Academic literature on the topic 'Mechanical properties of material'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanical properties of material.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mechanical properties of material"

1

Gotoh, Masaru, Ken Suzuki, and Hideo Miura. "OS12-4 Control of Mechanical Properties of Micro Electroplated Copper Interconnections(Mechanical properties of nano- and micro-materials-1,OS12 Mechanical properties of nano- and micro-materials,MICRO AND NANO MECHANICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 186. http://dx.doi.org/10.1299/jsmeatem.2015.14.186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marlor, S. S., I. Miskioglu, and J. Ligon. "DYNAMIC MATERIAL PROPERTIES IN BIREFRINGENT MATERIALS." Experimental Techniques 18, no. 4 (July 1994): 39–42. http://dx.doi.org/10.1111/j.1747-1567.1994.tb00288.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mohd Riza, Nor Syaheera, Nuryazmin Ahmat Zainuri, Mohd Zaki Nuawi, Noorhelyna Razali, and Haliza Othman. "Pencirian Sifat Mekanikal Bahan dengan Pendekatan Analisis Fraktal." Jurnal Kejuruteraan si5, no. 2 (November 30, 2022): 111–18. http://dx.doi.org/10.17576/jkukm-2022-si5(2)-12.

Full text
Abstract:
Material selection is one of the main factors in the building structure. In this study, an alternative method was implemented using fractal analysis method. The use of this method can be used for cost savings and accident rates to identify the mechanical properties of each material. The purpose of this research is to study the time series resulting from experiments using piezo film sensors using fractal analysis and investigating the properties of different mechanical materials (poisson ratios) with different impact forces using fractal dimensions. There are four types of selected materials namely brass, copper, mild steel and stainless steel which is in round in shape. Different impact forces are generated by using an impact hammer and subsequently a vibration signal is obtained from a piezo film sensor. Using Matlab software, analysis using the fractal method was performed. The fractal dimension was obtained from the gradient values of the log-log plot and the fractal dimension was calculated for each impact force applied to each specimen. Then, fractal dimension values were compared using CES Edupack2012 for characterization of the properties of each material. It can be concluded that the value of fractal dimension increases when the impact forces increase too whereas a decrease in the poisson ratio occurs when the fractal dimensions of each material increase.
APA, Harvard, Vancouver, ISO, and other styles
4

Namazu, Takahiro. "OS12-1 MEMS and Nanotechnology for Experimental Mechanics(invited,Mechanical properties of nano- and micro-materials-1,OS12 Mechanical properties of nano- and micro-materials,MICRO AND NANO MECHANICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 183. http://dx.doi.org/10.1299/jsmeatem.2015.14.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Laspidou, C. S., L. A. Spyrou, N. Aravas, and B. E. Rittmann. "Material modeling of biofilm mechanical properties." Mathematical Biosciences 251 (May 2014): 11–15. http://dx.doi.org/10.1016/j.mbs.2014.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cakar, Siver, and Andrea Ehrmann. "3D Printing with Flexible Materials – Mechanical Properties and Material Fatigue." Macromolecular Symposia 395, no. 1 (February 2021): 2000203. http://dx.doi.org/10.1002/masy.202000203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mihalko, William M., Armand J. Beaudoin, and William R. Krause. "Mechanical Properties and Material Characteristics of Orthopaedic Casting Material." Journal of Orthopaedic Trauma 3, no. 1 (1989): 57–63. http://dx.doi.org/10.1097/00005131-198903010-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xue, He, Yueqi Bi, Shuai Wang, Jianlong Zhang, and Siyu Gou. "Compilation and Application of UMAT for Mechanical Properties of Heterogeneous Metal Welded Joints in Nuclear Power Materials." Advances in Materials Science and Engineering 2019 (November 22, 2019): 1–12. http://dx.doi.org/10.1155/2019/3151823.

Full text
Abstract:
For the problem of mechanical properties of heterogeneous dissimilar metal welded joints, when analyzed by the finite element method, it is usually simplified into a “sandwich” material structure model. However, the mechanical properties of materials in different regions of the “sandwich” material mechanics model are different, and there will be mutations at the material interface. In order to accurately describe the mechanical properties of welded joints, the constitutive equations of dissimilar metal welded joint materials were compiled, and the constitutive equations of inhomogeneous materials whose material mechanical properties were continuously changed with space coordinates were established. The ABAQUS software was used to establish the “sandwich” model and the continuous transition model. The model is used to compare and analyze the crack tip stress distribution of different yield strength mismatch coefficients. The results show that the continuous transition material model eliminates the mutation of the “sandwich” model at the material interface and achieves the continuous change of the mechanical properties of the material. For the longitudinal crack, under the influence of different mismatch coefficients, the crack tip stress field of the transitional material model is deflected toward the low yield strength side. The compilation of constitutive equations for continuous transition materials of dissimilar metal welded joints provides a basis for the safety evaluation of dissimilar metal welded joints.
APA, Harvard, Vancouver, ISO, and other styles
9

Zaki, Harith, Iqbal Gorgis, and Shakir Salih. "Mechanical properties of papercrete." MATEC Web of Conferences 162 (2018): 02016. http://dx.doi.org/10.1051/matecconf/201816202016.

Full text
Abstract:
This paper studies the uses, of waste paper as an additional material in concrete mixes. Papercrete is a term as the name seems, to imply a mixture of paper and concrete. It is a new, composite material using waste paper, as a partial addition of Portland cement, and is a sustainable, building material due to, reduced amount of waste paper being put to use. It gains, latent strength due to presence of hydrogen bonds in microstructure of paper. Papercrete has been, reported to be a low cost alternative, building construction, material and has, good sound absorption, and thermal insulation; to be a lightweight and fire-resistant material. The percent of waste paper used (after treating) namely (5%, 10%, 15% and 20%) by weight of cement to explore the mechanical properties of the mixes (compressive strength, splitting tensile strength, flexural strength, density), as compared with references mixes, it was found that fresh properties affected significantly by increasing the waste paper content. The compressive strength, splitting tensile strength, flexural strength and density got decreased with increase in the percentage of paper.
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Wen Guang, and Cheng Yan. "Impacts of Temperature on Mechanical Properties of FGMs." Applied Mechanics and Materials 633-634 (September 2014): 391–95. http://dx.doi.org/10.4028/www.scientific.net/amm.633-634.391.

Full text
Abstract:
According to the Hypersonic Vehicle harsh environment, impacts of temperature on the mechanical properties for functionally gradient materials are studied. A power-law distribution of material is applied between the two pure materials; a material property model of FGMs is built. Several temperature conditions are set up and the results are obtained in the end through numerical analysis. It can be shown that the material properties of FGMs plate are temperature-dependent and vary along the thickness in terms of volume fractions of constituents.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mechanical properties of material"

1

Robertson, Alec 1974. "Material properties of actin filament bundles." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46628.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.
Includes bibliographical references (p. 119-127).
Actin is an ubiquitous structural protein fundamental to such biological processes as cell motility and muscle contraction. Our model system is the acrosomal process of the Limulus sperm which extends a 60 ýtm long actin bundle during reproduction. It is an example of a biological spring where the force of elongation derives from twist energy stored within the bundle during spermatogenesis. In addition to actin the acrosome comprises only one other protein: scruin, an actin-binding protein specific to Limulus that decorates and crosslinks actin filaments into a crystalline bundle. Our goal is to reconstitute the structure of the acrosome using these two proteins in order to further elucidate the role of scruin in actin bundle crosslinking.A multi-scale approach is presented wherein the bending rigidity of scruin bundles and their constituent filaments are probed individually, then inter-related by simple mechanical models. Material properties of filaments and bundles are measured using a combination of optical tweezers, electron and fluorescence microscopy. We find that scruin bundles reconstituted from acrosome fragments display an ordered structure, with a bending rigidity orders of magnitude higher than their individual filaments. Actin bundles formed by depletion exhibit similar behavior, revealing an intrinsic regime of coupled actin bundle formation. Bundle elastic moduli are eight orders of magnitude stiffer than reconstituted networks and an order of magnitude softer than the native acrosome, highlighting scruin's ability to dictate a wide range of material properties depending on the formation conditions.
by Alec P. Robertson.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
2

Wiedenman, Nathan Scott. "Towards programmable materials : tunable material properties through feedback control of conducting polymers." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45889.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.
Includes bibliographical references (p. 159-168).
Mammalian skeletal muscle is an amazing actuation technology that can controllably modify its force and position outputs as well as its material properties such as stiffness. Unlike muscle, current engineering materials are limited by their intrinsic properties, dictated at the molecular level.This work is focused on developing an integrated device, called a programmable material, which mirrors the capabilities of natural co-fabricated controlled actuation systems such as muscle. While such a device may have the external appearance of a homogeneous material, it can possess unique properties not existing in any currently manufactured material. When actuation, sensing, and control capabilities are integrated within a closed-loop system, the mechanical properties of the system such as stiffness, viscosity, and inertia will arise from the dynamics of the feedback loop rather than from any inherent mechanical properties of the materials from which the device was fabricated. Moreover, these properties may be 'tuned' by altering the feedback parameters embedded in the material system. With this approach properties such as negative stiffness may be generated which do not exist in bulk materials.The most promising of the existing artificial muscle technologies is actuation with conducting polymer. Additionally, conducting polymer has been used to fabricate the position sensor and control electronics. Creating these components from a single type of material has made it possible to co-fabricate the system into an integrated device. This is the first research to attempt to create a co-fabricated, fully integrated conducting polymer feedback device. This work establishes the feasibility of building the device and answers many of the questions of fabrication and design.
by Nathan Scott Wiedenman.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
3

Kappiyoor, Ravi. "Mechanical Properties of Elastomeric Proteins." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/54563.

Full text
Abstract:
When we stretch and contract a rubber band a hundred times, we expect the rubber band to fail. Yet our heart stretches and contracts the same amount every two minutes, and does not fail. Why is that? What causes the significantly higher elasticity of certain molecules and the rigidity of others? Equally importantly, can we use this information to design materials for precise mechanical tasks? It is the aim of this dissertation to illuminate key aspects of the answer to these questions, while detailing the work that remains to be done. In this dissertation, particular emphasis is placed on the nanoscale properties of elastomeric proteins. By better understanding the fundamental characteristics of these proteins at the nanoscale, we can better design synthetic rubbers to provide the same desired mechanical properties.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Salahshoor, Pirsoltan Hossein. "Nanoscale structure and mechanical properties of a Soft Material." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/924.

Full text
Abstract:
"Recently, hydrogel have found to be promising biomaterials since their porous structure and hydrophilicity enables them to absorb a large amount of water. In this study the role of water on the mechanical properties of hydrogel are studied using ab-initio molecular dynamics (MD) and coarse-grained simulations. Condensed-Phased Optimized Molecular Potential (COMPASS) and MARTINI force fields are used in the all-atom atomistic models and coarse-grained simulations, respectively. The crosslinking process is modeled using a novel approach by cyclic NPT and NVT simulations starting from a high temperature, cooling down to a lower temperature to model the curing process. Radial distribution functions for different water contents (20%, 40%, 60% and 80%) have shown the crosslinks atoms are more hydrophilic than the other atoms. Diffusion coefficients are quantified in different water contents and the effect of crosslinking density on the water diffusion is studied. Elasticity parameters are computed by constant strain energy minimization in mechanical deformation simulations. It is shown that an increase in the water content results in a decrease in the elastic. Finally, continuum hyper elastic model of contact lens is studied for three different loading scenarios using Finite Element Model. "
APA, Harvard, Vancouver, ISO, and other styles
5

Dimas, Leon Sokratis Scheie. "Effective mechanical Properties of material models with random heterogeneities." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103706.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 191-198).
In this thesis we obtain analytical approximations to the probability distribution of the elastic tensor and fracture strengths of material models with random heterogeneities. We start by investigating the effective elastic properties of one-, two-, and three-dimensional rectangular blocks whose Young's modulus varies spatially as a lognormal random field. We decompose the spatial fluctuations of the Young's log-modulus F = In E into first- and higher-order terms and find the joint distribution of the effective elastic tensor by multiplicatively combining the term-specific effects. Through parametric analysis of the analytical solutions, we gain insight into the effective elastic properties of this class of heterogeneous materials. Building on this analysis we find analytical approximations to the probability distribution of fracture properties of one-dimensional rods and thin two-dimensional plates for systems in which: only the Young's modulus varies spatially as an isotropic lognormal field and more generally, both the Young's modulus and the local material strength vary spatially as possibly correlated lognormal fields. The properties considered are the elongation, strength, and toughness modulus at fracture initiation and at ultimate failure. For all quantities at fracture initiation our approach is analytical in I D and semi-analytical in 2D. For ultimate failure, we quantify the random effects of fracture propagation and crack arrest by fitting regression models to simulation data and combine the regressions with the distributions at fracture initiation. Through parametric analysis, we gain insight into the strengthening/weakening roles of the Euclidean dimension, size of the specimen, and the correlation, variance and correlation function of the random fields. Finally, we extend the approach to investigate the elasticity of non-lognormal random heterogeneous materials. First we investigate the elastic bulk stiffness of two-dimensional checkerboard specimens in which square tiles are randomly assigned to one of two component phases. This is a model system for multi-phase polycrystalline materials such as granitic rocks and many ceramics. We study how the bulk stiffness is affected by different characteristics of the specimen and obtain analytical approximations to the probability distribution of the effective stiffness. In particular we examine the role of percolation of the soft and stiff phases. In small specimens, we find that the onset of percolation causes significant discontinuities in the effective modulus, whereas in large specimens the influence of percolation is smaller and gradual. Secondly we study the effective stiffness of multi-phase composite systems in which the Young's modulus varies as a filtered Poisson point process and find that the homogenization approach initially developed for lognormal systems produces accurate results also for this class of non-lognormal systems.
by Leon Sokratis Scheie Dimas.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
6

Engman, Alexander. "Mechanical properties of bulk alloys and cemented carbides." Thesis, KTH, Materialvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230897.

Full text
Abstract:
The usage of cobalt (Co) as binder phase material in cemented carbides has been questioned becauseof the potential health hazards associated with cobalt particle inhalation. Cobalt is used because ofits excellent adhesive and wetting properties, combined with adequate mechanical properties. Thepurpose of this work is to investigate the mechanical properties of Fe-Ni bulk alloys and WC-Cocemented carbides using Integrated Computational Materials Engineering (ICME) methods com-bined with FEM data. The report investigates the mechanical properties of several bulk alloys inthe Fe-Ni system as a function of void size and fraction. FEM indentation and FEM fracture datais interpolated and used to model the hardnessHand fracture toughnessKIc. A precipitationhardening model based on the Ashby-Orowan’s equation is implemented to predict the e↵ect on theyield strength from precipitated particles. A model for solid solution hardening is also implemented.Existing models are used to simulate the properties of WC-Co cemented carbides together with thesolid solution hardening model. Results show that the simulated properties of the Fe-Ni bulk alloysare comparable to those of cobalt. However, the results could not be confirmed due to a lack ofexperimental data. The properties of WC-Co cemented carbides are in reasonable agreement withexisting experimental data, with an average deviation of the hardness by 11.5% and of the fracturetoughness by 24.8%. The conclusions are that experimental data for di↵erent Fe-Ni bulk alloys isneeded to verify the presented models and that it is possible to accurately model the properties ofcemented carbides.
Anv¨andandet av kobolt (Co) som bindefas-material i h°ardmetall har blivit ifr°agasatt som en f¨oljdav av de potentiella h¨alsoriskerna associerade med inhalering av koboltpartiklar. Kobolt anv¨ands p°agrund av dess utm¨arkta vidh¨aftande och v¨atande egenskaper, kombinerat med tillr¨ackliga mekaniskaegenskaper. Syftet med detta arbete ¨ar att unders¨oka de mekaniska egenskaperna hos Fe-Ni bulklegeringarochWC-Co h°ardmetall genom att anv¨anda Integrated Computational Materials Engineering(ICME) metoder kombinerat med FEM-data. Rapporten unders¨oker de mekaniska egenskapernahos flera bulklegeringar i Fe-Ni systemet. FEM-indentering och FEM-fraktur data interpoleras ochanv¨ands f¨or att modellera h°ardheten H och brottsegheten KIc. En modell f¨or utskiljningsh¨ardningbaserad p°a Ashby-Orowans ekvation implementeras f¨or att f¨oruts¨aga e↵ekten p°a brottgr¨ansen av utskiljdapartiklar. ¨Aven en modell f¨or l¨osningsh¨ardning implementeras. Existerande modeller anv¨andsf¨or att simulera egenskaperna hos WC-Co h°ardmetall tillsammans med modellen f¨or l¨osningsh¨ardning.Resultaten visar att de simulerade egenskaperna hos Fe-Ni bulklegeringar ¨ar j¨amf¨orbara medde f¨or kobolt. Dock kan de inte bekr¨aftas p°a grund av avsaknad av experimentell data. Egenskapernahos WC-Co h°ardmetall st¨ammer rimligt ¨overens med existerande experimentell data, meden genomsnittlig avvikelse av h°ardheten med 11.5% och av brottsegheten med 24.8%. Slutsatserna¨ar att det beh¨ovs experimentell data f¨or Fe-Ni bulklegeringar f¨or att kunna verifiera modellernasnoggrannhet och att det ¨ar m¨ojligt att f¨oruts¨aga egenskaperna hos h°ardmetall.
APA, Harvard, Vancouver, ISO, and other styles
7

Parenti, Cristina. "VARIATION OF THE LOCAL MATERIAL PROPERTIES OF AORTA." Master's thesis, Temple University Libraries, 2010. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/70843.

Full text
Abstract:
Mechanical Engineering
M.S.E.
Understanding the aortic wall deformation and failure during traumatic aortic rupture (TAR), which is a leading cause of fatality in motor vehicle accidents is of great concern. The specific objective of the present study is to develop a material model that can describe the multi layer nature of the aortic wall. Fundamentally, the aortic wall is composed mainly of three layers, tunica intima, media and adventitia, and they are known to have different structures. Understanding the material properties of these layers is essential in order to study the local mechanisms of deformation, force transmission, and failure. The hypothesis of this study is that the tissue's instantaneous shear modulus grows along the radial direction while moving from the intima toward the adventitia. The higher compliance of the tissue near the intima, which is partly due to the concentration of the smooth muscle cells and partly due to the arrangement of collagen and elastin fibers, can explain the nature of aorta failure which is primarily generated from the inside towards the outer layers. A combination of micro- and nano-indentation tests were used to measure the local material properties of porcine aorta at the length scales of 160 µm and 40 µm respectively. The material properties of aorta were investigated in the lateral (left) region in several longitudinal locations of the descending aorta and the observed viscoelastic behavior was summarized in the form of instantaneous shear moduli and reduced relaxation functions. The instantaneous shear modulus was found to generally increase along the radial direction to about 0.6 normalized radial distance and then became almost constant but with higher variability. The reduced relaxation functions were generally independent of the location and test method. Comparing the mechanical results with the histological results obtained through Van-Guisen staining showed that the material properties are partly related to the distribution of smooth muscle cells. The results of this study can be used to explain the mechanisms of failure in aorta and contribute to improve the computational modeling of aorta's deformation which is valuable in a variety of applications including automotive accidents, endovascular grafts, and angioplasty.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
8

Kylström, Sanna. "The Effect of Twinning on the Mechanical Properties of Alloy 825." Thesis, KTH, Materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254760.

Full text
Abstract:
Twinning is a known phenomenon in material science, but how is it connected with grain size and yield strength? Investigations are made on alloy 825 with light optical microscopy for 19 samples to calculate the twin fraction and grain size. Afterwards, the results are compared to yield strength throughout tensile tests. The samples have different reduction of dimension by hot rolling and have been annealed for different time intervals. It turns out that twinning makes alloy 825 slightly softer and more ductile on a smaller scale, since the twin fraction increases when the yield strength decreases. However, the grain size also slightly increases when the yield strength decreases, which is important to have in mind for the connection with the three of them.
Tvillingbildning är ett känt fenomen inom materialvetenskap, men hur hör tvillingar, kornstorlek och sträckgräns ihop? Finns det ett samband? Undersökningar utförs med ett ljusoptiskt mikroskop för legering 825 på 19 prover, för att räkna ut tvillingfraktionen och kornstorleken. Detta jämförs sedan med sträckgränsen som man tillhandahåller från dragprov. Proverna har olika reduktion av sin dimension genom valsning och har glödgats olika tider. Det visar sig att tvillingbildning gör legering 825 något mjukare och mer duktil på en mindre skala, eftersom tvillingfraktionen ökar då sträckgränsen sjunker. Dock ökar även kornstorleken när sträckgränsen minskar, vilket är viktigt att tänka på när det kommer till sambandet mellan kornstorlek, tvillingar och sträckgräns.
APA, Harvard, Vancouver, ISO, and other styles
9

Uberti, Megan E. "Exploring the material properties of small scale folded structures." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83750.

Full text
Abstract:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 21).
make robotics more readily available to the average person. Although designs for a number of successful printable robots have already been produced, there has been little formal exploration into the materials properties of these structures. Three point bending tests were performed on beams made of the materials and cross-sectional geometries of current designs to determine the bending stiffness of the printable beams currently found in printable robots, particularly the printable quad-rotor frame. As expected the composite acrylic and PEEK triangular beam had the highest bending stiffness El at 4.15 ± 1.67 N*m2. The lowest El was the triangular PEEK beam in its weak configuration at 0.02 ± 0.005 N*m2. 3D printed ABS beams had an unreliable result, with El in the range of 11.7 ± 8.05 N*m2. Overall our experimentally calculated values for El were generally consistent with the theoretically calculated values, providing useful information to inform future design choices and understanding the limitations of printable robot structures.
by Megan E. Uberti.
S.B.
APA, Harvard, Vancouver, ISO, and other styles
10

HASSAN, INAMUL. "Effects of Austempering Process on Mechanical Behavior Properties of Compacted Graphite Iron." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Material och tillverkning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-45645.

Full text
Abstract:
The thesis paper here focuses on the effects of the austempering temperature (TA) and the austempering time (tA) on the unalloyed fully ferrite Compacted Graphite Iron (CGI), to obtain improve in mechanical properties and the study of the microstructure. The unalloyed CGI samples were austenitised at 850oC for 60 and 90 min and were then heat treated at 275, 325 and 375oC with different holding times at 30,60,90, and 120 mins. Mechanical properties like the tensile strength, yield strength, young’s modulus, Brinell and Vickers harness were conducted to perform the analysis on the samples. LOM was used for the study of the microstructure and SEM was used for the study of fractography of the fractured tensile bar.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mechanical properties of material"

1

W, Armstrong Ronald, ed. Deformable bodies and their material behavior. Hoboken, NJ: Wiley, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Viens, Michael J. Mechanical properties of a porous mullite material. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Erich, Tenckhoff, and Vöhringer O, eds. Microstructure and mechanical properties of materials. Oberursel: DGM Informationsgesellschaft, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Principles of composite material mechanics. 2nd ed. Boca Raton: Taylor & Francis, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Principles of composite material mechanics. New York: McGraw-Hill, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gibson, Ronald F. Principles of composite material mechanics. New York: McGraw-Hill, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Paajanen, Mika. The cellular polypropylene electret material: Electromechanical properties. Espoo [Finland]: Technical Research Centre of Finland, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-4342-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pelleg, Joshua. Mechanical Properties of Materials. Dordrecht: Springer Netherlands, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Theo, Fett, ed. Ceramics: Mechanical properties, failure behaviour, materials selection. Berlin: Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mechanical properties of material"

1

Lacroix, Damien, and Josep A. Planell. "Mechanical Properties." In Biomedical Materials, 303–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anderson, J. C., K. D. Leaver, R. D. Rawlings, and J. M. Alexander. "Mechanical Properties." In Materials Science, 181–244. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-6826-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wesolowski, Robert A., Anthony P. Wesolowski, and Roumiana S. Petrova. "Mechanical Properties." In The World of Materials, 39–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-17847-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dasari, Aravind, Zhong-Zhen Yu, and Yiu-Wing Mai. "Mechanical Properties." In Engineering Materials and Processes, 133–60. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6809-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

White, Mary Anne. "Mechanical Properties." In Physical Properties of Materials, 397–446. Third edition. | Boca Raton : Taylor & Francis, CRC Press, 2019.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429468261-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gottstein, Günter. "Mechanical Properties." In Physical Foundations of Materials Science, 197–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09291-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wiederhorn, Sheldon, Richard Fields, Samuel Low, Gun-Woong Bahng, Alois Wehrstedt, Junhee Hahn, Yo Tomota, et al. "Mechanical Properties." In Springer Handbook of Materials Measurement Methods, 283–397. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-30300-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhuravkov, Michael, Yongtao Lyu, and Eduard Starovoitov. "Material and Solid Mechanical Characteristics (Properties)." In Mechanics of Solid Deformable Body, 51–62. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8410-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pilato, Louis A., and Michael J. Michno. "Composite Mechanical Properties." In Advanced Composite Materials, 114–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-35356-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pietrzyk, Maciej, and John G. Lenard. "Material Properties and Interfacial Friction." In Thermal-Mechanical Modelling of the Flat Rolling Process, 9–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84325-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mechanical properties of material"

1

"Mechanical Properties of Plain AAC Material." In SP-226: Autoclaved Aerated Concrete-Properties and Structural Design. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reed, Shad A., Anthony N. Palazotto, and William Baker. "Determining Material Properties of Nonlinear Materials From Transient Response." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43518.

Full text
Abstract:
Several researchers have shown that the material properties of hard coatings used in free layer damping treatments are dependent on the strain amplitude in the coating. This nonlinear phenomenon complicates the material characterization process and makes it difficult to find independent sets of data that are in complete agreement. During a recent in depth study of these materials, it became apparent that there were several other time and load history dependent nonlinearities present in these fascinating materials. These nonlinearities were observable because a free response based testing methodology was employed. Results indicate that the stiffness and damping of these materials change during the first several million loading cycles before finally stabilizing. Additionally, results suggest that the material properties are dependent on the initial condition of the free response, indicating a short term loading history dependency.
APA, Harvard, Vancouver, ISO, and other styles
3

Yun, Wang, Zhenying Xu, Huang Hui, and Jianzhong Zhou. "Measurement of material mechanical properties in microforming." In 2nd international Symposium on Advanced Optical Manufacturing and Testing Technologies, edited by Li Yang, Shangming Wen, Yaolong Chen, and Ernst-Bernhard Kley. SPIE, 2006. http://dx.doi.org/10.1117/12.674352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sagar, Amrit, Christopher Nehme, Anil Saigal, and Thomas P. James. "Cryogenic Material Properties of Polycaprolactone." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10180.

Full text
Abstract:
Abstract In pursuit of research to create a synthetic tissue scaffold by a micropunching process, material properties of Polycaprolactone (PCL) in liquid nitrogen were determined experimentally. Specimens were prepared using injection molding and tested under compression to determine the stress-strain relationship of PCL below its glass transition temperature. Cryogenic conditions were maintained by keeping the PCL specimens submerged in liquid nitrogen throughout the loading cycle. Specimens of two different aspect ratios were used for testing. Yield Strength, Strength Coefficient, and Strain Hardening Exponent were determined for different specimen aspect ratios and extrapolated for the case with zero diameter to length ratio. Material properties were also determined at room temperature and compared against results available in the literature. Results demonstrate that PCL behaves in a brittle manner at cryogenic temperatures with more than ten times increase in Young’s modulus from its value at room temperature. The results were used to predict punching forces for the design of microscale hole punching dies and for validation of a microscale hole punching model that was created with a commercially available finite element software package, DEFORM 3D. The three parameters Yield Strength, Strength Coefficient, and Strain Hardening Exponent used in Ludwik’s equation to model flow stress of PCL in DEFORM 3D were determined to be 94.8 MPa, 210 MPa, and 0.54, respectively.
APA, Harvard, Vancouver, ISO, and other styles
5

Savchenko, Nicolai D., T. N. Shchurova, M. L. Trunov, A. Kondrat, and V. Onopko. "Deposition technique and external factors effect on Ge33As12Se55-Si heterostructure mechanical properties." In Material Science and Material Properties for Infrared Optoelectronics, edited by Fiodor F. Sizov and Vladimir V. Tetyorkin. SPIE, 1997. http://dx.doi.org/10.1117/12.280453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kolesnik, S. A. "Mechanical properties of polyethylene/Al2O3 nanoparticles composite material." In PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0071384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ptashchenko, Alexander A., Fedor A. Ptashchenko, Natalia V. Maslejeva, and Galina V. Sadova. "Mechanical strain and degradation of laser heterostructures." In Fifth International Conference on Material Science and Material Properties for Infrared Optoelectronics, edited by Fiodor F. Sizov. SPIE, 2001. http://dx.doi.org/10.1117/12.417765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Muller, W. H., H. Worrack, J. Sterthaus, J. Wilden, and J. Villain. "Determination of Mechanical Material Properties of Joining Materials, in particular Microelectronic Solders." In 2008 10th Electronics Packaging Technology Conference (EPTC). IEEE, 2008. http://dx.doi.org/10.1109/eptc.2008.4763495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

LI, Yu-qian, Jia-yu WU, Hao-wei GU, Zong-yong CHEN, Xiao-bing SHI, Ting-mao LIAO, Cheng AN, Hong YUAN, and Ren-huai LIU. "Mechanical Properties of Palm Fiber Mattress." In International Conference on Advanced Material Science and Engineeering (AMSE2016). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141612_0013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hermanto, Bambang, Desty A. Pratiwi, Arif Tjahjono, and Toto Sudiro. "Microstructure and mechanical properties of ferromanganese-silicon alloys." In INTERNATIONAL CONFERENCE ON TRENDS IN MATERIAL SCIENCE AND INVENTIVE MATERIALS: ICTMIM 2020. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0014699.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mechanical properties of material"

1

Hansen, F. D., and K. D. Mellegard. Physical and mechanical properties of degraded waste surrogate material. Office of Scientific and Technical Information (OSTI), March 1998. http://dx.doi.org/10.2172/653935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

LaHucik, Jeffrey, and Jeffery Roesler. Material Constituents and Proportioning for Roller-Compacted Concrete Mechanical Properties. Illinois Center for Transportation, August 2018. http://dx.doi.org/10.36501/0197-9191/18-016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Siegel, R. W., and G. E. Fougere. Mechanical properties of nanophase materials. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10110297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Solem, J. C., and J. K. Dienes. Mechanical Properties of Cellular Materials. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/759178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tretiak, Sergei, Benjamin Tyler Nebgen, Justin Steven Smith, Nicholas Edward Lubbers, and Andrey Lokhov. Machine Learning for Quantum Mechanical Materials Properties. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1498000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hardy, Robert Douglas, David R. Bronowski, Moo Yul Lee, and John H. Hofer. Mechanical properties of thermal protection system materials. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/923159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wibowo, J., B. Amadei, and S. Sture. Effect of roughness and material strength on the mechanical properties of fracture replicas. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/95493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nix, W. D. Mechanical properties of materials with nanometer scale microstructures. Office of Scientific and Technical Information (OSTI), July 1991. http://dx.doi.org/10.2172/5951104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

William D. Nix. Mechanical Properties of Materials with Nanometer Scale Microstructures. US: Stanford University, October 2004. http://dx.doi.org/10.2172/833870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Long, Wendy, Zackery McClelland, Dylan Scott, and C. Crane. State-of-practice on the mechanical properties of metals for armor-plating. Engineer Research and Development Center (U.S.), January 2023. http://dx.doi.org/10.21079/11681/46382.

Full text
Abstract:
This report presents a review of quasi-static and dynamic properties of various iron, titanium, nickel, cobalt, and aluminum metals. The physical and mechanical properties of these materials are crucial for developing composite armoring systems vital for protecting critical bridges from terrorist attacks. When the wide range of properties these materials encompass is considered, it is possible to exploit the optimal properties of metal alloys though proper placement within the armoring system, governed by desired protective mechanism and environmental exposure conditions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography