerca das 19 hpf(a 26,S ± O,SOC), as larvas eclodem num estado altricial (3,19 ± 0,04 mm comprimento notocordal- CN; 0,477 ± 0,061 mm3 volume do saco+ vitelino¬VSV). Na eclosão, o desenvolvimento do sistema sensorial é limitado: no epitélio olfatório observam-se neurônios sensoriais ciliados e neurônios sensoriais com microvilosidades; a presença de mecanorreceptores é restrita ao neuromasto ótico imaturo; o desenvolvimento do ouvido interno é incipiente, observa-se a presença de dois otólitos em cada cápsula ótica, mas a larva ainda não apresenta estabilidade na coluna de água nem coordenação nos seus movimentos; e os olhos apresentam-se com pouco ou nenhum pigmento, lente diferenciada e separada da córnea, e retina não estratificada No entanto, o desenvolvimento pós-embrionário do sistema sensorial é acelerado: a partir de 1 dpe o epitélio olfativo se encontra coberto por uma densa camada de cilios não sensoriais que se distribuem. tanto na vesícula...(Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Pacu, Piaractus mesopotamicus, is one of the species of major importance for warmwater fish farming in Brazil due to its meat quality and performance in culture systems. Despite the advances in the study of biology, anatomy and morphology of the species, the aspects related to the early development of the sensorial system are unknown. The aim of this study was to describe the initial development of pacu Piaractus mesopotamicus, with emphasis on the ontogeny of the sensorial structures. Embryos and larvae were serially sampled during development, from the 9 hours after fertilization (haf) to the 25 days after hatching (dah), and subjected to the morphology, histology and scanning electron microscopy analysis. The embryonic development of the species is fast: about 19 haf (at 26,5 ± 0,5°C), larvae hatch in an altricial state (3.19 ± 0.04 mm notochordal length - NL; 0.477 ± 0.061 mm3 yolk-sac volume - YSV). At hatching, the sensorial system development is limited: in the olfactory epithelium, there are ciliated sensorial neurons and microvillous sensorial neurons; the mechanoreceptors are restricted to the immature otic neuromast; the development of the inner ear is incipient, with two otoliths in each otic capsule, but larvae do not show neither stability in the water column or coordination of their movements; the eyes have no or few pigment, with lens differentiated and separated from the cornea, and non-stratified retina. However, the post-embryonic development of the sensorial system is accelerated: from the 1 st dah the olfactory epithelium is covered by a dense layer of non sensorial cilia, which are distributed in the olfactory vesicle and in the epithelium region around it; at 2,5-3 dah, the eyes are totally pigmented; from the 4th dah it is possible to identify solitary chemosensorial cells in the post-otical region;...(Complete abstract click electronic access below)
Mestre
Clavijo-Ayala, John Alejandro [UNESP]. "Ontogenia do sistema sensorial de pacu Piaractus mesopotamicus (Holmberg, 1887) (Characidae: Serrasalmidae)." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/86695.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O pacu Piaractus mesopotamicus é uma das espécies de maior relevância na piscicultura de águas quentes no Brasil, destacando-se pela qualidade de sua carne e desempenho em sistemas de cultivo. Apesar do avanço no estudo da biologia, anatomia e morfologia da espécie, os aspectos relacionados com o desenvolvimento inicial do sistema sensorial são praticamente desconhecidos. Este estudo teve por objetivo descrever o desenvolvimento inicial de pacu Piaractus mesopotamicus, com ênfase na ontogenia das estruturas sensoriais. Para isto, amostras seriadas de embriões e larvas em desenvolvimento foram coletadas desde as 9 horas pós fertilização (hpf) até os 25 dias pós eclosão (dpe), e destinadas para análises morfológicas, histológicas e de microscopia eletrônica de varredura. O desenvolvimento embrionário da espécie é rápido, e cerca das 19 hpf(a 26,S ± O,SOC), as larvas eclodem num estado altricial (3,19 ± 0,04 mm comprimento notocordal- CN; 0,477 ± 0,061 mm3 volume do saco+ vitelino¬VSV). Na eclosão, o desenvolvimento do sistema sensorial é limitado: no epitélio olfatório observam-se neurônios sensoriais ciliados e neurônios sensoriais com microvilosidades; a presença de mecanorreceptores é restrita ao neuromasto ótico imaturo; o desenvolvimento do ouvido interno é incipiente, observa-se a presença de dois otólitos em cada cápsula ótica, mas a larva ainda não apresenta estabilidade na coluna de água nem coordenação nos seus movimentos; e os olhos apresentam-se com pouco ou nenhum pigmento, lente diferenciada e separada da córnea, e retina não estratificada No entanto, o desenvolvimento pós-embrionário do sistema sensorial é acelerado: a partir de 1 dpe o epitélio olfativo se encontra coberto por uma densa camada de cilios não sensoriais que se distribuem. tanto na vesícula...
Pacu, Piaractus mesopotamicus, is one of the species of major importance for warmwater fish farming in Brazil due to its meat quality and performance in culture systems. Despite the advances in the study of biology, anatomy and morphology of the species, the aspects related to the early development of the sensorial system are unknown. The aim of this study was to describe the initial development of pacu Piaractus mesopotamicus, with emphasis on the ontogeny of the sensorial structures. Embryos and larvae were serially sampled during development, from the 9 hours after fertilization (haf) to the 25 days after hatching (dah), and subjected to the morphology, histology and scanning electron microscopy analysis. The embryonic development of the species is fast: about 19 haf (at 26,5 ± 0,5°C), larvae hatch in an altricial state (3.19 ± 0.04 mm notochordal length - NL; 0.477 ± 0.061 mm3 yolk-sac volume - YSV). At hatching, the sensorial system development is limited: in the olfactory epithelium, there are ciliated sensorial neurons and microvillous sensorial neurons; the mechanoreceptors are restricted to the immature otic neuromast; the development of the inner ear is incipient, with two otoliths in each otic capsule, but larvae do not show neither stability in the water column or coordination of their movements; the eyes have no or few pigment, with lens differentiated and separated from the cornea, and non-stratified retina. However, the post-embryonic development of the sensorial system is accelerated: from the 1 st dah the olfactory epithelium is covered by a dense layer of non sensorial cilia, which are distributed in the olfactory vesicle and in the epithelium region around it; at 2,5-3 dah, the eyes are totally pigmented; from the 4th dah it is possible to identify solitary chemosensorial cells in the post-otical region;...(Complete abstract click electronic access below)
Guclu, Burak Bolanowski Stanley J. "Computational studies on rapidly-adapting mechanoreceptive fibers." Related Electronic Resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2003. http://wwwlib.umi.com/cr/syr/main.
Full textChou, Yang-Ling. "Respiratory mechanoreceptor activation of somatosensory cortex in humans." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0009242.
Full textTypescript. Title from title page of source document. Document formatted into pages; contains 124 pages. Includes Vita. Includes bibliographical references.
Gu, Cheng. "Mechanoreceptor channels at the sole of the foot." Thesis, University of Southampton, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515839.
Full textXanthis, Ioannis. "β1- integrin : an endothelial mechanoreceptor distinguishing force direction." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/18461/.
Full textSlattery, James Arthur. "Neuromodulation of primary vagal afferent mechanoreceptor sensitivity by galanin /." Title page and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09SB/09sbs6316.pdf.
Full textBooks on the topic "Mechanoreception"
Ito, Fumio. Comparative Aspects of Mechanoreceptor Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.
Find full textIto, Fumio, ed. Comparative Aspects of Mechanoreceptor Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76690-9.
Full text1947-, Rubanyi Gabor M., ed. Mechanoreception by the vascular wall. Mt. Kisco, NY: Futura Pub. Co., 1993.
Find full textSchwartzkopff, Johann. Symposium Mechanoreception: Unter der Schirmherrschaft der Rheinisch-Westfälischen Akademie der Wissenschaften. VS Verlag für Sozialwissenschaften, 2014.
Find full textFumio, Itō, ed. Comparative aspects of mechanoreceptor systems. Berlin: Springer-Verlag, 1992.
Find full textYack, Jayne Elizabeth *. The mechanoreceptive origins of insect tympanal organs: a comparative study of homologous nerves in tympanate and atympanate species of lepidoptera. 1988.
Find full textBook chapters on the topic "Mechanoreception"
Ashmore, J. F. "Mechanoreception." In Sensory Transduction, 25–50. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5841-1_3.
Full textMoayedi, Yalda, Masashi Nakatani, and Ellen Lumpkin. "Mammalian Mechanoreception." In Scholarpedia of Touch, 423–35. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-133-8_35.
Full textMachemer, H., and J. W. Deitmer. "Mechanoreception in Ciliates." In Progress in Sensory Physiology, 81–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70408-6_2.
Full textJi, Zhi-Gang, Toru Ishizuka, and Hiromu Yawo. "Strategies to Probe Mechanoreception: From Mechanical to Optogenetic Approaches." In Optogenetics, 305–14. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55516-2_21.
Full textGebhart, Gerald F. "Mechanoreceptive/Mechanosensitive Visceral Receptors." In Encyclopedia of Pain, 1808–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_2318.
Full textAkoev, George N., Boris V. Krylov, and Nikolai P. Alekseev. "A General Characteristic of Mechanoreceptor Activity." In Mechanoreceptors, 23–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72935-5_3.
Full textLieber, Justin. "Cutaneous Mechanoreceptive Afferents: Neural Coding of Texture." In Encyclopedia of Computational Neuroscience, 1–7. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_379-1.
Full textLieber, Justin. "Cutaneous Mechanoreceptive Afferents: Neural Coding of Texture." In Encyclopedia of Computational Neuroscience, 922–28. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_379.
Full textMayr, Robert. "Juxtaoral Organ: Ultrastructure and Features Indicating a Mechanoreceptive Function." In Mechanoreceptors, 311–17. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-0812-4_60.
Full textBleckmann, H., O. Weiss, and T. H. Bullock. "Physiology of lateral line mechanoreceptive regions in the elasmobranch brain." In How do Brains Work?, 267–82. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4684-9427-3_28.
Full textConference papers on the topic "Mechanoreception"
Ogneva, Irina V., and Yuliya S. Zhdankina. "Mathematical model of the germ cells’ mechanoreception." In XLIV ACADEMIC SPACE CONFERENCE: dedicated to the memory of academician S.P. Korolev and other outstanding Russian scientists – Pioneers of space exploration. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0035746.
Full textHeo, Su-Jin, Nandan L. Nerurkar, Tristan P. Driscoll, and Robert L. Mauck. "Differentiation and Dynamic Tensile Loading Alter Nuclear Mechanics and Mechanoreception in Mesenchymal Stem Cells." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53432.
Full textShiraishi, Toshihiko, Kazuhiro Sakata, Shin Morishita, and Ryohei Takeuchi. "Visualization of Actin Fibers in a Living Osteoblast Under Shear Deformation." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39810.
Full textMadrigal, Daniel, Gustavo Torres, Felix Ramos, and Lea Vega. "Cutaneous mechanoreceptor simulator." In 2012 IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom). IEEE, 2012. http://dx.doi.org/10.1109/coginfocom.2012.6421955.
Full textStadnikov, Evgeny. "MECHANORECEPTOR HYPOTHESIS OF SMELL." In XVI International interdisciplinary congress "Neuroscience for Medicine and Psychology". LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1265.sudak.ns2020-16/436.
Full textChoi, Jae Young, Baek Chul Kim, and Ja Choon Koo. "Development of a Biomimetic Vibrotactile Sensor for Dynamic Deformation With an Array of Polymer Structures." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47213.
Full textHao, Han, Lin Du, Andrew G. Richardson, Timothy H. Lucas, Mark G. Allen, Jan Van der Spiegel, and Firooz Aflatouni. "A Hybrid-Integrated Artificial Mechanoreceptor in 180nm CMOS." In 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). IEEE, 2020. http://dx.doi.org/10.1109/rfic49505.2020.9218276.
Full textKim, Won Dong, and Jung Kim. "Tactile Event Based Grasping Algorithm using Memorized Triggers and Mechanoreceptive Sensors." In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020. http://dx.doi.org/10.1109/iros45743.2020.9341130.
Full textRobichaud, Daniel R., Peter Grigg, and Allen H. Hoffman. "The Response of Mechanoreceptors in Rat Skin to Biaxial Loading: A Preliminary Study." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43024.
Full textDevecioglu, Ismail. "Role of mechanoreceptive afferents in two-point discrimination: A simulation based modeling study." In 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT). IEEE, 2018. http://dx.doi.org/10.1109/ebbt.2018.8391458.
Full textReports on the topic "Mechanoreception"
Yen, Jeannette, and Akira Okubo. Fluid Mechanoreception by Marine Copepods. Fort Belvoir, VA: Defense Technical Information Center, June 1996. http://dx.doi.org/10.21236/ada325396.
Full text