Academic literature on the topic 'Mechanical ventilation system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanical ventilation system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mechanical ventilation system"
Kondili, Eumorfia, Demosthenes Makris, Dimitrios Georgopoulos, Nikoletta Rovina, Anastasia Kotanidou, and Antonia Koutsoukou. "COVID-19 ARDS: Points to Be Considered in Mechanical Ventilation and Weaning." Journal of Personalized Medicine 11, no. 11 (October 28, 2021): 1109. http://dx.doi.org/10.3390/jpm11111109.
Full textMammel, Mark C., Janice P. Ophoven, Patrick K. Lewallen, Margaret J. Gordon, Marylyn C. Sutton, and Stephen J. Boros. "High-Frequency Ventilation and Tracheal Injuries." Pediatrics 77, no. 4 (April 1, 1986): 608–13. http://dx.doi.org/10.1542/peds.77.4.608.
Full textShi, Yan, Shuai Ren, Maolin Cai, and Weiqing Xu. "Modelling and Simulation of Volume Controlled Mechanical Ventilation System." Mathematical Problems in Engineering 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/271053.
Full textLozano-Zahonero, Sara, Matthias Schneider, Sashko Spassov, and Stefan Schumann. "A novel mechanical ventilator providing flow-controlled expiration for small animals." Laboratory Animals 54, no. 6 (February 19, 2020): 568–75. http://dx.doi.org/10.1177/0023677220906857.
Full textBubshait, Khlood, and Yasmine Alabbasi. "Influence of Spontaneous and Mechanical Ventilation on Frequency-Based Measures of Heart Rate Variability." Critical Care Research and Practice 2021 (December 26, 2021): 1–9. http://dx.doi.org/10.1155/2021/8709262.
Full textImanaka, Hideaki, Dean Hess, Max Kirmse, Luca M. Bigatello, Robert M. Kacmarek, Wolfgang Steudel, and William E. Hurford. "Inaccuracies of Nitric Oxide Delivery Systems during Adult Mechanical Ventilation." Anesthesiology 86, no. 3 (March 1, 1997): 676–88. http://dx.doi.org/10.1097/00000542-199703000-00021.
Full textHao, Liming, Shuai Ren, Yan Shi, Na Wang, Yixuan Wang, Zujin Luo, Fei Xie, Meng Xu, Jian Zhang, and Maolin Cai. "A Novel Method to Evaluate Patient-Ventilator Synchrony during Mechanical Ventilation." Complexity 2020 (September 15, 2020): 1–15. http://dx.doi.org/10.1155/2020/4828420.
Full textPinsky, Michael R. "Mechanical ventilation and the cardiovascular system." Current Opinion in Critical Care 2, no. 5 (October 1996): 391–95. http://dx.doi.org/10.1097/00075198-199610000-00010.
Full textWang, Yi, Yan Qiu Huang, Zhi Peng Li, Le Wang, and Jie Gao. "Study on the Pollutant Control of Industrial Buildings with Mechanical Ventilation." Advanced Materials Research 243-249 (May 2011): 4949–55. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.4949.
Full textShen, Dongkai, Qian Zhang, and Yan Shi. "Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model." Computational and Mathematical Methods in Medicine 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/9234537.
Full textDissertations / Theses on the topic "Mechanical ventilation system"
Gillott, Mark C. "A novel mechanical ventilation heat recovery/heat pump system." Thesis, University of Nottingham, 2000. http://eprints.nottingham.ac.uk/12148/.
Full textAli, Sadaqat, and Possavee Thummakul. "Mapping and analyzing Ventilation system in University building." Thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-12397.
Full textPiippo, Kaj. "Assessment of Energy Recovery Technology in China : Mechanical ventilation system with energy recovery." Thesis, Eskilstuna : Mälardalen University. School of Sustainable Development of Society and Technology, 2008. http://www.diva-portal.org/smash/get/diva2:127022/FULLTEXT01.
Full textJúnior, Marcus Henrique Victor. "Implementation and assessment of a novel mechanical ventilatory system following a noisy ventilation regime." Instituto Tecnológico de Aeronáutica, 2014. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3151.
Full textNilsson, Willkomm Josefine. "Comparison of a hybrid ventilation system and a mechanical ventilation system with heat recovery through life cycle assessment : A case study of a modern Danish office building." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-78758.
Full textByggnadssektorn står för 36 % av energianvändningen och 39 % av alla koldioxidutsläpp i Europeiska unionen (EU). Därför är det av stort intresse att undersöka hur byggsektorn kan bli mer energieffektiv och undersöka hur dess miljöpåverkan kan minskas. Det rapporteras att 80–90 % av en byggnads totala energianvändningen inträffar under driftsfasen. Energianvändningen beror främst på belysning och värme-, kyla- och ventilationssystemet (VVS-systemet). Under det sista århundradet har energieffektiviteten gällande belysning förbättrats avsevärt, vilket innebär att betydelsen för energianvändningen till VVS-systemet ökat. Eftersom EU strävar efter att öka energieffektiviteten och mängden förnybar energi i elnätet kan man anta att betydelsen av andra faser i VVS-systemets livscykel kommer att bli allt mer intressant, till exempel tillverkningsprocessen och materialanvändningen vilket kan utvärderas genom livscykelanalys (LCA). Denna rapport jämför miljöpåverkan från ett hybridventilationssystem (HV) med ett mekaniskt ventilationssystem med värmeåtervinningssystem (FTX-system) ur ett LCA-perspektiv. Studien utförs på kontorsbyggnad i Lystrup, Danmark. Kontorsbyggnaden i Lystrup valdes eftersom ett HV-systemet är implementerat där. HV-systemet består av ett automatiserat naturligt ventilationssystem (NV) och ett mekaniskt frånluftsventilationssystem (F-system). Miljöpåverkan från det NV-systemet tillhandahölls ur miljöproduktdeklarationer (EPD:er) som dimensioneringsföretaget tillhandahöll. Uppgifterna saknades för F-systemet och därför dimensionerades det förhand för att sedan utvärderades genom LCA. Hv-systemet jämfördes mot ett FTX system vilket bestämdes av uppdragsgivaren på företaget Sweco AB. FTX-systemet dimensionerades också förhand för att sedan utvärderas genom LCA. Livscykelns systemgräns sattes till från ”vagga-till-grav” exklusive energianvändningen för att producera ventilationskomponenterna då denna data saknades. Den antagna livslängden för ventilationssystemen är 25 år. LCA programvaran Gabi Education användes för att beräkna LCA resultaten. De miljöpåverkanskategorier som undersökts i den här studien är: global uppvärmningspotentialen, ozonuttunnande potential, försurningspotential, eutrofieringspotential, fotokemisk ozonuttunningspotential, abiotisk utarmningspotential (material) och abiotisk utarmningspotential (fossila bränslekällor) vilka skall användas enligt EN15804-standarden då LCA:er utförs på byggkomponenter. CML2001-IA metoden användes som livscykelkonsekvensbedömningen LCA-programvaran, vilket också rekommenderas enligt EN15804. LCA-resultaten jämfördes mellan systemen och tolkades genom en bidragsanalys där resultatet delades in i följande kategorier: Energianvändningen (användningsfas), transport, materialanvändning (inklusive råvaruutvinning och materialbearbetning) och slutanvändningsfasen för komponenterna. De två systemen var likvärdiga i de flest miljöpåverkanskategorier utom den globala uppvärmningen potential och abiotiska utarmning potential fossil där FTX-systemet bidrog med ungefär 3 gånger så hög potentiell påverkan än det HV-systemet. FTX-systemet förbrukar ungefär 3 gånger mer energi under användningsfasen. Bidragsanalysen visade att energianvändningen (under användningsfasen) var den dominerade faktorn i nästan alla kategorier av miljöpåverkan. Utöver denna analysen jämfördes miljöpåverkan orsakad av materialanvändningen mellan FTX - och HV-systemet, där FTX-systemet fick högre poäng i alla kategorier utom i abiotiska utarmnings potential (material). Slutsatsen från den här studien är att det HV-systemet är bättre om man ser till global uppvärmningspotential och abiotisk utarmningspotential fossil. Det HV-system har alltså mindre potential till att bidra till klimatförändringar och mindre potential att utarma fossila bränslekällor. Enligt den här studien är energianvändningen under användningsfasen den faktor som bidrar mest till miljöpåverkanskategorierna för både FTX - och det HV-systemet. Miljöpåverkan orsakad av materialåtgången är mindre för det HV-systemet än FTX systemet.
KIESI, MIKKO, and SJÖBLOM ROBERT AXELSSON. "Model based design of an expiratory valve and voice-coil actuator and evaluation of complete expiratory system performance with a PI controller." Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193143.
Full textMekaniska ventilatorer är en utrustning inom intensivvården för assisterad andning för patienter med nedsatt andningsförmåga. Utandningsventilen är en kritisk komponent till ventilatorn då den kontrollerar lungtrycket hos patienten. Design processen för en ny utandningsventil är en tidskrävande process mycket på grund av den mängd olika design möjligheter som kan utforskas för både talspole aktuatorn samt membran ventilen som oftast används i ventilatorerna. I detta examensarbete utforskades möjligheterna till att skapa och använda analytiska modeller för modellbaserad utveckling för att accelerera de tidiga design stadierna för en utandningsventil. Huvudkomponenterna, talspole aktuatorn och membran ventilen är modellerade separat och experimentellt verifierade. En fullständig modell för hela utandningssystemet samt en hardware-in-the-loop test plattform är konstruerad för att utforska hur väl de dynamiska egenskaperna samt kontroll prestandan för en utandningsventil kan prediceras. Slutligen utforskas diverse frågor angående ventil designen och en ny design föreslås för att demonstrera möjligheterna med en modellbaserad metod. Den slutliga modellen för både talspole aktuatorn och membran ventilen kan betraktas som tillräcklig precisa för snabb utforskning inom de olika design möjligheterna, då en felprocent under 10% är uppnådd utan manuell finjustering för varje design.
Sperber, Jesper. "Protective Mechanical Ventilation in Inflammatory and Ventilator-Associated Pneumonia Models." Doctoral thesis, Uppsala universitet, Infektionssjukdomar, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282602.
Full textGalia, Fabrice. "Supervision automatique de la ventilation artificielle en soins intensifs : investigation d'un système existant et propositions d'extensions." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00627248.
Full textAssunção, Renata Pletsch. "Análise dos critérios para ajuste do suporte ventilatório da ventilação mecânica." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/5/5150/tde-06022017-085815/.
Full textIntrodution: The adequate assistance is essential for the treatment of mechanically ventilated patient. The search of parameters to achieve the optimal adjustment and with easy application to bedside, for example, non-invasive methods. Objective: Analyze the diagnostic accuracy of the breathing pattern variables, esophageal and tracheal P0.1 for adjustment of mechanical ventilation in pressure support ventilation. Methods: Twenty-seven patients in intensive care unit were consecutively included in the study. All patients were in the pressure support mode, which was raised to 20 cmH2O and decreased in steps of 3 cmH2O up to 2 cmH2O or earlier if the patient had signs of respiratory distress. Patients were monitored with catheters for esophageal and gastric pressure measurements, with the T-piece was used close to the tube to measure tracheal pressure during an airway occlusion and a pneumotachograph for flow measurements. Data was recorded for all support levels to esophageal, gastric, and tracheal pressures, also hemodynamic data and ventilatory pattern. The adjustment of mechanical ventilation was classified as adequate assistance, overassistance and underassistance according to pre-established criteria. Results: Two hundred and ten periods were analyzed with different pressures of support and 49% of these periods were overassistance, while 3,8% these periods were underassistance. At baseline, while patients were still ventilatory assistance set by assistance staff, 48,2% had overassistance. Due to the low incidence of periods with underassistance, the variables accurancy has not been evaluated. The variable breathing pattern that was more accurate diagnosing overassistance was the respiratory rate (90% sensitivity and specificity of 88 % when the respiratory rate was less than 17 breaths per minute). Other variables of the breathing pattern did not show high accuracy although esophageal P0.1 (sensitivity 81 % and specificity of 70 % when P0.1 <= 1,9) and tracheal P0.1 (sensitivity 81 % and specificity of 70 % when P0.1 <= 2,1) were high accuracy diagnosing overassistance. Conclusion: The occurrence of overassistance was significantly higher than underassistance. The respiratory rate below 17 was the variable breathing pattern more accurate to predict overassistance. The esophageal and tracheal P0.1 also had high accuracy but lower than the respiratory rate
Tomasi, Roberta. "Energy performance, comfort and ventilation effectiveness of radiant systems coupled with mechanical ventilation." Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422467.
Full textIn questo lavoro di dottorato vengono presentati i risultati di uno studio sui sistemi radianti per il raffrescamento ed il riscaldamento in ambito civile e sulla loro integrazione con opportuni sistemi di ventilazione meccanica. Le prestazioni energetiche in regime stazionario e transitorio, così come le prestazioni di comfort termico e di qualità dell’aria garantita, sono state studiate mediante l’ausilio di prove sperimentali, di simulazioni fluidodinamiche e di altri codici di calcolo. Gli studi sperimentali sono stati realizzati in parte in Italia, presso i laboratori dell’azienda RHOSS S.p.A di Codroipo (Udine), e in parte presso i laboratori dell’ICIEE (International Centre for Indoor Environment and Energy), dell’Università Tecnica di Danimarca, (DTU) a Lyngby (DK). L’aspetto più rilevante di questo lavoro è legato alla sempre maggiore diffusione dei sistemi radianti come soluzione per il riscaldamento ed il raffrescamento di ambienti interni, in quanto combinano vantaggi energetici ad elevati livelli di comfort termico. Per ragioni dovute alla piccola differenza di temperatura tra l’ambiente e il fluido termovettore, i sistemi radianti si interfacciano molto bene con caldaie a condensazione, pompe di calore, sistemi free cooling, collettori solari e altre sorgenti rinnovabili e soluzioni ad alta efficienza energetica. Il calcolo della resa termica di tali sistemi viene eseguito mediante le equazioni valide per la convezione in regime stazionario, come quelle fornite dalle norme Europee EN 1264 ed EN 15377. In letteratura esistono numerose correlazioni valide per il calcolo della potenza convettiva di superfici orizzontali e verticali e di superfici interne di stanze reali; le norme EN 1264 ed EN 15377 consigliano correlazioni diverse e lo stesso accade per codici si simulazione energetica degli edifici. Ad oggi non è disponibile una chiara definizione di coefficiente di scambio termico convettivo per i sistemi radianti, specialmente per quanto riguarda pavimenti freddi e soffitti caldi. Il primo obiettivo di questa tesi è stato di realizzare un’analisi critica delle correlazioni disponibili in letteratura adatte ai sistemi radianti e di proporre delle equazioni per ogni configurazione di riscaldamento o raffrescamento da soffitto, pavimento o parete. In ambito residenziale il pavimento radiante rappresenta una delle soluzioni più richieste grazie all’elevato livello di comfort termico garantito; tuttavia, al fine di migliorare la qualità dell’aria e specialmente a causa della necessità di deumidificare l’aria in estate per evitare formazione di condensa, accanto al sistema radiante andrebbe installato un sistema di ventilazione meccanica. L’aria primaria in estate è solitamente a temperatura più bassa della temperatura della stanza e dotata di una certa velocità; nel caso di immissione da bocchette installate vicino ad una superficie radiante, lo scambio convettivo potrebbe venire variato rispetto ad una soluzione senza ventilazione. Mediante uno studio con simulazioni fluidodinamiche CFD è stato possibile valutare l’incremento dello scambio convettivo da un soffitto freddo mediante lo sfruttamento di aria primaria. I sistemi radianti, in particolare i sistemi a soffitto, rappresentano un’ottima soluzione per rimuovere i carichi termici degli uffici durante il periodo estivo, ma allo stesso tempo possono essere usati per il riscaldamento invernale degli stessi con buone prestazioni energetiche e di comfort termico. La differenza sostanziale è che durante la stagione invernale il sistema radiante si trova a lavorare prevalentemente in regime stazionario, mentre durante la stagione estiva i carichi esterni dovuti alla radiazione solare e all’escursione diurna, accompagnati da carichi interni dovuti all’occupazione umana, determinano condizioni piuttosto variabili durante la giornata. Il comportamento di sistemi radianti a regimi stazionari e transitori sono state studiate mediante prove in camera climatica; inoltre un modello di calcolo chiamato Digithon, sviluppato all’interno del Dipartimento di Fisica Tecnica dell’Università di Padova, è stato validato mediante un confronto con dati sperimentali. Seguendo un’opportuna procedura, riportata nella tesi, è stato possibile impostare dei profili di carico che simulano una tipica giornata estiva o invernale su una parete della stanza ed è stato studiato come il soffitto radiante reagisca per cercare di mantenere una certa temperatura di comfort nella stanza. Al fine di mantenere una buona qualità dell’aria, evitare la formazione di condensa, ma anche per incrementare la capacità di raffrescamento quando richiesto, i sistemi radianti per gli uffici andrebbero sempre associati a sistemi di ventilazione meccanica. Accanto ai tradizionali sistemi a soffitto con ventilazione a miscelazione, le soluzioni con ventilazione a dislocamento accoppiate a sistemi a pavimento o a soffitto sono alternative di crescente interesse per gli uffici. In edifici dove sia bassa la quantità di inquinanti emessi dai materiali edili, dai mobili e dalle attrezzature, la quantità di bioeffluenti dagli occupanti, dei quali l’anidride carbonica CO2 è normalmente usata come principale indicatore, è determinante per la qualità dell’aria interna. La capacità di rimozione dei contaminanti e, parallelamente, la capacità di immettere aria pulita negli ambienti sono espresse dall’efficienza di ventilazione (ventilation effectiveness). Mediante simulazione fluidodinamiche CFD è stato possibile confrontare l’efficienza di rimozione dei contaminanti utilizzando diverse soluzioni di ventilazione a dislocamento piuttosto che soluzioni tradizionali a miscelazione. La qualità di un ambiente interno andrebbe misurata in termini sia di comfort termico garantito all’occupante che di qualità dell’aria. Attraverso prove sperimentali in laboratorio, i principali indici di comfort termico e di efficienza di ventilazione sono stati determinati per diverse configurazioni di ventilazione a miscelazione e di ventilazione a dislocamento in ambienti rappresentativi di applicazioni residenziali o del terziario. I risultati sono stati in seguito utilizzati per effettuare una validazione di un modello fluidodinamico (CFD) creato per la previsione del movimento dell’aria in ambienti residenziali o uffici.
Books on the topic "Mechanical ventilation system"
Respiratory system and artificial ventilation. Milan: Springer, 2008.
Find full textA, Moore James. Troubleshooting a mechanical ventilation system for livestock or poultry housing. [Corvallis, Or.]: Oregon State University Extension Service, Washington State University Cooperative Extension, the University of Idaho Cooperative Extension Service and the U.S. Dept. of Agriculture, 1986.
Find full textSheet Metal and Air Conditioning Contractors' National Association (U.S.), ed. Residential comfort system installation standards manual. 7th ed. Chantilly, VA: SMACNA, 1998.
Find full textPotter, I. N. CO2 controlled mechanical ventilation systems. Bracknell: Building Services Research and Information Association, 1994.
Find full textTimothy, Mayo, Prowskiw G, Canada Centre for Mineral and Energy Technology. Efficiency and Alternative Energy Technology Branch., and Unies Ltd, eds. Utilization of residential mechanical ventilation systems. Ottawa: CANMET, Efficiency and Alternative Energy Technology Branch, 1992.
Find full textChartered Institution of Building Services Engineers, ed. Improved life cycle performance of mechanical ventilation systems. London: CIBSE, 2003.
Find full textProskiw, G. Field performance of various types of residential mechanical ventilation systems. [Ottawa, Ont.]: Energy, Mines and Resources Canada, 1992.
Find full textKrigger, John. Saturn mechanical systems field guide. [Helena, MT]: Saturn Resource Management, 2006.
Find full textW, Haines Roger. Control Systems for Heating, Ventilating, and Air Conditioning. Boston, MA: Springer US, 1993.
Find full textM, Porterfield John, Kirsininkas Ronald, and Balderas David, eds. Mechanical systems retrofit manual: A guide for residential design. New York: Van Nostrand Reinhold Co., 1987.
Find full textBook chapters on the topic "Mechanical ventilation system"
Lofaso, Frédéric, and Hélène Prigent. "Carbon Dioxide Rebreathing During Pressure Support Ventilation with Airway Management System (BiPAP) Devices." In Noninvasive Mechanical Ventilation, 83–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11365-9_13.
Full textHutchison, Alastair A., Francis Leclerc, Véronique Nève, J. Jane Pillow, and Paul D. Robinson. "The Respiratory System." In Pediatric and Neonatal Mechanical Ventilation, 55–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-01219-8_4.
Full textSay, Gorkem, Nurullah Akkaya, Ersin Aytac, Sanan Abizada, Tolga Yirtici, Kemal Ruso, Irfan Gunsel, Murat Tuzunkan, and Rahib H. Abiyev. "Fuzzy Control of Mechanical Ventilation System." In 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence - ICSCCW-2021, 347–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92127-9_48.
Full textRimensberger, Peter C., Sven M. Schulzke, David Tingay, and Britta S. von Ungern-Sternberg. "Monitoring of the Mechanical Behaviour of the Respiratory System During Controlled Mechanical Ventilation." In Pediatric and Neonatal Mechanical Ventilation, 421–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-01219-8_13.
Full textJoza, Stephen, and Martin Post. "Development of the Respiratory System (Including the Preterm Infant)." In Pediatric and Neonatal Mechanical Ventilation, 3–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-01219-8_1.
Full textZin, W. A., and R. F. M. Gomes. "Mechanical models of the respiratory system: linear models." In Basics of Respiratory Mechanics and Artificial Ventilation, 87–94. Milano: Springer Milan, 1999. http://dx.doi.org/10.1007/978-88-470-2273-7_7.
Full textHaaksma, Mark E., Marry R. Smit, and Pieter R. Tuinman. "Ultrasound Assessment of the Respiratory System." In Mechanical Ventilation from Pathophysiology to Clinical Evidence, 341–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93401-9_32.
Full textGuerin, Claude, and Jean-Christophe Richard. "Measurement of respiratory system resistance during mechanical ventilation." In Applied Physiology in Intensive Care Medicine, 17–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01769-8_5.
Full textGuerin, Claude, and Jean-Christophe Richard. "Measurement of respiratory system resistance during mechanical ventilation." In Applied Physiology in Intensive Care Medicine 1, 17–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28270-6_5.
Full textDo, Khoi, and Guido Musch. "Basic Physiology of Respiratory System: Gas Exchange and Respiratory Mechanics." In Mechanical Ventilation from Pathophysiology to Clinical Evidence, 3–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93401-9_1.
Full textConference papers on the topic "Mechanical ventilation system"
Yongliang Zhang, Yongliang, and Qinglei Qinglei Tan. "Application of Natural Ventilation in Metal Mine Ventilation System." In 2015 International Conference on Mechanical Science and Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mse-15.2016.11.
Full textAbdelmaksoud, Waleed A., and Essam E. Khalil. "Personal Ventilation and Displacement Ventilation Assessment in Cubicle Workstations." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62774.
Full textTehrani, Fleur T. "A New Decision Support System for Mechanical Ventilation." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353102.
Full textJordan, Stillman, and Randall D. Manteufel. "Energy Use Comparison of Air Distribution Systems Serving a Section of a School Building." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88718.
Full textWu, Dicken K. H., Y. F. Lin, Y. F. Pin, and Dora W. S. Tsui. "Efficient Numerical Investigation of Ventilation System Design of Road Tunnels." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-93124.
Full textPonnuraj, Balakrishnan, Bijay K. Sultanian, Alessio Novori, and Paolo Pecchi. "3D CFD Analysis of an Industrial Gas Turbine Compartment Ventilation System." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41672.
Full textBelleil, Elise, Long Phan, Cheng-Xian Lin, Mirko Schäfer, and Johannes Wagner. "Natural Ventilation of a Solar House in Hot and Humid Climate: A Study Using Building Energy Simulation Method." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38290.
Full textQuang-Thang Nguyen, Dominique Pastor, Francois Lellouche, and Erwan L'Her. "Mechanical ventilation system monitoring: Automatic detection of dynamic hyperinflation and asynchrony." In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2013. http://dx.doi.org/10.1109/embc.2013.6610722.
Full textDojat, Michel, and Francois Pachet. "An extendable knowledge-based system for the control of mechanical ventilation." In 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.5761308.
Full textDojat and Pachet. "An Extendable Knowledge-based System For The Control Of Mechanical Ventilation." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.594650.
Full text