Academic literature on the topic 'Mechanically linked molecule'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanically linked molecule.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mechanically linked molecule"

1

van Meurs, Matijs, Francis M. Wulfert, Rianne M. Jongman, et al. "Hemorrhagic Shock-induced Endothelial Cell Activation in a Spontaneous Breathing and a Mechanical Ventilation Hemorrhagic Shock Model Is Induced by a Proinflammatory Response and Not by Hypoxia." Anesthesiology 115, no. 3 (2011): 474–82. http://dx.doi.org/10.1097/aln.0b013e318229a640.

Full text
Abstract:
Introduction The interaction between neutrophils and activated endothelium is essential for the development of multiple organ dysfunction in patients with hemorrhagic shock (HS). Mechanical ventilation frequently is used in patients with HS. The authors sought to investigate the consequences of mechanical ventilation of mice subjected to HS on microvascular endothelial activation in the lung and kidney. Methods Anesthetized wild type C57BL/6 male mice were subjected to controlled hemorrhage; subgroups of mice were mechanically ventilated during the HS insult. To study the effect of acute hypox
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Kelong, and Stephen J. Loeb. "A hydrogen-bonded polymer constructed from mechanically interlocked, suit[1]ane monomers." Canadian Journal of Chemistry 98, no. 6 (2020): 285–91. http://dx.doi.org/10.1139/cjc-2020-0002.

Full text
Abstract:
A T-shaped 2,4,7-substituted benzimidazolium “axle” with two ester functionalities and a 24-membered crown ether “wheel” with appendages containing terminal olefin groups were threaded — axle through wheel — to form a [2]pseudorotaxane. Grubbs’ ring-closing metathesis (RCM) was then used to form a third loop and create a bicyclic cage that fully encapsulates the axle and permanently interlocks the two molecular components creating a suit[1]ane. There are no bulky groups on the axle to prevent unthreading, but the axle is trapped due to the cage-like nature of the newly created polyether host.
APA, Harvard, Vancouver, ISO, and other styles
3

Kubo, Yusuke, Kentarou Baba, Michinori Toriyama, et al. "Shootin1–cortactin interaction mediates signal–force transduction for axon outgrowth." Journal of Cell Biology 210, no. 4 (2015): 663–76. http://dx.doi.org/10.1083/jcb.201505011.

Full text
Abstract:
Motile cells transduce environmental chemical signals into mechanical forces to achieve properly controlled migration. This signal–force transduction is thought to require regulated mechanical coupling between actin filaments (F-actins), which undergo retrograde flow at the cellular leading edge, and cell adhesions via linker “clutch” molecules. However, the molecular machinery mediating this regulatory coupling remains unclear. Here we show that the F-actin binding molecule cortactin directly interacts with a clutch molecule, shootin1, in axonal growth cones, thereby mediating the linkage bet
APA, Harvard, Vancouver, ISO, and other styles
4

Marin-Gonzalez, Alberto, J. G. Vilhena, Ruben Perez, and Fernando Moreno-Herrero. "Understanding the mechanical response of double-stranded DNA and RNA under constant stretching forces using all-atom molecular dynamics." Proceedings of the National Academy of Sciences 114, no. 27 (2017): 7049–54. http://dx.doi.org/10.1073/pnas.1705642114.

Full text
Abstract:
Multiple biological processes involve the stretching of nucleic acids (NAs). Stretching forces induce local changes in the molecule structure, inhibiting or promoting the binding of proteins, which ultimately affects their functionality. Understanding how a force induces changes in the structure of NAs at the atomic level is a challenge. Here, we use all-atom, microsecond-long molecular dynamics to simulate the structure of dsDNA and dsRNA subjected to stretching forces up to 20 pN. We determine all of the elastic constants of dsDNA and dsRNA and provide an explanation for three striking diffe
APA, Harvard, Vancouver, ISO, and other styles
5

Jurásková, Alena, Stefan Møller Olsen, Kim Dam-Johansen, Michael A. Brook, and Anne Ladegaard Skov. "Reliable Condensation Curing Silicone Elastomers with Tailorable Properties." Molecules 26, no. 1 (2020): 82. http://dx.doi.org/10.3390/molecules26010082.

Full text
Abstract:
The long-term stability of condensation curing silicone elastomers can be affected by many factors such as curing environment, cross-linker type and concentration, and catalyst concentration. Mechanically unstable silicone elastomers may lead to undesirable application failure or reduced lifetime. This study investigates the stability of different condensation curing silicone elastomer compositions. Elastomers are prepared via the reaction of telechelic silanol-terminated polydimethylsiloxane (HO-PDMS-OH) with trimethoxysilane-terminated polysiloxane ((MeO)3Si-PDMS-Si(OMe)3) and ethoxy-termina
APA, Harvard, Vancouver, ISO, and other styles
6

Ahn, Seokhoon, Sriharsha V. Aradhya, Rebekka S. Klausen, et al. "Electronic transport and mechanical stability of carboxyl linked single-molecule junctions." Physical Chemistry Chemical Physics 14, no. 40 (2012): 13841. http://dx.doi.org/10.1039/c2cp41578j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lepage, Mathieu L., Chakravarthi Simhadri, Chang Liu, et al. "A broadly applicable cross-linker for aliphatic polymers containing C–H bonds." Science 366, no. 6467 (2019): 875–78. http://dx.doi.org/10.1126/science.aay6230.

Full text
Abstract:
Addition of molecular cross-links to polymers increases mechanical strength and improves corrosion resistance. However, it remains challenging to install cross-links in low-functionality macromolecules in a well-controlled manner. Typically, high-energy processes are required to generate highly reactive radicals in situ, allowing only limited control over the degree and type of cross-link. We rationally designed a bis-diazirine molecule whose decomposition into carbenes under mild and controllable conditions enables the cross-linking of essentially any organic polymer through double C–H activa
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Rui-Ning, Xin-Ran Zhang, Shu-Fang Wang, Guang-Sheng Fu, and Jiang-Long Wang. "Flatbands in 2D boroxine-linked covalent organic frameworks." Physical Chemistry Chemical Physics 18, no. 2 (2016): 1258–64. http://dx.doi.org/10.1039/c5cp05313g.

Full text
Abstract:
Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules.
APA, Harvard, Vancouver, ISO, and other styles
9

Guillén, Marilia, Asiloé J. Mora, Lusbely M. Belandria, et al. "Two conformational polymorphs of 4-methylhippuric acid." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, no. 6 (2020): 1077–91. http://dx.doi.org/10.1107/s2052520620013773.

Full text
Abstract:
4-Methylhippuric acid {systematic name: 2-[(4-methylbenzoyl)amino]ethanoic acid}, a p-xylene excreted metabolite with a backbone containing three rotatable bonds (R-bonds), is likely to produce more than one stable molecular structure in the solid state. In this work, we prepared polymorph I by slow solvent evaporation (plates with Z′ = 1) and polymorph II by mechanical grinding (plates with Z′ = 2). Potential energy surface (PES) analysis, rotating the molecule about the C—C—N—C torsion angle, shows four conformational energy basins. The second basin, with torsion angles near −73°, agree with
APA, Harvard, Vancouver, ISO, and other styles
10

Barin, Gokhan, Ross S. Forgan, and J. Fraser Stoddart. "Mechanostereochemistry and the mechanical bond." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2146 (2012): 2849–80. http://dx.doi.org/10.1098/rspa.2012.0117.

Full text
Abstract:
The chemistry of mechanically interlocked molecules (MIMs), in which two or more covalently linked components are held together by mechanical bonds , has led to the coining of the term mechanostereochemistry to describe a new field of chemistry that embraces many aspects of MIMs, including their syntheses, properties, topologies where relevant and functions where operative. During the rapid development and emergence of the field, the synthesis of MIMs has witnessed the forsaking of the early and grossly inefficient statistical approaches for template-directed protocols, aided and abetted by mo
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Mechanically linked molecule"

1

Craig, M. R. "Azo dye rotaxanes." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365821.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mechanically linked molecule"

1

Tuck, Adrian F. "Radiative and Chemical Kinetic Implications." In Atmospheric Turbulence. Oxford University Press, 2008. http://dx.doi.org/10.1093/oso/9780199236534.003.0009.

Full text
Abstract:
The laws governing the dynamical behaviour of atoms and molecules are quantum mechanical, and specify that their internal energy states are discrete, with only definite photon energies inducing transitions between them, subject to selection rules. These energy levels appear as spectra in different regions of the electromagnetic spectrum: pure rotational lines in the microwave or far infrared, ‘rovibrational’ (rotation + vibration) lines in the middle and near infrared, while electronic transitions, sometimes with associated rotational and vibrational structure (‘rovibronic’) occur from the near infrared through the visible to the ultraviolet. An important feature of these spectra in the atmosphere is that they do not appear as single sharp lines, but are collisionally broadened about the central energy into ‘line shapes’ which frequently overlap with other transitions, both from the same molecule and from others. One of the primary dynamical quantities involved in the processes broadening these line shapes is the relative velocity of the molecules with which the photon absorbing and emitting molecules are colliding. These are primarily N2 and O2 in the atmosphere; if they have an overpopulation of fast moving molecules relative to a Maxwell–Boltzmann distribution, as we have suggested, the line shapes will be affected. Molecules such as carbon dioxide, water vapour, and ozone are all active in the infrared via rovibrational transitions, with water vapour being light enough and so having sufficiently rapid rotation that it has rotational bands appearing in the far infrared rather than the microwave. Nitrous oxide, N2O, and methane, CH4, are also active, but make smaller contributions because of their lower abundances. Molecular nitrogen and molecular oxygen, because they are homonuclear diatomic molecules, do not absorb or emit via electric dipole allowed transitions in the atmospherically important regions of the electromagnetic spectrum. Molecular oxygen, having a triplet ground state, does have weak forbidden and magnetic dipole transitions which, however, play only a very small role in the radiative balance. It should be noted that the translational energy of molecules in a large system like the atmosphere is effectively continuous rather than quantized.
APA, Harvard, Vancouver, ISO, and other styles
2

Ganghoffer, Jean-François. "Mechanical Models of Cell Adhesion Incorporating Nonlinear Behavior and Stochastic Rupture of the Bonds." In Handbook of Research on Computational and Systems Biology. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-491-2.ch027.

Full text
Abstract:
The rolling of a single biological cell is analysed using modelling of the local kinetics of successive attachment and detachment of bonds occurring at the interface between a single cell and the wall of an ECM (extracellular matrix). Those kinetics correspond to a succession of creations and ruptures of ligand-receptor molecular connections under the combined effects of mechanical, physical (both specific and non-specific), and chemical external interactions. A three-dimensional model of the interfacial molecular rupture and adhesion kinetic events is developed in the present contribution. From a mechanical point of view, this chapter works under the assumption that the cell-wall interface is composed of two elastic shells, namely the wall and the cell membrane, linked by rheological elements representing the molecular bonds. Both the time and space fluctuations of several parameters related to the mutual affinity of ligands and receptors are described by stochastic field theory; especially, the individual rupture limits of the bonds are modelled in Fourier space from the spectral distribution of power. The bonds are modelled as macromolecular chains undergoing a nonlinear elastic deformation according to the commonly used freely joined chains model, while the cell membrane facing the ECM wall is modelled as a linear elastic plate. The cell itself is represented by an equivalent constant rigidity. Numerical simulations predict the sequence of broken bonds, as well as the newly established connections on the ‘adhesive part’ of the interface. The interplay between adhesion and rupture entails a rolling phenomenon. In the last part of this chapter, a model of the deformation induced by the random fluctuation of the protrusion force resulting from the variation of affinity with chemiotactic sources is calculated, using stochastic finite element methods in combination with the theory of Gaussian random variables.
APA, Harvard, Vancouver, ISO, and other styles
3

Banerjee, Avijit, and Timothy F. Watson. "Restorative materials and their relationship to tooth structure." In Pickard's Guide to Minimally Invasive Operative Dentistry. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780198712091.003.0010.

Full text
Abstract:
Modern restorative materials can be classified in several ways, in terms of their retention (chemically adhesive, macro-, micro- or even nanomechanical), their chemistry (e.g. resin-based vs. acid–base reaction, filler particles), or their clinical properties (e.g. aesthetics, strength, handling). It is essential that these materials are considered closely with the histological substrate to which they will adhere or with which they will interact, in order to understand the complexities of each system and their potential clinical uses. This chapter will outline and discuss aspects of dental materials science to enable the reader to understand and appreciate the links with relevant histology and relate this to the clinical aspects of minimally invasive operative dentistry. Also discussed is dental amalgam, still a popular restorative material among many dentists worldwide, although clinical indications for its use are becoming more limited as treatment rationales change and adhesive materials improve. This text will require supplementation from suitable dental histology and detailed dental material science texts. Dental resin composites are aesthetic, plastic adhesive restorative materials that consist of co-polymerized methacrylate-based resin chains embedding inert filler particles (conferring strength and wear resistance) and requiring a separate adhesive (bonding agent) to micro-/ nano-mechanically bond them to either enamel or dentine, respectively. However, not all modern dental composites are based purely on this methacrylate resin chemistry (see Section 7.2.6). Therefore the term ‘composite resin’ is inappropriate and should not be used. Resin composites have developed over the past 50 years, after the introduction of the acid-etch technique (Buonocore, 1955) and methacrylate monomers (Bowen’s resin—Bis-GMA (1971); see Section 7.2.2). The unset (or uncured) material consists of a mixture of several different types of resin methacrylate monomers, most of which are hydrophobic (water-hating) in nature (see Figure 7.1). The monomer chain length affects certain properties of the resin composite:… • Viscosity (or flowability) of the material. This is important in order to minimize voids trapped within the uncured composite during placement and packing within the depths of a cavity (the stiffer the consistency, the greater the risk of trapping air voids). The shorter the uncured monomer length (and therefore the lower the molecular weight), the lower is its viscosity. Often shorter-length, lower-molecular- weight methacrylate monomers form the basis of the resin chemistry of flowable resin composites, and other diluent molecules may be added.
APA, Harvard, Vancouver, ISO, and other styles
4

Lambourne, Jonathan, and Ruaridh Buchanan. "Basic Immunology." In Tutorial Topics in Infection for the Combined Infection Training Programme. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198801740.003.0012.

Full text
Abstract:
There are four major components of the immune system. These include: 1. mechanical barriers to pathogen entry. 2. the innate immune system. 3. the adaptive immune system. 4. the lymphoid organs. Mechanical barriers include skin and mucous membranes and tight junctions between epithelial cells prevent pathogen entry. Breaches can be iatrogenic, for example, IV lines, surgical wounds, and mucositis, and are a large source of healthcare- associated infections. The innate immune system provides the first internal line of defence, as well as initiating and shaping the adaptive immune response. The innate system comprises a range of responses: phagocytosis by neutrophils and macrophages (guided in part by the adaptive immune system), the complement cascade, and the release of antimicrobial peptides by epithelial cells (e.g. defensins, cathelicidin). The adaptive immune system includes both humoral (antibody- mediated) and cell-mediated responses. It is capable of greater diversity and specificity than the innate immune system, and can develop memory to pathogens and provide increased protection on re-exposure. Immune cells are divided into myeloid cells (neutrophils, eosinophils, basophils, mast cells, and monocytes/macrophages) and lymphoid cells (B, T, and NK cells). These all originate in the bone marrow from pluripotent haematopoietic stem cells. The lymphoid organs include the spleen, the lymph nodes, and mucosal-associated lymphoid tissues—which respond to antigens in the blood, tissues, and epithelial surfaces respectively. The three main ‘professional’ phagocytes are macrophages, dendritic cells, and neutrophils. They are similar with respect to how they recognize pathogens, but differ in their principal location and effector functions. Phagocytes express an array of Pattern Recognition Receptors (PRRs) e.g. Toll-like receptors and lectins (proteins that bind carbohydrates). PRRs recognize Pathogen- Associated Molecular Patterns (PAMPs)— elements which are conserved across species, such as cell-surface glycoproteins and nucleic acid sequences. Though limited in number, PRRs have evolved to recognize a huge array of pathogens. Binding of PRRs to PAMPs enhances phagocytosis. Macrophages are tissue-resident phagocytes, initiating and co-ordinating the local immune response. The cytokines and chemokines they produce cause vasodilation and alter the expression of endothelial cell adhesion factors, recruiting circulating immune cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Dyall, Kenneth G., and Knut Faegri. "Relativistic Electromagnetic Interactions." In Introduction to Relativistic Quantum Chemistry. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780195140866.003.0007.

Full text
Abstract:
Chemical concepts are conveniently formulated in terms of molecules—aggregates of atoms linked by electromagnetic interactions. The proper relativistic description of these interactions is a prerequisite for the development of a theory of relativistic quantum chemistry. As a simple starting point we will consider classical systems made up of point charges, postponing the transition to a quantum mechanical description until later. From the previous chapter we know something about how an electron’s particle properties might be affected by relativity. In this chapter we describe the effects of relativity on the interaction with the electromagnetic field. Again, we adopt a minimalist approach. Electromagnetism and electrodynamics are subjects covered in numerous textbooks for a wide variety of target audiences. To develop the necessary theory from first principles is far beyond the scope of this book. We will only highlight those parts necessary for the later development and understanding of a theory of relativistic quantum chemistry. This means that some of the fundamental equations must be presented without derivation, requiring that the reader either knows these from before or that they must be taken on faith. In particular, in this chapter we make use of the Maxwell equations, the Lorentz force equation, and the generalized potential. The reader will be able to find descriptions or derivations of these in Jackson (1975), for example. We will also need to use a number of relations from vector calculus, and these will normally be introduced in the general form when required. In dealing with fields that vary over time and space, we will need various differential operators. In the nonrelativistic theory of electrodynamics the gradient operator, ∇, and the time derivative, d/dt , are used. From our experience in the previous chapter with mixing of space and time coordinates under Lorentz transformations, we might expect these to combine in a four-space differential operator also.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mechanically linked molecule"

1

Manion, Charles A., Ryan Arlitt, Irem Tumer, Matthew I. Campbell, and P. Alex Greaney. "Towards Automated Design of Mechanically Functional Molecules." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46078.

Full text
Abstract:
Metal Organic Responsive Frameworks (MORFs) are a proposed new class of smart materials consisting of a Metal Organic Framework (MOF) with photoisomerizing beams (also known as linkers) that fold in response to light. Within a device these new light responsive materials could provide the capabilities such as photo-actuation, photo-tunable rigidity, and photo-tunable porosity. However, conventional MOF architectures are too rigid to allow isomerization of photoactive sub-molecules. We propose a new computational approach for designing MOF linkers to have the required mechanical properties to al
APA, Harvard, Vancouver, ISO, and other styles
2

Dhilna, C. R., S. M. Gopinath, B. Savitha, D. Parthasarathi, M. Surya, and Muthipeedika Nibin Joy. "Molecular docking studies of some urea derivatives linked with imidazolyl benzamides." In PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0018040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Jun, Mohamed Alhashme, and Ronggui Yang. "Thermal Transport Across Carbon Nanotube Connected by Molecular Linkers." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64931.

Full text
Abstract:
Carbon nanotubes (CNTs) have been reported to have excellent thermal and mechanical properties over the past two decades. However, the practical application of CNT-based technologies has been limited, due to the inability to transform the excellent properties of single CNTs into macroscopic applications. CNT network structure connects CNTs and can be possibly scaled up to macro-scale CNT-based application. In this paper, nonequilibrium molecular dynamics is applied to investigate thermal transport across two CNTs connected longitudinally by molecular linkers. We show the effect of different ty
APA, Harvard, Vancouver, ISO, and other styles
4

Aouf, Rashad, and Vojislav Ilic. "Microscopic Observation of Energy Propagation in Polymeric Fluids Crossing a Barrier." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66752.

Full text
Abstract:
A major challenge facing tumour treatment procedures, including hyperthermia, is the inadequate modelling of the bio-heat transfer process. Therefore, an accurate mathematical bio-heat transfer model has to precisely quantify the temperature distribution within a complex geometry of a tumour tissue, in order to help optimize unwanted side effects for patients and minimize (avoid) collateral tissue damage. This study examines the three-dimensional molecular dynamics (MDs) simulation of a Lennard-Jones fluid in the hope of contributing to the understanding of the propagation of a thermal wave in
APA, Harvard, Vancouver, ISO, and other styles
5

Liang, Zhi, Hai-Lung Tsai, and Lan Jiang. "Determination of Laser Absorption Coefficients of Gas Mixtures Using an Ab Initio MD Model." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41449.

Full text
Abstract:
In an effort to study the laser induced dissociation of gas mixtures for an ongoing research project on diamond thin film coating using multiple lasers, it is necessary to determine the absorption coefficient of laser energy by CO2 gas. An ab initio molecular dynamics (AIMD) model is used to determine the laser absorption coefficient of CO2 gas as a function of laser wavelength and gas temperature. The translational, rotational, and vibration motions of molecules are all taken into account in our model. The intra-molecular potential energy is obtained by solving the Kohn-Sham equation. The Pro
APA, Harvard, Vancouver, ISO, and other styles
6

Liang, Zhi, and Hai-Lung Tsai. "Ab Initio Calculations of Infrared Absorption Cross Sections of CO2 Gas." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67776.

Full text
Abstract:
An ab initio model is used to determine the infrared absorption cross sections of CO2 gas as a function of laser wavelength. The intra-molecular potential energy and electric dipole moment of the CO2 molecule as a function of molecular nuclear configurations are obtained by solving the Kohn-Sham (KS) equation. The rotational constants at different vibrational levels, the vibrational energy eigen values and transition dipole moments are determined by solving the pure vibrational Schro¨dinger equation. Using the Fermi’s Golden Rule and all the calculated ab initio results, the absorption cross s
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Xiaofan, and Z. Charlie Zheng. "Continuum/Nano-Scale Simulation of Surface Diffusion Process in Flow." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62960.

Full text
Abstract:
Fluid transport with diffusion through micro-/nano-channels is found in many natural phenomena and industrial processes, including fluid transport or diffusion through nano-materials, molecular/atomistic transfer across nuclear pores or in the MEMS devices among other applications. Those nano-pores can be treated as nano-channels in the thin layers of the membranes. The transport phenomena of fluid in such small confined channels, usually in the size of ten molecular diameters or less, differs significantly from its bulk behaviors and cannot be described with continuum theory. In this case, mo
APA, Harvard, Vancouver, ISO, and other styles
8

Hay, Akara, and Shanzhong (Shawn) Duan. "Implementation of an Integrated Sequential Procedure for Computer Simulation of Dynamics of Multibody Molecular Structures in Polymers and Biopolymers." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-11752.

Full text
Abstract:
Abstract This paper presents the implementation results of an integrated sequential algorithm, which the second author developed mathematically in a pseudo code format previously to improve computational efficiency of computer simulation of the dynamical behaviors of multibody molecular structures in polymers and biopolymers. This new algorithm is a seamless integration between multibody molecular algorithm (MMA: a multibody-dynamics-based procedure for motion simulation of molecular structure) and fast multipole method (FMM). The fast multipole method is used to calculate interatomic forces f
APA, Harvard, Vancouver, ISO, and other styles
9

Hargude, N. V., and S. M. Sawant. "Experimental Investigation of a Spark Ignited Engine Using Magnetic Air Conditioner (MAC) for Improved Performance and Reduced Emissions." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66521.

Full text
Abstract:
In 21st century, to cope up with exponential technological development, use of eco-friendly conventional energy system is a critical issue. Saving of energy is nothing but production of energy. Conventional fuel used in stationary power plant an IC engine is bulk in quantity, which will not be last longer and will exhaust very soon. Stationary power plants and Automobile propelled by I.C. engines have a problem of pollutant emission in environment which mainly depends on combustion process occurs in power plant and I.C. engines. Incomplete combustion of hydro-carbon fuel/s produce very large a
APA, Harvard, Vancouver, ISO, and other styles
10

Bidone, Tamara Carla, Haosu Tang, and Dimitrios Vavylonis. "Insights Into the Mechanics of Cytokinetic Ring Assembly Using 3D Modeling." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39006.

Full text
Abstract:
During fission yeast cytokinesis, actin filaments nucleated by cortical formin Cdc12 are captured by myosin motors bound to a band of cortical nodes. The myosin motors exert forces that pull nodes together into a contractile ring. Cross-linking interactions help align actin filaments and nodes into a single bundle. Mutations in the myosin motor domain and changes in the concentration of cross-linkers alpha-actinin and fimbrin alter the morphology of the condensing network, leading to clumps, rings or extended meshworks. How the contractile tension developing during ring formation depends on th
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!