Academic literature on the topic 'Mechanical testing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanical testing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mechanical testing"
Wolfenden, A., and JH Westbrook. "Mechanical Testing." Journal of Testing and Evaluation 19, no. 3 (1991): 261. http://dx.doi.org/10.1520/jte12567j.
Full textMordfin, Leonard. "MECHANICAL TESTING REVITALIZED." Experimental Techniques 14, no. 5 (September 1990): 20. http://dx.doi.org/10.1111/j.1747-1567.1990.tb01475.x.
Full textMolnár, László, Enikő Solti, Attila Bojtos, and Antal Huba. "Mechanical Testing of Tendon." Materials Science Forum 537-538 (February 2007): 425–30. http://dx.doi.org/10.4028/www.scientific.net/msf.537-538.425.
Full textStokes, Ian A. "Mechanical Testing of Instrumentation." Spine 23, no. 21 (November 1998): 2263–64. http://dx.doi.org/10.1097/00007632-199811010-00002.
Full textHall, Malcolm. "Mechanical testing of plastics." Polymer Testing 5, no. 4 (1985): 315–16. http://dx.doi.org/10.1016/0142-9418(85)90023-6.
Full textOgawa, Takeshi, Akira Miyamoto, Naoya Koyama, and Tadashi Ohsawa. "OS10W0154 Mechanical properties of lead-free solders predicted by indentation testing." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS10W0154. http://dx.doi.org/10.1299/jsmeatem.2003.2._os10w0154.
Full textTan, Eunice Phay Shing, Sin Yee Ng, and Chwee Teck Lim. "OS5-2-2 Mechanical testing of single micro and nanoscale fibers." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2007.6 (2007): _OS5–2–2–1—_OS5–2–2–5. http://dx.doi.org/10.1299/jsmeatem.2007.6._os5-2-2-1.
Full textNormandin, Brett M., David J. Tennent, Todd H. Baldini, Alesia M. Blanchard, and Jason T. Rhodes. "Mechanical Testing of Epiphysiodesis Screws." Orthopedics 41, no. 2 (January 29, 2018): e240-e244. http://dx.doi.org/10.3928/01477447-20180123-01.
Full textKlausnitzer, E. N. "Micro-Specimens for Mechanical Testing." Materials Testing 33, no. 5 (May 1, 1991): 132–34. http://dx.doi.org/10.1515/mt-1991-330511.
Full textWAKI, Hiroyuki. "Testing Method for Mechanical Property :." Journal of The Surface Finishing Society of Japan 64, no. 5 (2013): 280–84. http://dx.doi.org/10.4139/sfj.64.280.
Full textDissertations / Theses on the topic "Mechanical testing"
Lillehei, Peter Thomas. "Single molecule mechanical testing." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/31044.
Full textJohnston, James Duncan. "Mechanical testing of the scapholunate ligament." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2002. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ65628.pdf.
Full textRioux, Robert A. "Mechanical Testing of Coated Paper Systems." Fogler Library, University of Maine, 2008. http://www.library.umaine.edu/theses/pdf/RiouxRA2008.pdf.
Full textFahd, Aly. "Mechanical and ultrasound testing of bone." Ann Arbor, Mich. : ProQuest, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1434828.
Full textTitle from PDF title page (viewed May 23, 2007). Source: Masters Abstracts International, Volume: 44-06, page: 2967. Adviser: Yildirim Hurmuzlu. Includes bibliographical references.
Robusto, Francesco. "Accelerated life testing in mechanical design." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3424672.
Full textL'introduzione di nuovi prodotti sul mercato è un processo di lunga durata, che comprende tipicamente sia fasi di progettazione che di sperimentazione. Sovente, la fase di validazione sperimentale condiziona notevolmente i tempi complessivi del processo. Infatti, in molti settori industriali, la procedura di sviluppo prodotto è basata su metodologie di tipo trial and error. Prove di validazione intermedie vengono eseguite su prototipi fisici in scala reale, ed in base all'esito di queste il design viene rielaborato (in caso di esito negativo) o validato (se l'esito è positivo). L'efficienza di tale metodo sotto il profilo temporale è, notoriamente, sub-ottimale. Per migliorare l'efficienza di tale processo è, ad esempio, possibile sfruttare metodologie di prova accelerate, che consistono nel sottoporre il prodotto ad una condizione di prova più gravosa rispetto alle normali condizioni di lavoro. In tale modo, si può conseguire una riduzione del numero di cicli necessari a portare a rottura il componente, con evidenti ricadute vantaggiose sull'efficienza del processo. Un'ulteriore modalità di accelerazione della prova consiste nel passare da prova sull'assieme globale a prova sui sottoassiemi o singoli componenti. È tuttavia obbligatorio, affinché i risultati ottenuti mediante tali metodologie di prova siano utili per la progettazione, adottare opportune precauzioni. Ad esempio, è fondamentale preservare la modalità di rottura originaria del componente. Per fare ciò, si rende necessario, fra le altre cose, conoscere la relazione tra le condizioni al contorno dell'intero assieme e le sollecitazioni dei singoli componenti. Nel presente elaborato, la metodologia sopra descritta viene illustrata facendo riferimento alla sua applicazione a componenti del settore serraturiero (dimostratore). Sono stati effettuati numerosi test sperimentali, per caratterizzare la vita a fatica e la resistenza all'usura dei materiali coinvolti nella costruzione del dimostratore. Sono inoltre stati sviluppati modelli numerici FEM per determinare le sollecitazioni dei sottoassiemi e componenti del dimostratore durante la fase di test. Combinando i risultati sperimentali con quelli numerici, è stato possibile sviluppare un modello analitico in grado di stimare con buona approssimazione la vita effettiva del dimostratore, quando sottoposto a prove accelerate. I principi alla base di questa procedura possono essere applicati, senza perdita di generalità, a numerosi settori dell'industria.
Connally, John Arnold. "Micromechanical fatigue testing." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12756.
Full textPoissant, Jeffrey. "Microscale mechanical testing of individual collagen fibers." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95075.
Full textLe collagène est un constituant clé pour plusieurs matériaux biologiques incluant les os, tendons et écailles de poisson. Bien comprendre le comportement mécanique des composantes microstructurales du collagène (fibres et fibrilles) est important pour les domaines tel que la biomimétique et l'ingénierie biomédicale. Les principales difficultés sont la petite taille d'échantillons (< 1 µm) et le besoin de maintenir l'échantillon hydraté. Dans ce projet, un système de chargement micromécanique (SCMM) capable de mesurer le comportement mécanique de fibres et fibrilles de collagène a été développé. Le SCMM est composé : (i) d'un senseur provenant d'un nanoindenteur pour mesurer les forces et déplacements, (ii) d'un microscope optique pour observer la déformation d'échantillons in-situ et (iii) de micromanipulateurs pour isoler, positionner et fixer les échantillons. Des fibres et fibrilles de collagène ont été extraites d'écailles de poisson par voie d'une nouvelle procédure et ont été chargées par le SCMM. Plusieurs expériences ont été exécutées incluant des chargements en tension monotone et des chargements cycliques qui varieraient soit le taux de chargement ou le déplacement maximal. Les résultats de chargements monotones démontrent que le module d'élasticité, la contrainte ultime et la déformation au point de rupture se retrouvent entre 0.5 et 1.3 GPa, 100 et 200 MPa et 20% et 60%, respectivement. Les chargements cycliques révèlent que la plus grande augmentation d'endommagement du matériel se produit lors de déformations entre 10% et 20%, ce qui correspond à la rupture de ponts d'hydrogène au niveau moléculaire. Des déformations supplémentaires causent peu de dommage additionnel et signalent la rupture. L'ajout d'eau augmente l'endommagement que peut tolérer le matériau et augmente la déformation au point de rupture.
Basterfield, Robert. "Interpretation of mechanical testing measurements for pastes." Thesis, Imperial College London, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.409257.
Full textJailin, Clément. "Projection-based in-situ 4D mechanical testing." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLN034/document.
Full textThe quantitative analysis of 3D volumes obtained from tomography allows models to be identified and validated. It consists of a sequence of three successive inverse problems: (i) volume reconstruction (ii) kinematic measurement from Digital Volume Correlation (DVC) and (iii) identification. The required very long acquisition times prevent fast phenomena from being captured.A measurement method, called Projection-based DVC (P-DVC), shortens the previous sequence and identifies the kinematics directly from the projections. The number of radiographs needed for tracking the time evolution of the test is thereby reduced from 500 to 1000 down to 2.This thesis extends this projection-based approach to further reduce the required data, letting faster phenomena be captured and pushing the limits of time resolution. Two main axes were developed:- On the one hand, the use of different spatial and temporal regularizations of the 4D fields (space/time) generalizes the P-DVC approach (with a known reference volume) to the exploitation of a single radiograph per loading step. Thus, the test can be carried out with no interruptions, in a few minutes instead of several days.- On the other hand, the measured motion can be used to correct the reconstructed volume itself. This observation leads to the proposition of a novel procedure for the joint determination of the volume and its kinematics (without prior knowledge) opening up new perspectives for material and medical imaging where sometimes motion cannot be interrupted.end{itemize}The development of these two axes opens up new ways of performing tests, faster and driven to the identification of key quantities of interest. These methods are compatible with the recent ``hardware" developments of fast tomography, both at synchrotron beamlines or laboratory and save several orders of magnitude in acquisition time and radiation dose
Jones, Daniel Brian. "Micro-mechanical testing of interfacially adsorbed protein networks." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/251831.
Full textBooks on the topic "Mechanical testing"
Heberling, DT, ed. Automation of Mechanical Testing. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1993. http://dx.doi.org/10.1520/stp1208-eb.
Full textT, Heberling David, ed. Automation of mechanical testing. Philadelphia, PA: ASTM, 1993.
Find full textBirmingham), Autotech 1991 (1991. Mechanical components and testing. [London]: Institution of Mechanical Engineers, 1991.
Find full textGdoutos, Emmanuel, and Maria Konsta-Gdoutos. Mechanical Testing of Materials. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-45990-0.
Full textM, Steen, and Lohr R. D, eds. Ultra high temperature mechanical testing. Cambridge: Woodhead, 1995.
Find full textStandardization, International Organization for. Mechanical testing of metallic materials. Geneve: International Organization for Standardization, 1988.
Find full textMechanical wear fundamentals and testing. 2nd ed. New York: M. Dekker, 2004.
Find full textB, Magalas L., and Akademia Górniczo-Hutnicza im. S. Staszica w Krakowie. Dept. of Physical Metallurgy., eds. Mechanical spectroscopy. Cracow: Wydawnictwo AGH Publication, 1991.
Find full textHaddad, Y. M. Mechanical behaviour of engineering materials. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textSaunders, Marnie M. Mechanical Testing for the Biomechanics Engineer. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-031-01662-2.
Full textBook chapters on the topic "Mechanical testing"
Sygusch, Nikolai. "Mechanical Testing." In Mechanik, Werkstoffe und Konstruktion im Bauwesen, 15–39. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-27113-8_3.
Full textCarter, C. Barry, and M. Grant Norton. "Mechanical Testing." In Ceramic Materials, 297–315. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3523-5_16.
Full textBolton, William, and R. A. Higgins. "Mechanical testing." In Materials for Engineers and Technicians, 29–50. Seventh edition. | Abingdon, Oxon ; New York, NY : Routledge, 2021.: Routledge, 2020. http://dx.doi.org/10.1201/9781003082446-3.
Full textDoddamani, Mrityunjay, H. S. Bharath, Pavana Prabhakar, and Suhasini Gururaja. "Mechanical Testing." In Materials Horizons: From Nature to Nanomaterials, 53–110. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1730-3_5.
Full textHylton, Donald C. "Mechanical Properties." In Understanding Plastics Testing, 17–35. München: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.3139/9783446412859.003.
Full textC. Hylton, Donald. "Mechanical Properties." In Understanding Plastics Testing, 17–35. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2004. http://dx.doi.org/10.1007/978-3-446-41285-9_3.
Full textGrellmann, Wolfgang, and Sabine Seidler. "Mechanical Properties of Polymers." In Polymer Testing, 71–227. 3rd ed. München: Carl Hanser Verlag GmbH & Co. KG, 2022. http://dx.doi.org/10.3139/9781569908075.004.
Full textGrellmann, Wolfgang, and Sabine Seidler. "Mechanical Properties of Polymers." In Polymer Testing, 71–227. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2022. http://dx.doi.org/10.1007/978-1-56990-807-5_4.
Full textCapps, Rodger N., and Linda L. Beumel. "Dynamic Mechanical Testing." In ACS Symposium Series, 63–78. Washington, DC: American Chemical Society, 1990. http://dx.doi.org/10.1021/bk-1990-0424.ch004.
Full textNaranjo, Alberto, María del Pilar Noriega E., Tim A. Osswald, Alejandro Roldán-Alzate, and Juan Diego Sierra. "Mechanical Properties." In Plastics Testing and Characterization, 185–261. München: Carl Hanser Verlag GmbH & Co. KG, 2008. http://dx.doi.org/10.3139/9783446418530.006.
Full textConference papers on the topic "Mechanical testing"
Tomozawa, Minoru. "Mechanical Fatigue of Silica Glass." In Optical Fabrication and Testing. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oft.1987.waa2.
Full textFranke, Michael, Andre Küsters, Thomas Rinkens, Franz Maassen, and Hans Brüggemann. "Mechanical Testing - Still Necessary!" In SAE World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007. http://dx.doi.org/10.4271/2007-01-1768.
Full textBennett, Jean M., Thomas C. Bristow, Kevork Arackellian, and James C. Wyant. "Surface Profiling With Optical and Mechanical Instruments." In Optical Fabrication and Testing. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oft.1986.thb4.
Full textKececioglu, Dimitri, and Dingjun Li. "Accelerated Testing of Mechanical Equipment." In SAE Aerospace Technology Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1986. http://dx.doi.org/10.4271/861667.
Full textMatthewson, M. John. "Optical fiber mechanical testing techniques." In Critical Review Collection. SPIE, 1993. http://dx.doi.org/10.1117/12.181373.
Full textKristiansen, Helge, Erik Kalland, and Susanne Helland. "Mechanical Testing of Conductive Adhesives." In 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC). IEEE, 2020. http://dx.doi.org/10.1109/estc48849.2020.9229831.
Full textKlein, Steven A., Aleksandar Aleksov, Vijay Subramanian, Rajendra Dias, Pramod Malatkar, and Ravi Mahajan. "Mechanical Testing for Stretchable Electronics." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-68215.
Full textSharpe, William N., Kevin Turner, and Richard L. Edwards. "Electrostatic Mechanical Testing of Polysilicon." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-1273.
Full textHartmann, Peter. "Mechanical strength of optical glasses." In Optical Fabrication, Testing, and Metrology VI, edited by Sven Schröder and Roland Geyl. SPIE, 2018. http://dx.doi.org/10.1117/12.2315074.
Full textGabor, Andrew M., Rob Janoch, Andrew Anselmo, Jason L. Lincoln, Hubert Seigneur, and Christian Honeker. "Mechanical load testing of solar panels — Beyond certification testing." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7750338.
Full textReports on the topic "Mechanical testing"
Mukherjee, Amiya K., and Jeffrey C. Gibelin. High Temperature Mechanical Testing Facilities. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada200565.
Full textZhao, A., V. Guarino, K. Wood, T. Nephew, D. Ayres, A. Lee, and FNAL. Eight plane IPND mechanical testing. Office of Scientific and Technical Information (OSTI), March 2008. http://dx.doi.org/10.2172/929643.
Full textHayne, Mathew, Stuart Maloy, and Carl Cady. Mechanical Testing of FeCrAl Tubing. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1688729.
Full textMcEachen, G. W. Carbon syntactic foam mechanical properties testing. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/654103.
Full textWenski, E. G. Mechanical Testing Development for Reservoir Forgings. Office of Scientific and Technical Information (OSTI), May 2000. http://dx.doi.org/10.2172/755481.
Full textScott, J., and R. Brady. Mechanical testing of selected engineering plastics. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6952346.
Full textAlexandreanu, B., X. Zhang, Y. Chen, W. Chen, and M. Li. Mechanical Testing of Additively Manufactured Materials. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1889412.
Full textSchmale, D. T., R. J. Bourcier, and T. E. Buchheit. Description of a micro-mechanical testing system. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/515567.
Full textWitkin, David B. Mechanical Testing of Silicon Carbide on MISSE-7. Fort Belvoir, VA: Defense Technical Information Center, July 2012. http://dx.doi.org/10.21236/ada566371.
Full textMohr, H. O. PR-209-9217-R01 Mechanical Connections for J-lay. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), July 1994. http://dx.doi.org/10.55274/r0012126.
Full text