Academic literature on the topic 'Mechanisms of reactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanisms of reactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mechanisms of reactions"

1

Maker, Jenana H., Cassandra M. Stroup, Vanthida Huang, and Stephanie F. James. "Antibiotic Hypersensitivity Mechanisms." Pharmacy 7, no. 3 (August 27, 2019): 122. http://dx.doi.org/10.3390/pharmacy7030122.

Full text
Abstract:
Antibiotics are commonly prescribed to treat a variety of bacterial infections. As with all medications, hypersensitivity reactions may occur and clinicians should be able to recognize them accurately and recommend appropriate management. Antibiotic related hypersensitivity reactions may be one of four different types: Type I reactions, which are IgE mediated and may lead to anaphylaxis; Type II reactions that are antibody-mediated and may result in thrombocytopenia, neutropenia, or hemolytic anemia; Type III reaction that involves an immune complex formation such as vasculitis; and Type IV reactions that consist of four subtypes and typically include a rash of varying level of severity with or without systemic signs and symptoms. Herein, we describe the mechanisms of different types of allergic reactions to commonly prescribed antibiotics and offer recommendations for management. Further, we briefly refer to antibiotic reactions that mimic hypersensitivity reactions but are not immune mediated, such as pseudoallergies and serum sickness-like reactions.
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Qiang, Xufang Liu, and Bin Li. "Base-Metal-Catalyzed Olefin Isomerization Reactions." Synthesis 51, no. 06 (February 19, 2019): 1293–310. http://dx.doi.org/10.1055/s-0037-1612014.

Full text
Abstract:
The catalytic olefin isomerization reaction is a highly efficient and atom-economic transformation in organic synthesis that has attracted tremendous attention both in academia and industry. Recently, the development of Earth-abundant metal catalysts has received growing interest owing to their wide availability, sustainability, and ­environmentally benign nature, as well as the unique properties of non-precious metals. This review provides an overview of a broad range of base-metal-catalyzed olefin isomerization reactions categorized ­according to their different reaction mechanisms.1 Introduction2 Base-Metal-Catalyzed Olefin Isomerization Reactions3 Base-Metal-Catalyzed Cycloisomerization Reactions4 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
3

Harlov, Daniel E., and Horst R. Marschall. "Mechanisms of metasomatic reactions." Mineralogy and Petrology 95, no. 3-4 (February 12, 2009): 159–61. http://dx.doi.org/10.1007/s00710-009-0045-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Greer, Edyta M., and Christopher V. Cosgriff. "Reaction mechanisms: pericyclic reactions." Annual Reports Section "B" (Organic Chemistry) 108 (2012): 251. http://dx.doi.org/10.1039/c2oc90017c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yau, Hon Man, and Anna K. Croft. "Reaction mechanisms: polar reactions." Annual Reports Section "B" (Organic Chemistry) 108 (2012): 272. http://dx.doi.org/10.1039/c2oc90019j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tantillo, Dean J., and Jeehiun K. Lee. "Reaction mechanisms: pericyclic reactions." Annual Reports Section "B" (Organic Chemistry) 107 (2011): 266. http://dx.doi.org/10.1039/c1oc90004h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Croft, Anna K., and Erika Davies. "Reaction mechanisms: polar reactions." Annual Reports Section "B" (Organic Chemistry) 107 (2011): 287. http://dx.doi.org/10.1039/c1oc90005f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yau, Hon Man, and Anna K. Croft. "Reaction mechanisms: polar reactions." Annual Reports Section "B" (Organic Chemistry) 109 (2013): 275. http://dx.doi.org/10.1039/c3oc90006a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Greer, Edyta M., and Christopher V. Cosgriff. "Reaction mechanisms: pericyclic reactions." Annual Reports Section "B" (Organic Chemistry) 109 (2013): 328. http://dx.doi.org/10.1039/c3oc90014b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dayal, Akash, Manish Shrivastava, Rajiv Upadhyaya, and Lakhbir Singh Brar. "Numerical Combustion Evaluation of Select Detailed Chemistry Mechanisms for Their Impact on Compression Ignition Diesel Engine Performance Prediction." Advanced Science, Engineering and Medicine 12, no. 8 (August 1, 2020): 1072–76. http://dx.doi.org/10.1166/asem.2020.2670.

Full text
Abstract:
The study focuses on the selection of detailed chemistry model for numerical combustion of compression ignition diesel engine. Three different established chemical reaction mechanisms of different chemistry resolution are considered to predict the macro performance characteristics. The numerical computation is performed on turbocharged 5.67L 130PS commercial vehicle diesel engine. The three chemical reactions mechanisms are used for engine performance prediction analysis viz. PSM Mechanism (having 121 species and 593 reactions), ERC Mech reaction mechanism model (having 61 species with 235 reactions) and Chalmers’ reaction mechanism model (having 42 species with 168 reactions) for analyses. The surrogate diesel fuel n-heptane is used in the combustion analysis. By making use of the three-chemistry model, conclusive results indicate significant differences in the computational runtime without much loss in the accuracy of the performance characteristics (expressed as the indicated mean effective pressure (IMEP)).
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mechanisms of reactions"

1

Ribeiro, Joao Marcelo Lamim. "Kinetics and Reaction Mechanisms for Methylidyne Radical Reactions with Small Hydrocarbons." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/3023.

Full text
Abstract:
The chemical evolution with respect to time of complex macroscopic mixtures such as interstellar clouds and Titan’s atmosphere is governed via a mutual competition between thousands of simultaneous processes, including thousands of chemical reactions. Chemical kinetic modeling, which attempts to understand their macroscopic observables as well as their overall reaction mechanism through a detailed understanding of their microscopic reactions and processes, thus require thousands of rate coefficients and product distributions. At present, however, just a small fraction of these have been well-studied and measured; in addition, at the relevant low temperatures, such information becomes even more scarce. Due to the recent developments in both theoretical kinetics as well as in ab initio electronic structure calculations, it is now possible to predict accurate reaction rate coefficients and product distributions from first-principles at various temperatures, often in less time, than through the running of an experiment. Here, the results of a first principles theoretical investigation into both the reaction rate coefficients as well as the final product distributions for the reactions between the ground state CH radical (X2Π) and various C1-C3 hydrocarbons is presented; together, these constitute a set of reactions important to modeling efforts relevant to mixtures such as interstellar clouds and Titan’s atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
2

Amyes, T. L. "Mechanisms of carboxyl-activated elimination reactions." Thesis, University of Cambridge, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wenninger, Matthias. "Sensitizing mechanisms, reaction mechanisms and reactive intermediate states in photocatalytic reactions on time scales from femto- to microseconds." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-176226.

Full text
Abstract:
The development of renewable energy sources depicts a constantly growing interdisciplinary research field. Beyond photovoltaics chemical photocatalysis plays a small role, but is gaining more and more importance. In photocatalysis, light serves as an energy source for the chemical conversion of certain molecules. However, not only the application of photocatalysis as energy source but also the utilization of photocatalysis in chemical synthesis has attracted a deep scien- tific interest. For the optimization of photocatalytic systems a fundamental understanding oft the underlying processes is more than essential. Thereby, transient absorption spectroscopy has proved to be a very useful tool. On the one hand, the operation of a setup for transient absorption spectroscopy and on the other hand the systematic data evaluation requires physical and mathe- matical skills whereas the results cannot be interpreted without deep chemical knowledge. With- in the framework of the present thesis the cooperation between the fields of organic chemistry and physics has turned out as a very productive cooperation. Sensitizing mechanisms, reaction mechanisms and reactive intermediate states in photocatalytic reactions on time scales from femto- to microseconds are the object of the present work. The present thesis will prove that the analysis of measurement data on the basis of established standard methods, such as the fitting of a sum of exponential functions to the temporal evolution of the measured signal, often is not sufficient for a complete interpretation of the data. Only a data analysis precisely adapted to the problem can lead to a fundamental understanding of the underlying processes. In the first part of the present thesis, the focus lies on light-induced intramolecular charge transfer processes. Marcus Theory, which depicts the theoretical background, will be briefly in- troduced. On the basis of a molecular donor-bridge-acceptor system it will be shown that the damping coefficient β is not sufficient to differ unambiguously between coherent tunneling and incoherent hopping mechanism. Flavin-capped DNA hairpins serve as a model for the investigation of intramolecular charge transfer processes. After photo-excitation, flavin induces a hole which migrates through the DNA strand. It will be shown that an adapted base sequence allows for quantum yields of ΦCS = 14% for long-lived charge separated states. In the next section it will be discussed if the building blocks of the DNA are adapted to serve as chiral backbone for enantioselective photocatalysis. The conformation-dependent charge- transfer dynamics in benzophenone-DNA dinucleotides will be put on solid ground with the help of Marcus Theory. It will be shown that these dinucleotides are generally not suited to serve as an inert backbone for every kind of photochemical reaction. In the following section a true bimolecular photocatalytic reaction will be discussed. Flavin serves as photocatalyst for the conversion of an alcohol to the corresponding aldehyde. A pre- cisely adapted data analysis allows and exact quantification of the diffusion controlled reaction dynamics on the ps time scale. The understanding of the process allows optimizing the reaction conditions. The targeted utilization of triplet chemistry within this reaction can help to increase the quantum yield for product formation. As photo-induced charge transfer processes have been intensively discussed, the focus in the second part of the thesis lies on the [2+2] photocycloaddition. As basis for the interpretation of subsequent measurements, the [2+2] photocycloaddition of substituted quinolones will be inves- tigated. The formation of the cyclobutane ring in which the quinolone triplet state plays the cen- tral role will be characterized and quantified on the time scale from ps to ns. Afterwards the [2+2] photocycloaddition of substituted quinolones will be initiated by a chiral xanthone-based photocatalyst. It will be shown that within this catalyst-substrate complex in which both constit- uents have a distance of only few Ångströms, new electronic properties appear. The photo- excitation of a new electronic state not only initiates the [2+2] photocycloaddition of the quino- lone but also depicts a new sensitizing mechanism, which has to the author’s best knowledge not been observed in photocatalysis of organic molecules. The quinolone triplet state does not appear in this mechanism. The question, if this mechanism can be transferred to other photocatalytic systems has to be answered within the framework of further studies.
Die Erforschung nachhaltiger und ressourcenschonender Energiequellen bildet ein stetig wachsendes, interdisziplinäres Forschungsfeld. Neben der Photovoltaik, die inzwischen eine etablierte Energiequelle darstellt, ist die chemische Photokatalyse noch ein kleines, aber stets wachsendes Teilgebiet. In der Photokatalyse dient das einfallende Licht dazu, chemische Ver- bindungen umzuformen. Nicht nur die Anwendung der Photokatalyse für die Energiegewinnung, sondern auch der Einsatz in der chemischen Synthese stößt dabei auf wachsendes Interesse. Um photokatalytische Systeme zu optimieren ist ein fundamentales Verständnis der Prozesse erfor- derlich. Die transiente Absorptionsspektroskopie hat sich dabei als geeignetes Werkzeug erwie- sen. Der Betrieb eines Aufbaus zur Messung transienter Spektren auf verschiedenen Zeitskalen und die gezielte Datenauswertung erfordert fundiertes physikalisches und mathematisches Ver- ständnis, wohingegen die Interpretation der Ergebnisse nicht ohne chemisches Wissen erfolgen kann. Im Rahmen dieser Arbeit hat sich die Kooperation zwischen der organischen Chemie und der Physik als erfolgreiche Zusammenarbeit erwiesen. Gegenstand der vorliegenden Arbeit sind die Sensibilisierungsmechanismen, die Reaktionsmechanismen und die reaktiven Intermediate in photokatalytischer Reaktionen auf Zeitskalen von Femto- bis Mikrosekunden. Es wird gezeigt, dass die Auswertung von Datensätzen mit Standardmethoden, wie der Anpas- sung einer Summe von Exponentialfunktionen an die zeitliche Entwicklung des Signals oft nicht ausreichend ist, um die Messdaten hinreichend zu interpretieren. Erst eine der Problemstellung exakt angepasste Datenanalyse führt zum Verständnis der zugrundeliegenden Prozesse. Zunächst werden lichtinduzierte intramolekulare Ladungstransferprozesse behandelt. Die the- oretische Basis für die Beschreibung solcher Prozesse bildet die Marcus-Theorie, die kurz einge- führt wird. Anhand eines molekularen Donor-Bridge-Acceptor-Systems wird gezeigt, dass der exponentielle Dämpfungskoeffizient β oft ungeeignet ist um der Reaktion einen kohärenten Tun- nelprozess oder einen inkohärenten Transfermechanismus zuzuweisen. DNS-Haarnadelstrukturen, welche kovalent mit einem Flavin-Chromophor verbunden sind, dienen als Modellsystem für die Untersuchung intramolekularer Ladungstransferprozesse. Nach Anregung induziert Flavin eine Elektronenfehlstelle in dem benachbarten DNS-Strang, die den Strang entlangwandern kann. Es wird gezeigt, dass durch die geeignete Wahl der Basensequenz eine Quantenausbeute von ΦCS = 14 % für langlebige ladungsgetrennte Zustände erreicht wird. In einem weiteren Abschnitt wird untersucht, ob die Bausteine der DNS als chirale Umgebung für die enantioselektive Photokatalyse geeignet sind. Mit Hilfe einer auf der Marcus-Theorie basierenden Interpretation der Messergebnisse wird die konformationsabhängige Ladungstrans- ferdynamik in Benzophenon-DNS-Dinukleotiden beschrieben. Es wird gezeigt, dass die Dinuk- leotide nicht uneingeschränkt für die enantioselektive Photokatalyse geeignet sind. Schließlich wird eine echte bimolekuare photokatalytische Reaktion untersucht. Dabei wird mit Hilfe von Flavin ein Alkohol in ein Aldehyd umgesetzt. Mit einer angepassten Datenauswer- tung werden diffusive Prozesse auf der ps-Zeitskala genau quantifiziert. Die gewonnen Informa- tionen dienen dazu, die Reaktionsbedingungen zu optimieren um über einen Triplett- Reaktionsmechanismus höhere Quantenausbeuten zu erzielen. Nachdem photoinduzierte Ladungstransferprozesse ausgiebig diskutiert wurden, liegt der Fo- kus im zweiten Teil auf der [2+2] Photocycloaddition: Als Grundlage für die Interpretation spä- terer Messungen wird zunächst die [2+2] Photocykloaddition an substituierten Chinolonen unter- sucht. Die einzelnen Reaktionsschritte der Ringbildung werden auf der Zeitskala von ps bis ns quantifiziert und charakterisiert, wobei der Triplettzustand den zentralen Zustand bildet. An- schließend wird die [2+2] Photocycloaddition an substituierten Chinolonen durch einen chiralen, auf dem organischen Chromophor Xanthon basierenden Photokatalysator initiiert. Es wird ge- zeigt, dass innerhalb des Katalysator-Substrat-Komplexes, in dem beide Moleküle einen Abstand von wenigen Ångström haben, neue elektronische Eigenschaften auftreten. Die Anregung eines neuen Zustands initiiert nicht nur die [2+2] Photocycloaddition sondern stellt auch einen neuen Sensibilisierungsmechanismus dar, der bisher in photokatalytischen Reaktion organischer Mole- küle nicht beobachtet wurde. Der Triplettzustand des Chinolons tritt hierbei nicht mehr auf. Ob sich dieser Sensibilisierungsmechanismus auch auf andere Systeme übertragen lässt, muss durch weitere Arbeiten auf diesem Gebiet geklärt werden.
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, Dean A. "The demonstration of electron-transfer reactions and their effect on model lignin condensation reactions under alkaline pulping conditions." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/5700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chung, Lung Wa. "Computational studies of the reaction mechanisms and stereochemistry of metal-mediated organic reactions /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202006%20CHUNG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krug, John P. "The mechanisms of enone-alkene photocycloaddition reactions." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21299.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tam, Kin Yip. "Mechanisms of reactions at solid-liquid interfaces." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:a7525194-433f-4bc8-914a-da452c5ffc77.

Full text
Abstract:
+ and the rate constant is quantified for the first time. The aforementioned spectroelectrochemical channel cell was then adopted to scrutinise the reactive dyeing kinetics on a cotton fabric. Kinetic results showed that the dye adsorption to the fabric is controlled by a solid-liquid interfacial reaction which is first order with respect to the surface concentration of the dye. However, the rate of this process is governed by the availability of the reaction sites for adsorption of dye molecules onto the fabric surface. It was demonstrated that the presence of supporting electrolyte in high pH media, and mercerisation pretreatment of the fabric, are essential to increase the dye uptake rate. Ex situ AFM studies suggested that mercerisation leads to a disordered fibre surface which may be responsible for the enhanced dye absorption rate.
APA, Harvard, Vancouver, ISO, and other styles
8

Baxter, Nicholas James. "The mechanisms of reactions of #beta#-sultams." Thesis, University of Huddersfield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laverty, Genevieve Mary. "Kinetics and mechanisms of thermal reactions involving solids." Thesis, Queen's University Belfast, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hayden, Amy Elizabeth. "Computational studies of mechanisms and reactivities of organic reactions." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1905657311&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mechanisms of reactions"

1

Maskill, Howard. Mechanisms of organic reactions. New York: Oxford University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mechanisms in organic reactions. Cambridge: Royal Society of Chemistry, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Katakis, Dimitris. Mechanisms of inorganic reactions. New York: Wiley, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

ofWisconsin-Madison), Steenbock Symposium (15th 1985 University. Mechanisms of enzymatic reactions. New York: Elsevier, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abel, E. W., ed. Mechanisms in Organic Reactions. Cambridge: Royal Society of Chemistry, 2007. http://dx.doi.org/10.1039/9781847551337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mechanisms of organic reactions. Oxford: Oxford University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Name reactions: A collection of detailed reaction mechanisms. Berlin: Springer-Verlag, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Jie Jack. Name reactions: A collection of detailed reaction mechanisms. Berlin: Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Jie Jack. Name reactions: A collection of detailed reaction mechanisms. 2nd ed. Berlin: Springer, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Name reactions: A collection of detailed reaction mechanisms. 2nd ed. Berlin: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mechanisms of reactions"

1

Dwyer, Edward. "Autoimmune Antigen Presentation Mechanisms." In Autoimmune Reactions, 85–97. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-4612-1610-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Olson, G. J., and F. E. Brinckman. "Biomethylation Mechanisms." In Inorganic Reactions and Methods, 431–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145319.ch183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Birsa, M. L. "Elimination Reactions." In Organic Reaction Mechanisms · 2014, 423–34. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781118941829.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Birsa, M. L. "Elimination Reactions." In Organic Reaction Mechanisms · 2006, 307–16. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669587.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Birsa, M. L. "Elimination Reactions." In Organic Reaction Mechanisms · 2008, 253–65. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470979525.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Birsa, M. L. "Elimination Reactions." In Organic Reaction Mechanisms Series, 361–70. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118560273.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Birsa, M. L. "Elimination Reactions." In Organic Reaction Mechanisms Series, 335–46. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119972471.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knipe, A. C. "Elimination Reactions." In Organic Reaction Mechanisms Series, 347–71. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470022051.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Knipe, A. C. "Elimination Reactions." In Organic Reaction Mechanisms 2001, 329–59. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470866748.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Birsa, M. L. "Elimination Reactions." In Organic Reaction Mechanisms Series, 285–97. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119941910.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mechanisms of reactions"

1

Regan, P. H. "Nuclear Structure and Reaction Mechanism Studies with Multinucleon Reactions." In FUSION06: Reaction Mechanisms and Nuclear Structure at the Coulomb Barrier. AIP, 2006. http://dx.doi.org/10.1063/1.2338389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BAUR, G., S. TYPEL, H. H. WOLTER, K. HENCKEN, and D. TRAUTMANN. "MECHANISMS FOR DIRECT BREAKUP REACTIONS." In Proceedings of the RCNP-TMU Symposium. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792297_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Avrigeanu, M., V. Avrigeanu, and C. Mănăilescu. "On reaction mechanisms involved in the deuteron–induced surrogate reactions." In EXOTIC NUCLEI AND NUCLEAR/PARTICLE ASTROPHYSICS (V). FROM NUCLEI TO STARS: Carpathian Summer School of Physics 2014. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4909568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hayes, P. "Influence of Thermodynamics and Diffusion on Reaction Mechanisms during Gas/Solid Reactions." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017/mst_2017_1222_1229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hayes, P. "Influence of Thermodynamics and Diffusion on Reaction Mechanisms during Gas/Solid Reactions." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017mst/2017/mst_2017_1222_1229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goltermann, Per. "Alkali-silica reactions: mechanisms for crack formations." In International RILEM Conference on Volume Changes of Hardening Concrete: Testing and Mitigation. RILEM Publications, 2006. http://dx.doi.org/10.1617/2351580052.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

GAREEV, F. A., I. E. ZHIDKOVA, and YU L. RATIS. "ENHANCEMENT MECHANISMS OF LOW-ENERGY NUCLEAR REACTIONS." In Proceedings of the 11th International Conference on Cold Fusion. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774354_0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Höring, A., H. A. Weidenmüller, F. S. Dietrich, M. Herman, and G. Reffo. "A Study of Reaction Mechanisms for Gamma Production in Fast‐Nucleon Induced Reactions." In Capture gamma‐ray spectroscopy. American Institute of Physics, 1991. http://dx.doi.org/10.1063/1.41194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kay, Jeffrey J. "Mechanisms of shock-induced reactions in high explosives." In SHOCK COMPRESSION OF CONDENSED MATTER - 2015: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Author(s), 2017. http://dx.doi.org/10.1063/1.4971481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

NEMTSEVA, E. V., T. N. KIRILLOVA, T. V. BRUKHOVSKIH, and N. S. KUDRYASHEVA. "MECHANISMS OF HEAVY ATOM EFFECT IN BIOLUMINESCENT REACTIONS." In Proceedings of the 15th International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812839589_0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mechanisms of reactions"

1

Garlick, Stephanie M. Mechanisms and Kinetics of Catalytic Reactions. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada229912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chapman, Piers, and John W. *Morse. Kinetics and Mechanisms of Calcite Reactions with Saline Waters. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/992616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weydert, Marc. Tris(Cyclopentadienyl)Uranium-t-Butyl: Synthesis, reactions, and mechanisms. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/10159968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gorman, Brian P. Kinetics and Mechanisms of Calcite Reactions with Saline Waters. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1213531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weydert, M. Tris(Cyclopentadienyl)Uranium-t-Butyl: Synthesis, reactions, and mechanisms. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/6566863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Catalano, Jeffrey G., Daniel E. Giammar, and Zheming Wang. Final Report: Dominant Mechanisms of Uranium-Phosphate Reactions in Subsurface Sediments. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1240616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, M. C. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates. Annual report. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10140632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eyring, Edward M., and Sergio Petrucci. Rates and Mechanisms of Complexation Reactions of Cations with Crown Ethers and Related Macrocycles. Fort Belvoir, VA: Defense Technical Information Center, January 1989. http://dx.doi.org/10.21236/ada203436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lunsford, J. H. A study of catalysts and mechanisms in synthesis reactions. Progress report, January 1994--December 1994. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10118307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Haschke, John M., Thomas H. Allen, and Luis A. Morales. Reactions of plutonium dioxide with water and oxygen-hydrogen mixtures: Mechanisms for corrosion of uranium and plutonium. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/756904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography