Academic literature on the topic 'Mechanical ventilation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanical ventilation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mechanical ventilation"

1

Nugent, Kenneth, and Gilbert Berdine. "Mechanical power during mechanical ventilation." Southwest Respiratory and Critical Care Chronicles 12, no. 50 (January 29, 2024): 16–23. http://dx.doi.org/10.12746/swrccc.v12i50.1275.

Full text
Abstract:
Mechanical ventilation provides lifesaving support for patients with acute respiratory failure. However, the pressures and volumes required to maintain gas exchange can cause ventilator-induced lung injury. The current approach to mechanical ventilation involves attention to both tidal volume and airway pressures, in particular plateau pressures and driving pressures. The ventilator provides energy to overcome airway resistance and to inflate alveolar structures. This energy delivered to the respiratory system per unit time equals mechanical power. Calculation of mechanical power provides a composite number that integrates pressures, volumes, and respiratory rates. Increased levels of mechanical power have been associated with tissue injury in animal models. In patients, mechanical power can predict outcomes, such as ICU mortality, when used in multivariable analyses. Increases in mechanical power during the initial phase of ventilation have been associated with worse outcomes. Mechanical power calculations can be used in patients on noninvasive ventilation, and measurements of mechanical power have been used to compare ventilator modes. Calculation of mechanical power requires measurement of the area in a hysteresis loop. Alternatively, simplified formulas have been developed to provide this calculation. However, this information is not available on most ventilators. Therefore, clinicians will need to make this calculation. In summary, calculation of mechanical power provides an estimate of the energy requirements for mechanical ventilation based on a composite of factors, including airway resistance, lung elastance, respiratory rate, and tidal volume. Key words: mechanical ventilation, mechanical power, ventilator-induced lung injury, energy, work
APA, Harvard, Vancouver, ISO, and other styles
2

Pruitt, Bill, and Mary Catherine Hodges. "Mechanical ventilation." Nursing 54, no. 5 (April 19, 2024): 17–25. http://dx.doi.org/10.1097/01.nurse.0001009984.17145.03.

Full text
Abstract:
Abstract: Mechanical ventilation is rarely a simple matter. Skill and knowledge are required to operate the ventilator modes, choose the optimal settings, and understand many monitored variables. Supporting the patient safely and effectively is the top priority in providing mechanical ventilation. This article discusses mechanical ventilation in adults.
APA, Harvard, Vancouver, ISO, and other styles
3

Cawley, Michael J. "Mechanical Ventilation." Journal of Pharmacy Practice 24, no. 1 (November 30, 2010): 7–16. http://dx.doi.org/10.1177/0897190010388145.

Full text
Abstract:
Mechanical ventilation is a common therapeutic modality required for the management of patients unable to maintain adequate intrinsic ventilation and oxygenation. Mechanical ventilators can be found within various hospital and nonhospital environments (ie, nursing homes, skilled nursing facilities, and patient’s home residence), but these devices generally require the skill of a multidisciplinary health care team to optimize therapeutic outcomes. Unfortunately, pharmacists have been excluded in the discussion of mechanical ventilation since this therapeutic modality may be perceived as irrelevant to drug utilization and the usual scope of practice of a hospital pharmacist. However, the pharmacist provides a crucial role as a member of the multidisciplinary team in the management of the mechanically ventilated patient by verifying accuracy of prescribed medications, providing recommendations of alternative drug selections, monitoring for drug and disease interactions, assisting in the development of institutional weaning protocols, and providing quality assessment of drug utilization. Pharmacists may be intimidated by the introduction of advanced ventilator microprocessor technology, but understanding and integrating ventilator management with the pharmacotherapeutic needs of the patient will ultimately help the pharmacist be a better qualified and respected practitioner. The goal of this article is to assist the pharmacy practitioner with a better understanding of mechanical ventilation and to apply this information to improve delivery of pharmaceutical care.
APA, Harvard, Vancouver, ISO, and other styles
4

Mammel, Mark C., Janice P. Ophoven, Patrick K. Lewallen, Margaret J. Gordon, Marylyn C. Sutton, and Stephen J. Boros. "High-Frequency Ventilation and Tracheal Injuries." Pediatrics 77, no. 4 (April 1, 1986): 608–13. http://dx.doi.org/10.1542/peds.77.4.608.

Full text
Abstract:
Recent reports linking serious tracheal injuries to various forms of high-frequency ventilation prompted this study. We compared the tracheal histopathology seen following standard-frequency, conventional mechanical ventilation with that seen following high-frequency, conventional mechanical ventilation, and two different forms of high-frequency jet ventilation. Twenty-six adult cats were examined. Each was mechanically ventilated for 16 hours. Seven received standard-frequency, conventional mechanical ventilation at 20 breaths per minute. Seven received high-frequency, conventional mechanical ventilation at 150 breaths per minute. Six received high-frequency jet ventilation at 250 breaths per minute via the Instrument Development Corporation VS600 jet ventilator (IDC). Six received high-frequency jet ventilation at 400 breaths per minute via the Bunnell Life Pulse jet ventilator (BLP). A semiquantitative histopathologic scoring system graded tracheal tissue changes. All forms of high-frequency ventilation produced significant inflammation (erosion, necrosis, and polymorphonuclear leukocyte infiltration) in the trachea in the region of the endotracheal tube tip. Conventional mechanical ventilation produced less histopathology than any form of high-frequency ventilation. Of all of the ventilators examined, the BLP, the ventilator operating at the fastest rate, produced the greatest loss of surface cilia and depletion of intracellular mucus. IDC high-frequency jet ventilation and high-frequency, conventional mechanical ventilation produced nearly identical histologic injuries. In this study, significant tracheal damage occurred with all forms of high-frequency ventilation. The tracheal damage seen with high-frequency, conventional mechanical ventilation suggests that ventilator frequency, not delivery system, may be responsible for the injuries.
APA, Harvard, Vancouver, ISO, and other styles
5

Daoud, Ehab, Jewelyn Cabigan, Gary Kaneshiro, and Kimiyo Yamasaki. "Split-ventilation for more than one patient, can it be done? Yes." Journal of Mechanical Ventilation 1, no. 1 (September 1, 2020): 1–7. http://dx.doi.org/10.53097/jmv.10002.

Full text
Abstract:
Background: The COVID-19 pandemic crisis has led to an international shortage of mechanical ventilation. Due to this shortfall, the surge of increasing number of patients to limited resources of mechanical ventilators has reinvigorated the interest in the concept of split ventilation or co-ventilation (ventilating more than one patient with the same ventilator). However, major medical societies have condemned the concept in a joint statement for multiple reasons. Materials and Methods: In this paper, we will describe the history of the concept, what is trending in the literature about it and along our modification to ventilate two patients with one ventilator. We will describe how to overcome such concerns regarding cross contamination, re-breathing, safely adjusting the settings for tidal volume and positive end expiratory pressure to each patient and how to safely monitor each patient. Main results: Our experimental setup shows that we can safely ventilate two patients using one ventilator. Conclusion: The concept of ventilating more than one patient with a single ventilator is feasible especially in crisis situations. However, we caution that it has to be done under careful monitoring with expertise in mechanical ventilation. More research and investment are crucially needed in this current pandemic crisis.
APA, Harvard, Vancouver, ISO, and other styles
6

Cameron, P. D., and T. E. Oh. "Newer Modes of Mechanical Ventilatory Support." Anaesthesia and Intensive Care 14, no. 3 (August 1986): 258–66. http://dx.doi.org/10.1177/0310057x8601400306.

Full text
Abstract:
Recent modes of ventilatory support aim to facilitate weaning and minimise the physiological disadvantages of intermittent positive pressure ventilation (IPPV). Intermittent mandatory ventilation (IMV) allows the patient to breathe spontaneously in between ventilator breaths. Mandatory minute volume ventilation (MMV) ensures that the patient always receives a preset minute volume, made up of both spontaneous and ventilator breaths. Pressure supported (assisted) respiration is augmentation of a spontaneous breath up to a preset pressure level, and is different from ‘triggering’, which is a patient-initiated ventilator breath. Other modes or refinements of IPPV include high frequency ventilation, expiratory retard, differential lung ventilation, inversed ratio ventilation, ‘sighs’, varied inspiratory flow waveforms and extracorporeal membrane oxygenation. While these techniques have useful applications in selective situations, IPPV remains the mainstay of managing respiratory failure for most patients.
APA, Harvard, Vancouver, ISO, and other styles
7

Kolandaivelu, Kumaran, and Chi-Sang Poon. "A miniature mechanical ventilator for newborn mice." Journal of Applied Physiology 84, no. 2 (February 1, 1998): 733–39. http://dx.doi.org/10.1152/jappl.1998.84.2.733.

Full text
Abstract:
Kolandaivelu, Kumaran, and Chi-Sang Poon.A miniature mechanical ventilator for newborn mice. J. Appl. Physiol. 84(2): 733–739, 1998.—Transgenic/knockout mice with predefined mutations have become increasingly popular in biomedical research as models of human diseases. In some instances, the resulting mutation may cause cardiorespiratory distress in the neonatal or adult animals and may necessitate resuscitation. Here we describe the design and testing of a miniature and versatile ventilator that can deliver varying ventilatory support modes, including conventional mechanical ventilation and high-frequency ventilation, to animals as small as the newborn mouse. With a double-piston body chamber design, the device circumvents the problem of air leakage and obviates the need for invasive procedures such as endotracheal intubation, which are particularly important in ventilating small animals. Preliminary tests on newborn mice as early as postnatal day 0 demonstrated satisfactory restoration of pulmonary ventilation and the prevention of respiratory failure in mutant mice that are prone to respiratory depression. This device may prove useful in the postnatal management of transgenic/knockout mice with genetically inflicted respiratory disorders.
APA, Harvard, Vancouver, ISO, and other styles
8

Wendel Garcia, Pedro David, Daniel Andrea Hofmaenner, Silvio D. Brugger, Claudio T. Acevedo, Jan Bartussek, Giovanni Camen, Patrick Raphael Bader, et al. "Closed-Loop Versus Conventional Mechanical Ventilation in COVID-19 ARDS." Journal of Intensive Care Medicine 36, no. 10 (June 8, 2021): 1184–93. http://dx.doi.org/10.1177/08850666211024139.

Full text
Abstract:
Background: Lung-protective ventilation is key in bridging patients suffering from COVID-19 acute respiratory distress syndrome (ARDS) to recovery. However, resource and personnel limitations during pandemics complicate the implementation of lung-protective protocols. Automated ventilation modes may prove decisive in these settings enabling higher degrees of lung-protective ventilation than conventional modes. Method: Prospective study at a Swiss university hospital. Critically ill, mechanically ventilated COVID-19 ARDS patients were allocated, by study-blinded coordinating staff, to either closed-loop or conventional mechanical ventilation, based on mechanical ventilator availability. Primary outcome was the overall achieved percentage of lung-protective ventilation in closed-loop versus conventional mechanical ventilation, assessed minute-by-minute, during the initial 7 days and overall mechanical ventilation time. Lung-protective ventilation was defined as the combined target of tidal volume <8 ml per kg of ideal body weight, dynamic driving pressure <15 cmH2O, peak pressure <30 cmH2O, peripheral oxygen saturation ≥88% and dynamic mechanical power <17 J/min. Results: Forty COVID-19 ARDS patients, accounting for 1,048,630 minutes (728 days) of cumulative mechanical ventilation, allocated to either closed-loop (n = 23) or conventional ventilation (n = 17), presenting with a median paO2/ FiO2 ratio of 92 [72-147] mmHg and a static compliance of 18 [11-25] ml/cmH2O, were mechanically ventilated for 11 [4-25] days and had a 28-day mortality rate of 20%. During the initial 7 days of mechanical ventilation, patients in the closed-loop group were ventilated lung-protectively for 65% of the time versus 38% in the conventional group (Odds Ratio, 1.79; 95% CI, 1.76-1.82; P < 0.001) and for 45% versus 33% of overall mechanical ventilation time (Odds Ratio, 1.22; 95% CI, 1.21-1.23; P < 0.001). Conclusion: Among critically ill, mechanically ventilated COVID-19 ARDS patients during an early highpoint of the pandemic, mechanical ventilation using a closed-loop mode was associated with a higher degree of lung-protective ventilation than was conventional mechanical ventilation.
APA, Harvard, Vancouver, ISO, and other styles
9

Hammouda, Eman Yasser, Hanaa Hussein Ahmed, Amr A. Moawad, and Nahed Attia Kandeel. "Weaning success among COPD patients following ventilator care bundle application." Clinical Nursing Studies 10, no. 1 (March 1, 2022): 1. http://dx.doi.org/10.5430/cns.v10n1p1.

Full text
Abstract:
Objective: Several studies evaluated the effectiveness of the ventilator care bundle in reducing the occurrence of ventilatorassociated pneumonia. The ventilator care bundle efficacy in early mechanical ventilation weaning has not been adequately assessed. The study aimed to investigate the weaning success among chronic obstructive pulmonary disease (COPD) patients following ventilator care bundle application.Methods: This study is quasi-experimental, recruiting 80 mechanically ventilated COPD patients (40 patients for each bundle and control group). It was conducted at the respiratory intensive care units (ICUs) at Mansoura University Hospital, Egypt. Data were collected using a mechanically ventilated patient (MVP) assessment tool, a ventilator care bundle compliance checklist, and MVP evaluation tools based on the Burns’ Wean Assessment Program (BWAP) checklist and the patient’s ventilation indicators.Results: The results revealed that almost 75% of the bundle group was successfully weaned from invasive mechanical ventilation at the first attempt of the spontaneous breathing trial compared with 32.5% of the control group. The ventilation duration and length of ICU stay were reduced in the bundle compared with the control group.Conclusions: The bundle group demonstrated higher weaning scores than the control group. Therefore, we recommend the integration of the ventilator care bundle in the weaning trial of MVPs to accelerate weaning and reduce the duration of mechanical ventilation.
APA, Harvard, Vancouver, ISO, and other styles
10

Radke, Oliver. "Monitoring Mechanical Ventilation Using Ventilator Waveforms." Anesthesia & Analgesia 128, no. 1 (January 2019): e6. http://dx.doi.org/10.1213/ane.0000000000003896.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mechanical ventilation"

1

Walsh, Brian Kendall. "Computer-aided mechanical ventilation." Thesis, Rush University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10111109.

Full text
Abstract:

Statement of the problem: The systematic implementation of evidence-based practice through the use of guidelines, checklists and protocols has been shown to mitigate the risks associated with MV, yet variation in practice remains prevalent. Recent advances in MV, physiologic monitoring, device-to-device communication, computer processing and software engineering have allowed for the development of an automated point-of-care access to real-time goal setting and practice variance identification. Our aim was to assess the utility of a computer-aided MV (CAMV) system that displays variances and scores the overall MV course. Methods: A retrospective categorization of the ventilation and oxygenation statuses of patients within our pediatric intensive care unit (PICU) over a 2 '/z years period utilizing 15 rule-based algorithms was initiated as a proof of concept. Goals were predetermined based on generally accepted values. All patient categories were calculated and presented as a percent of recording time. Following the feasibility study, a retrospective observational study (baseline), followed by two sequential interventions made over a 2-month period was conducted. Phase I comprised a survey of goals of MV by clinicians caring for patients being monitored by the CAMV system. Phase II intervention was the setting and monitoring of goals of MV with a web browser based data visualization system (T3). An outcome measurement tool was developed to score each MV course. The MV score (MVS) evaluated four outcomes: (1) acceptable ventilation, (2) acceptable oxygenation, (3) barotrauma free and (4) volutrauma-free states as a percent of recording time. Results: Pilot consisted of 222 patients. The Baseline phase evaluated 130 patients, Phase I enrolled 31 patients and Phase II enrolled 36 patients. There were no differences in demographic characteristics between cohorts. One hundred and seventy-one surveys were completed in Phase I. An increase in the use of T3 by 87% was observed in Phase II from Phase I. MVS improved by 8.4% in Phase I and 11.3% in Phase II from Baseline. The largest improvement was in the volutraumafree category. MVS was 9% higher on average in those who survived. Conclusion: The use of CAMV was associated with an improvement in MVS. Further research is needed to determine if improvements in MVS through a targeted, process-oriented intervention such as CAMV will lead to improved patient outcomes.

APA, Harvard, Vancouver, ISO, and other styles
2

Howe, Kimberly Palazzo. "Mechanical Ventilation Antioxidant Trial." Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1112877564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sperber, Jesper. "Protective Mechanical Ventilation in Inflammatory and Ventilator-Associated Pneumonia Models." Doctoral thesis, Uppsala universitet, Infektionssjukdomar, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282602.

Full text
Abstract:
Severe infections, trauma or major surgery can each cause a state of systemic inflammation. These causes for systemic inflammation often coexist and complicate each other. Mechanical ventilation is commonly used during major surgical procedures and when respiratory functions are failing in the intensive care setting. Although necessary, the use of mechanical ventilation can cause injury to the lungs and other organs especially under states of systemic inflammation. Moreover, a course of mechanical ventilator therapy can be complicated by ventilator-associated pneumonia, a factor greatly influencing mortality. The efforts to avoid additional ventilator-induced injury to patients are embodied in the expression ‘protective ventilation’. With the use of pig models we have examined the impact of protective ventilation on systemic inflammation, on organ-specific inflammation and on bacterial growth during pneumonia. Additionally, with a 30-hour ventilator-associated pneumonia model we examined the influence of mechanical ventilation and systemic inflammation on bacterial growth. Systemic inflammation was initiated with surgery and enhanced with endotoxin. The bacterium used was Pseudomonas aeruginosa. We found that protective ventilation during systemic inflammation attenuated the systemic inflammatory cytokine responses and reduced secondary organ damage. Moreover, the attenuated inflammatory responses were seen on the organ specific level, most clearly as reduced counts of inflammatory cytokines from the liver. Protective ventilation entailed lower bacterial counts in lung tissue after 6 hours of pneumonia. Mechanical ventilation for 24 h, before a bacterial challenge into the lungs, increased bacterial counts in lung tissue after 6 h. The addition of systemic inflammation by endotoxin during 24 h increased the bacterial counts even more. For comparison, these experiments used control groups with clinically common ventilator settings. Summarily, these results support the use of protective ventilation as a means to reduce systemic inflammation and organ injury, and to optimize bacterial clearance in states of systemic inflammation and pneumonia.
APA, Harvard, Vancouver, ISO, and other styles
4

Hammash, Muna Hassan. "CARDIAC RHYTHM DURING MECHANICAL VENTILATION AND WEANING FROM VENTILATION." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_diss/56.

Full text
Abstract:
The transition from mechanical ventilation (MV) to spontaneous ventilation during weaning is associated with hemodynamic alterations and autonomic nervous system (ANS) alterations (reflected by heart rate variability [HRV]). Although cardiac dysrhythmias are an important manifestation of hemodynamic alterations, development of dysrhythmias during MV and weaning and subsequent impact on length of MV has received little attention. The purposes of this dissertation were to 1) evaluate the relationship of heart rate variability (HRV) during weaning to the development of cardiac dysrhythmias and 2) determine the relationship of cardiac dysrhythmias to length of MV. A convenience sample of 35 patients (66.7% men; mean age 53.3 years) who required MV was enrolled in this study. Continuous 3-lead electrocardiographic data were collected for 24 hours at baseline during MV and for the first 2 hours during the initial weaning trial. HRV was evaluated using spectral power analysis. Twenty- seven patients out of 30 were exposed to a combination of pressure support (8-15 cm H2O) and continuous positive airway pressure 5 cm H2O during weaning trial. Three patients self- extubated and received supplemental oxygen through either a partial rebreathing or non-rebreathing mask. Low frequency (LF) power HRV decreased, while high frequency (HF) and very low frequency (VLF) power HRV did not change during weaning. Multiple regression analyses showed that LF and HF HRV were significant predictors of occurrence of ventricular and supraventricular ectopic beats during weaning, while VLF power predicted occurrence of ventricular ectopic beats only. The mean of occurrence of supraventricular ectopic beats per hour during weaning was double the mean at baseline, while the mean of ventricular ectopic beats per hour did not change. Mean number of supraventricular ectopic beats per hour during weaning was a significant predictor of length of MV. This dissertation has fulfilled an important gap in the evidence base for cardiac dysrhythmias during weaning from MV. Cardiac dysrhythmias and HRV alterations should be systemically evaluated during MV and weaning trials in order to decrease length of MV.
APA, Harvard, Vancouver, ISO, and other styles
5

van, Drunen Erwin Johan. "Mechanical Ventilation Modelling and Optimisation." Thesis, University of Canterbury. Mechanical Engineering, 2013. http://hdl.handle.net/10092/8400.

Full text
Abstract:
Acute Respiratory Distress Syndrome (ARDS) is associated with lung inflammation and fluid filling, resulting in a stiffer lung with reduced intrapulmonary gas volume. ARDS patients are admitted to the Intensive Care Unit (ICU) and require Mechanical Ventilation (MV) for breathing support. Positive End Expiratory Pressure (PEEP) is applied to aid recovery by improving gas exchange and maintaining recruited lung volume. However, high PEEP risks further lung injury due to overstretching of healthy lung units, and low PEEP risks further lung injury due to the repetitive opening and closing of lung units. Thus, selecting PEEP is a balance between avoiding over-stretching and repetitive opening of alveoli. Furthermore, specific protocols to determine optimal PEEP do not currently exist, resulting in variable PEEP selection. Thus, ensuring an optimal PEEP would have significant impact on patient mortality, and the cost and duration of MV therapy. Two important metrics that can be used to aid MV therapy are the elastance of the lungs as a function of PEEP, and the quantity of recruited lung volume as a function of PEEP. This thesis describes several models and model-based methods that can be used to select optimal PEEP in the ICU. Firstly, a single compartment lung model is investigated for its ability to capture the respiratory mechanics of a mechanically ventilated ARDS patient. This model is then expanded upon, leading to a novel method of mapping and visualising dynamic respiratory system elastance. Considering how elastance changes, both within a breath and throughout the course of care, provides a new clinical perspective. Next, a model using only the expiratory portion of the breathing cycle is developed and presented, providing an alternative means to track changes in disease state throughout MV therapy. Finally, four model-based methods are compared based on their capability of estimating the quantity of recruited lung volume due to PEEP. The models and model-based methods described in this thesis enable rapid parameter identification from readily available clinical data, providing a means of tracking lung condition and selecting optimal patient-specific PEEP. Each model is validated using data from clinical ICU patients and/or experimental ARDS animal models.
APA, Harvard, Vancouver, ISO, and other styles
6

Young, Peter Jeffrey. "Pulmonary aspiration in mechanical ventilation." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323263.

Full text
Abstract:
Pulmonary aspiration in mechanical ventilation occurs despite appropriate inflation of the tracheal tube cuff. After anaesthesiath is can causep ostoperative and, in critically ill patients, ventilator-associated pneumonia. Cuff over-inflation exerts excessive pressure on the tracheal mucosa causing injury. High volume low pressure (HVLP) cuffs permit wall pressure control as the intracuff pressure (CP) is the tracheal wall pressure (TWP). Unfortunately, at the cuff wall, folds and channels and, therefore, fluid leakage occur. Low volume high pressure (LVHP) cuffs develop neither folds nor associated leakage, but TWP is not easily inferred from CP and excessive pressures can result in tracheal injury. This thesis examines the problem of aspiration in a model, in anaesthetised patients and in the critically ill. In the model, protection against leakage resulted from positive end-expiratory pressure and cuff lubrication. Two tracheal cuff prototypes are introduced. Firstly, the compliant HVLP cuff is one with a tapered shape made of highly compliant material. Within the model this produced a circumferential band at the cuff wall without folds thus effectively eliminating channels and leakage. Secondly, the prototype pressure limited cuff (PLC) is a latex LVHP cuff with inflation characteristics such that TWP can be inferred from CP and maintained at an acceptable level. Within the model the PLC prevented leakage at acceptable TWPs. For clinical use a constant pressure inflation device is required to provide uninterrupted protection, although notably HVLP cuffs allow leakage despite this. The PLC prevented dye aspiration in 100% of tracheally intubated critically ill patients compared with 13% of the control HVLP group (p<0.01). A silicone cuff with similar inflation characteristics, yet improved biocompatability and shelf life, prevented dye aspiration in 100% of patients with tracheostomies compared to 0% of the HVLP control group (p=0.001). HVLP cuff lubrication delayed dye aspiration for 1 to 5 days (p<0.05).
APA, Harvard, Vancouver, ISO, and other styles
7

Balaji, Ravishankar. "Breathing Entrainment and Mechanical Ventilation in Rats." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1307743446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bengtsson, Patrik, and Joel Blomfelt. "Variabel Ventilation." Thesis, KTH, Energiteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190163.

Full text
Abstract:
A lot of people today spend most of their lives indoors. Both at home and at work time is spent in areas where the climate is not governed by the weather but by ventilation systems meant to create a suitable indoor climate. Despite having such a central part in society the subject of ventilation seldom gets very much attention, and in the current situation it is not a foregone conclusion that indoor air quality and climate is satisfactory. Those who build the homes and premises normally explain this as a result of cost considerations, but essentially the situation originates from other issues. A more accurate explanation is that there are some problems concerning the planning stage of ventilation systems, which implies both a highly simplified designing approach and the price, not the function and quality, being decisive. The problems have been confirmed by several sources and research is in progress within the area in order to address the underlying issues. Among other things, various types of test-bed housing is constructed in several parts of the world, designed for measurement and data collection in a real living environment. Such projects can both verify different system´s function and promote the development of new innovations, but also help in creating well-justified research material regarding, among other things, different ventilation solutions such as for example variable ventilation. One of these projects, called KTH Live-in Lab, is located at KTH in Stockholm. This report presents a work regarding comparisons of different ventilation solutions for such a student apartment as constructed in the ongoing research project KTH Live-in Lab. The work focuses on both finding a suitable system and then link the results to an adequate combination for use with variable ventilation. In order to deal with today´s problems within the area, the work is focused on deviating from the current conventional approach and ventilation design. The result is illustrated digitally in the form of computer simulations of air flow in a virtual model of the apartment, and comparisons led both to a number of conclusions, and proposals of suitable and unconventional solutions. For non-variable ventilation systems, a suitable system consisted of one ventilation inlet placed at ceiling level and two outlets whereof one at ceiling level and one at floor level. For variable ventilation, the results showed that the system solution should suitably be combined with the ability to switch to an inlet at floor level at nights and other scenarios without activity and movement in the apartment. Other conclusions are mainly about findings regarding how certain design variations affect the characteristics of the ventilation system.
Många människor spenderar idag större delen av sitt liv inomhus. Det är vanligt att man både hemma och på jobbet vistas i utrymmen där klimatet inte styrs av väder och vind utan av ventilationssystem som är tänkta att skapa ett lämpligt inomhusklimat. Trots ventilationens centrala del av samhället hamnar ämnet dock ofta i skymundan, och i dagens läge är det ingen självklarhet att inomhusklimaten och dess luftkvalité är tillfredställande. Av dem som bygger bostäderna och lokalerna förklaras detta ofta bero på kostnadsaspekter, men i grund och botten är det annat som ligger till grund för dagens situation. En bättre förklaring är att det finns viss problematik kring ventilationens planeringsskede, vilket innebär ett väldigt förenklat arbetssätt och att kostnad prioriteras framför funktion och kvalité. Problemen har bekräftats från flera håll och forskning pågår inom området i syfte att möta de bakomliggande orsakerna. Bland annat uppförs på flera håll i världen olika typer av testbädd-bostäder utformade för mätning och datainsamling i en verklig boendemiljö. Med hjälp av dessa kan man både verifiera olika systems funktion och gynna framtagning av nya innovationer och välgrundat forskningsmaterial gällande bland annat olika ventilationslösningar som exempelvis variabel ventilation. Ett av dessa projekt, med namnet KTH Live-in Lab, utförs på KTH i Stockholm. I denna rapport presenteras ett arbete gällande jämförelser av olika ventilationslösningar för en sådan studentlägenhet som uppförs i det pågående bygg- och forskningsprojektet KTH Live-in Lab. Arbetet fokuseras på att dels hitta en lämplig ventilationslösning och sedan även koppla resultatet till en möjlig kombination att använda för variabel ventilation. I syfte att möta dagens problematik fokuserades på att frångå dagens konventionella arbetssätt och ventilationsdesign. Resultatet illustreras digitalt i form av datorsimuleringar av luftflöden i en virtuell modell av bostaden, och jämförelserna ledde till ett antal slutsatser och förslag på lämpliga okonventionella lösningar. För icke-variabel ventilation var det lämpligt att placera ett inlopp i taknivå, samt två utlopp varav ett i taknivå och ett i golvnivå. För variabel ventilation visade det sig att denna systemlösning bör kombineras med möjlighet att växla inloppet till lågt inlopp på nätter och andra scenarion utan aktivitet och rörelse i bostaden. Övriga slutsatser gäller vilka egenskaper som bör varieras beroende på vad man vill uppnå med ventilationen.
APA, Harvard, Vancouver, ISO, and other styles
9

Svantesson, Cecilia. "Respiratory mechanics during mechanical ventilation in health and in disease." Lund : Dept. of Clinical Psychology, Lund University, 1997. http://catalog.hathitrust.org/api/volumes/oclc/38987113.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kostic, Peter. "New methods for optimization of mechanical ventilation." Doctoral thesis, Uppsala universitet, Anestesiologi och intensivvård, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-249172.

Full text
Abstract:
Mechanical ventilation saves lives, but it is an intervention fraught with the potential for serious complications. Prevention of these complications has become the focus of research and critical care in the last twenty years. This thesis presents the first use, or the application under new conditions, of three technologies that could contribute to optimization of mechanical ventilation. Optoelectronic plethysmography was used in Papers I and II for continuous assessment of changes in chest wall volume, configuration, and motion in the perioperative period. A forced oscillation technique (FOT) was used in Paper III to evaluate a novel positive end-expiratory pressure (PEEP) optimization strategy. Finally, in Paper IV, FOT in conjunction with an optical sensor based on a self-mixing laser interferometer (LIR) was used to study the oscillatory mechanics of the respiratory system and to measure the chest wall displacement. In Paper I, propofol anesthesia decreased end-expiratory chest wall volume (VeeCW) during induction, with a more pronounced effect on the abdominal compartment than on the rib cage. The main novel findings were an increased relative contribution of the rib cage to ventilation after induction of anesthesia, and the fact that the rib cage initiates post-apneic ventilation. In Paper II, a combination of recruitment maneuvers, PEEP, and reduced fraction of inspired oxygen, was found to preserve lung volume during and after anesthesia. Furthermore, the decrease in VeeCW during emergence from anesthesia, associated with activation of the expiratory muscles, suggested that active expiration may contribute to decreased functional residual capacity, during emergence from anesthesia. In the lavage model of lung injury studied in Paper III, a PEEP optimization strategy based on maximizing oscillatory reactance measured by FOT resulted in improved lung mechanics, increased oxygenation, and reduced histopathologic evidence of ventilator-induced lung injury. Paper IV showed that it is possible to apply both FOT and LIR simultaneously in various conditions ranging from awake quiet breathing to general anesthesia with controlled mechanical ventilation. In the case of LIR, an impedance map representing different regions of the chest wall showed reproducible changes during the different stages that suggested a high sensitivity of the LIR-based measurements.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mechanical ventilation"

1

Lemaire, François, ed. Mechanical Ventilation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-87448-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Slutsky, Arthur S., and Laurent Brochard, eds. Mechanical Ventilation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b138096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kreit, John W. Mechanical ventilation. Oxford: Oxford University Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

François, Lemaire, ed. Mechanical ventilation. Berlin: Springer-Verlag, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

MacIntyre, Neil R., and Richard D. Branson, eds. Mechanical ventilation. Philadelphia, Pennsylvana: W.B. Saunders, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

R, Kirby Robert, Smith, Robert A., R.R.T., and Desautels David A, eds. Mechanical ventilation. New York: Churchill Livingstone, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

R, MacIntyre Neil, and Branson Richard D, eds. Mechanical ventilation. 2nd ed. St. Louis, MO: Saunders Elsevier, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

MacIntyre, Neil R. Mechanical ventilation. Philadelphia: Saunders Elsevier, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

MacIntyre, Neil R., and Richard D. Branson. Mechanical Ventilation. Philadelphia: Saunders, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arnal, Jean-Michel. Monitoring Mechanical Ventilation Using Ventilator Waveforms. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58655-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mechanical ventilation"

1

Hijazi, Omar M. "Mechanical Ventilation." In Textbook of Clinical Pediatrics, 2525–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-02202-9_267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bensard, Denis D., Philip F. Stahel, Jorge Cerdá, Babak Sarani, Sajid Shahul, Daniel Talmor, Peter M. Hammer, et al. "Mechanical Ventilation." In Encyclopedia of Intensive Care Medicine, 1362. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_3201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kornecki, Alik, and Derek S. Wheeler. "Mechanical Ventilation." In Pediatric Critical Care Medicine, 127–61. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6356-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arnal, Jean-Michel, Eduardo Bancalari, Katherine C. Clement, Sherry E. Courtney, Claude Danan, Steven M. Donn, Xavier Durrmeyer, et al. "Mechanical Ventilation." In Pediatric and Neonatal Mechanical Ventilation, 149–274. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-01219-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bennett, Neil T., and T. James Gallagher. "Mechanical Ventilation." In Surgical Intensive Care Medicine, 345–62. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-6645-5_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yagi, Kenichiro. "Mechanical Ventilation." In Veterinary Technician's Manual for Small Animal Emergency and Critical Care, 417–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119536598.ch21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Douglas, Aaron J. "Mechanical Ventilation." In Basic Sciences in Anesthesia, 627–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62067-1_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Piatt, Clark U., Ubaldo J. Martin, and Gerard J. Criner. "Mechanical Ventilation." In Critical Care Study Guide, 559–93. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-3927-5_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Iyer, Shivakumar S., and Jignesh Shah. "Mechanical Ventilation." In Clinical Pathways in Emergency Medicine, 191–206. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2710-6_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khilnani, Praveen, and Rajiv Uttam. "Mechanical Ventilation." In ICU Protocols, 341–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0902-5_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mechanical ventilation"

1

Hegeman, M. A., S. N. T. Hemmes, M. T. Kuipers, Lieuwe D. J. Bos, G. Jongsma, K. F. van der Sluijs, and M. J. Schultz. "Prolonged Mechanical Ventilation Aggravates Ventilator-Induced Lung Injury." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a1707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abdelmaksoud, Waleed A., and Essam E. Khalil. "Personal Ventilation and Displacement Ventilation Assessment in Cubicle Workstations." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62774.

Full text
Abstract:
Personal ventilation (PV) strategy is increasing very rapidly in ventilating the indoor spaces. Compared to the traditional ventilation system, the use of PV system can provide several advantages such as: energy reduction, comfort and healthy environment. Previous study reported in earlier paper [Schiavon et al. 2010] indicated that the use of PV system may reduce the energy consumption substantially (up to 51%) compared to mixing ventilation. Additionally, healthy environment is assured in the PV system due to the direct supply of fresh “clean” air to the occupant face. In the current study, detailed assessment of PV system and displacement ventilation (DV) system in a cubicle workstation (office cubicle) is presented. This assessment is based on CFD simulations. Five ventilation cases have been studied on the office cubicle. One case is performing a DV system only; another is performing a PV system only; the remaining three cases are performing a combined of PV and DV system. These cases have been evaluated using the PMV and PPD comfort indices, developed by Fanger 1970 and 1982. The target was to achieve a ventilation case that satisfies the best comfort indices near the occupant in the office cubicle. The five cases conditions and the best case conditions are presented in this paper.
APA, Harvard, Vancouver, ISO, and other styles
3

Singru, Pravin, Bhargav Mistry, Rachna Shetty, and Satish Deopujari. "Design of MEMS Based Piezo-Resistive Sensor for Measuring Pressure in Endo-Tracheal Tube." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50838.

Full text
Abstract:
Mechanical ventilation is the process of providing artificial breathing support to a patient. More than half of critically ill patients require mechanical ventilation[1]. Though mechanical ventilation increases time for recuperation, it is known to have given rise to complications arising from over-distention of lungs leading to ventilator associated lung injury (VALI) and ventilator induced lung injury (VILI). This paper aims to develop a sensor to identify breathing efforts initiated by the patient and give back responses to the ventilator to regulate ventilation modes and tidal volumes delivered by the ventilator. This will significantly aid in reducing asynchrony between the patient efforts and the ventilator input, thus preventing lung injury. Towards this end, we have simulated and studied the effect of different kinds of dynamic loading and diaphragm membrane thickness of the sensor on its sensitivity on a basic design.
APA, Harvard, Vancouver, ISO, and other styles
4

Roesthuis, Lisanne H., Jonne Doorduin, Johannes G. Van der Hoeven, and Leo M. A. Heunks. "Respiratory muscle recruitment during mechanical ventilation: Effects of ventilator settings." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.oa4955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mahmood, Kamran, Momen M. Wahidi, Ian Welsby, and Scott Shofer. "Mechanical Ventilation During Rigid Bronchoscopy." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a5968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nadeau, Mathieu, Philippe Micheau, Raymond Robert, Jonathan Vandamme, Julien Mousseau, Renaud Tissier, Olivier Avoine, et al. "Lumped Thermal Model of a Newborn Lamb and a Liquid Ventilator in Total Liquid Ventilation." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40108.

Full text
Abstract:
Total liquid ventilation (TLV) is an emerging and promising mechanical ventilation method in which the lungs are filled with a breathable liquid. Perfluorocarbon (PFC) is the predominant liquid of choice due to its high O2 and CO2 solubility. In TLV, a dedicated liquid ventilator ensures gas exchange by renewing a tidal volume of PFC, which is temperature-controlled, oxygenated and free of CO2. A fundamental difference between TLV and conventional mechanical ventilation relates to the fact that PFCs are approximately 1500 times denser than air. This high density provides PFCs with a large heat capacity, turning the lungs into an efficient heat exchanger with circulating blood. The originality of this study is the development of a lumped thermal model of the body as a heat exchanger coupled to a liquid ventilator. The model was validated with an animal experimentation on a newborn lamb with the Inolivent-5.0 liquid ventilator prototype. TLV was initiated with a fast hypothermia induction, followed successively by a slow posthypothermic rewarming, a fast rewarming and finally a second fast hypothermia induction. Results demonstrate that the model was able to aptly predict, in every phase, the temperature of the lungs, the eardrum, the rectum as well as the various compartments of the liquid ventilator.
APA, Harvard, Vancouver, ISO, and other styles
7

Yongliang Zhang, Yongliang, and Qinglei Qinglei Tan. "Application of Natural Ventilation in Metal Mine Ventilation System." In 2015 International Conference on Mechanical Science and Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mse-15.2016.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Platou, D., L. A. Duffner, R. Arena, R. Mehta, F. Laghi, T. E. Weaver, M. J. Tobin, and A. Jubran. "Physical Performance After Prolonged Mechanical Ventilation." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ganatra, Nautam B., and Irwin M. Berlin. "Prolonged Mechanical Ventilation - Can We Predict?" In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a3095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Delanoye, Jan-Jakob, Stef Bouduin, Eric Derom, and Guy Joos. "Adherence to home mechanical ventilation (HMV)." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa3071.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mechanical ventilation"

1

Atladottir, Dr Hjördis Osk, and Dr Niels Kim Schønemann. Broncho-gastric fistula complicating mechanical ventilation. The Association of Anaesthetists of Great Britain and Ireland, December 2016. http://dx.doi.org/10.21466/ac.bfcmvac.2016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ding, Huaze, Yiling Dong, Kaiyue Zhang, Jiayu Bai, and Chenpan Xu. Comparison of dexmedetomidine versus propofol in mechanically ventilated patients with sepsis: A meta-analysis of randomized controlled trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0103.

Full text
Abstract:
Review question / Objective: The aim of the present study was to evaluate the effects of dexmedetomidine compared with propofol in mechanically ventilated patients with sepsis. Condition being studied: Sepsis, which is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, contributes the highest mortality to intensive care units (ICU) worldwide . Because of the high incidence of respiratory failure in sepsis care, mechanical ventilation is always adopted to give life support and minimize lung injury . And sedation is a necessary component of sepsis care who suffers from mechanical ventilation. The Society of Critical Care Medicine suggested using either propofol or dexmedetomidine for sedation in mechanically ventilated adults. However, it remained unknown whether patients with sepsis requiring mechanical ventilation will benefit from sedation with dexmedetomidine.
APA, Harvard, Vancouver, ISO, and other styles
3

Persily, Andrew K. A modeling study of ventilation, IAQ and energy impacts of residential mechanical ventilation. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hurel, Nolwenn, Max H. Sherman, and Iain S. Walker. Simplified Methods for Combining Natural and Mechanical Ventilation. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1469162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hurel, Nolwenn, Max H. Sherman, and Iain S. Walker. Simplified Methods for Combining Natural and Mechanical Ventilation. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1512199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chan, Way R., Yang S. Kim, Brennen D. Less, Brett C. Singer, and Iain S. Walker. Ventilation and Indoor Air Quality in New California Homes with Gas Appliances and Mechanical Ventilation. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1509678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morris, Andrew M., Peter Juni, Ayodele Odutayo, Pavlos Bobos, Nisha Andany, Kali Barrett, Martin Betts, et al. Remdesivir for Hospitalized Patients with COVID-19. Ontario COVID-19 Science Advisory Table, May 2021. http://dx.doi.org/10.47326/ocsat.2021.02.27.1.0.

Full text
Abstract:
Remdesivir, a direct-acting antiviral agent, may reduce mortality and progression to mechanical ventilation in moderately ill patients hospitalized with COVID-19 on supplemental low-flow oxygen. The benefits of remdesivir for critically ill patients requiring supplemental oxygen via high-flow nasal cannula or mask, or non-invasive mechanical ventilation, is uncertain. Remdesivir does not benefit and may harm critically ill patients already receiving mechanical ventilation or requiring extra-corporeal membrane oxygenation (ECMO), and it does not provide substantial benefit for hospitalized patients who do not require supplemental oxygen. Remdesivir appears to have comparable effects when used for 5 days or 10 days, and does not appear to be associated with significant adverse effects. Remdesivir is recommended in moderately ill hospitalized patients with COVID-19 requiring supplemental oxygen (Figure 1). Remdesivir may be considered for patients requiring oxygen supplementation via high-flow nasal cannula or mask, or non-invasive mechanical ventilation. It should not be used in critically ill patients on mechanical ventilation or those receiving ECMO. Remdesivir should not be used in patients who do not require supplemental oxygen.
APA, Harvard, Vancouver, ISO, and other styles
8

Logue, Jennifer M., Willliam JN Turner, Iain S. Walker, and Brett C. Singer. Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1173154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hariswar, Pari Thenmozhi, Ramanathan Venkateswaran, George Melvin, kshirsagar Shivani, and M. Rajeswari. Acetazolamide in weaning from mechanical ventilation in hypercapnic respiratory failure. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2023. http://dx.doi.org/10.37766/inplasy2023.7.0108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fang, Mingxing, Yan Li, Qi Zhang, Na LIu, XIaoyan Tan, and Hai Yue. The effect of driving pressure-guided ventilation strategy on the patients with mechanical ventilation: A Meta-Analysis of Randomized Controlled Trial. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0113.

Full text
Abstract:
Review question / Objective: The aim of this study was to evaluate the effect of driving pressure (DP)guided ventilation strategy on the patients with mechanical ventilation in the hospital. RCTs were included to study. Eligibility criteria: Studies were included based on the following criteria: 1. Study type: Randomized controlled trials (RCTs); 2. Patient population: Patients with MV aged ≥ 18 years; 3. Intervention group: driving pressure guided ventilation strategy; 4. Control group: lung protective ventilation (LPV) strategy. Information sources: The articles published in PubMed, the Cochrane Library, the China National Knowledge Information (CNKI), Wei Pu, Wan fang database and Web of science from inception to September 2021 were retrieved.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography