Academic literature on the topic 'Mechanical properties of concrete'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanical properties of concrete.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mechanical properties of concrete"
Shu, Xing Wang, and Ying Zhang. "Mechanical Properties of Modified Epoxy/Rubber Concrete." Materials Science Forum 859 (May 2016): 39–44. http://dx.doi.org/10.4028/www.scientific.net/msf.859.39.
Full textShaikh, Faiz. "Mechanical and Durability Properties of Green Star Concretes." Buildings 8, no. 8 (August 17, 2018): 111. http://dx.doi.org/10.3390/buildings8080111.
Full textDr.T.Ch.Madhavi, Dr T. Ch Madhavi, Pavithra P. Pavithra.P, Sushmita Baban Singh Sushmita Baban Singh, S. B. Vamsi Raj S.B.Vamsi Raj, and Surajit Paul. "Effect of Multiwalled Carbon Nanotubes On Mechanical Properties of Concrete." International Journal of Scientific Research 2, no. 6 (June 1, 2012): 166–68. http://dx.doi.org/10.15373/22778179/june2013/53.
Full textBalasubramanian, M., Senthil Selvan.S, and Vinod Panwar.D. "Augmentation of Mechanical Properties of Sisal Fiber Concrete." International Journal of Engineering & Technology 7, no. 2.12 (April 3, 2018): 430. http://dx.doi.org/10.14419/ijet.v7i2.12.11511.
Full textGrinys, Audrius, Danutė Vaičiukynienė, Algirdas Augonis, Henrikas Sivilevičius, and Rėda Bistrickait. "EFFECT OF MILLED ELECTRICAL CABLE WASTE ON MECHANICAL PROPERTIES OF CONCRETE." Journal of Civil Engineering and Management 21, no. 3 (February 26, 2015): 300–307. http://dx.doi.org/10.3846/13923730.2015.1005019.
Full textYang, Shu Qing, Ting Peng, Wai Ching Tang, and Hong Zhi Cui. "Study of Surface Modification of Recycled Aggregate and Mechanical Properties of the Resulting Concrete." Advanced Materials Research 712-715 (June 2013): 961–65. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.961.
Full textSeitl, Stanislav, Petr Miarka, Iva Rozsypalová, Katka Pokorná, Zbyněk Keršner, Jacek Katzer, and Paweł K. Zarzycki. "Mechanical fracture properties of concrete with lunar aggregate simulant." MATEC Web of Conferences 323 (2020): 01014. http://dx.doi.org/10.1051/matecconf/202032301014.
Full textNykypanchuk, Mykhailo, Yurii Hrynchuk, and Mykola Olchovyk. "Effect of Modified Bitumen on Physico-Mechanical Properties of Asphalt Concrete." Chemistry & Chemical Technology 7, no. 4 (December 15, 2013): 467–70. http://dx.doi.org/10.23939/chcht07.04.467.
Full textChopda, Siddhant M., and Bhavesh M. Chhattani. "Mechanical Properties of Pervious Concrete." International Journal of Technology 5, no. 2 (2015): 113. http://dx.doi.org/10.5958/2231-3915.2015.00006.1.
Full textOlivia, Monita, Annisa Arifandita Mifshella, and Lita Darmayanti. "Mechanical Properties of Seashell Concrete." Procedia Engineering 125 (2015): 760–64. http://dx.doi.org/10.1016/j.proeng.2015.11.127.
Full textDissertations / Theses on the topic "Mechanical properties of concrete"
Zhao, Jianwei. "Mechanical properties of concrete at early ages." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/6049.
Full textDownie, Brian. "Effect of moisture and temperature on the mechanical properties of concrete." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4240.
Full textTitle from document title page. Document formatted into pages; contains viii, 112 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 93-95).
Yurtseven, Alp Eren. "Determination Of Mechanical Properties Of Hybrid Fiber Reinforced Concrete." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605268/index.pdf.
Full textzgü
r Yaman August 2004, 82 pages Fiber reinforcement is commonly used to provide toughness and ductility to brittle cementitious matrices. Reinforcement of concrete with a single type of fiber may improve the desired properties to a limited level. A composite is termed as hybrid, if two or more types of fibers are rationally combined to produce a composite that derives benefits from each of the individual fibers and exhibits a synergetic response. This study aims to characterize and quantify the mechanical properties of hybrid fiber reinforced concrete. For this purpose nine mixes, one plain control mix and eight fiber reinforced mixes were prepared. Six of the mixes were reinforced in a hybrid form. Four different types of fibers were used in combination, two of which were macro steel fibers, and the other two were micro fibers. Volume percentage of fiber inclusion was kept constant at 1.5%. In hybrid reinforced mixes volume percentage of macro fibers was 1.0% whereas the remaining fiber inclusion was v composed of micro fibers. Slump test was carried out for each mix in the fresh state. 28-day compressive strength, flexural tensile strength, flexural toughness, and impact resistance tests were performed in the hardened state. Various numerical analyses were carried out to quantify the determined mechanical properties and to describe the effects of fiber inclusion on these mechanical properties. Keywords: Fiber Reinforcement, Hybrid Composite, Toughness, Impact Resistance
Hartell, Julie Ann. "Sodium sulphate attack on concrete: effect on mechanical properties." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19233.
Full textTraditionnellement, la méthode par inspection visuelle est suggérée pour qualifier le degré d'une attaque sulfatique du béton. Pour sa part, la norme ASTM C 1012 est régulièrement utilisée dans le cas où le pourcentage d'allongement d'un prisme en mortier submergé dans une solution de sulfate de sodium quantifie la résistance du ciment composant le mortier par rapport aux mécanismes d'expansion. Toutefois, le changement des propriétés d'ingénierie du béton, causé par les effets néfastes de l'attaque sulfatique, n'est pas pris en considération dans les normes existantes. Ainsi, le régime d'exposition aux sulfates de la norme ASTM C 1012, soit l'immersion complète, ne représente pas nécessairement ceux des ouvrages en béton. Pour ces raisons, l'objectif de cette thèse est de quantifier le niveau d'une attaque sulfatique à travers la dégradation des propriétés mécaniques du béton, soient les capacités en compression et tension d'un cylindre standard en béton. De plus, les travaux de recherche incluent un nouveau régime d'exposition afin de recréer un front d'évaporation similaire à celui d'un ouvrage en béton semi-saturé. Comparativement, les spécimens en béton sont submergés jusqu'à leur mi-hauteur dans une solution de sulfate de sodium.
Zanganeh, Mehdi. "Mechanical properties of fiber reinforced concrete with ACM applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0013/MQ52021.pdf.
Full textMohammed, Hafeez. "Mechanical Properties Of Ultra High Strength Fiber Reinforced Concrete." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1431021338.
Full textChapagain, Indra Prasad. "Mechanical properties of self-consolidating concrete with pozzolanic materials." FIU Digital Commons, 2008. http://digitalcommons.fiu.edu/etd/2111.
Full textBrockmann, Tanja. "Mechanical and fracture mechanical properties of fine grained concrete for textile reinforced composites." Aachen : Mainz, 2005. http://deposit.d-nb.de/cgi-bin/dokserv?idn=97972127X.
Full textEskander, Ashraf. "EFFECTS OF FIBER AND LITHIUM ON MECHANICAL PROPERTIES OF CONCRETE MADE FROMRECYCLED CONCRETE AGGREGATE." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2954.
Full textM.S.C.E.
Department of Civil and Environmental Engineering
Engineering and Computer Science
Civil Engineering
Boukendakdji, Mustapha. "Mechanical properties and long-term deformation of slag cement concrete." Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236998.
Full textBooks on the topic "Mechanical properties of concrete"
Khayat, Kamal H., and Geert De Schutter, eds. Mechanical Properties of Self-Compacting Concrete. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03245-0.
Full textHäkkinen, Tarja. Influence of cementing materials on the permeability of concrete. Espoo, Finland: Technical Research Centre of Finland, 1991.
Find full textNeville, A. M. Properties of concrete. 4th ed. Harlow: Longman Scientific & Technical, 1995.
Find full textBalavadze, V. K. Novoe o prochnosti i deformativnosti betona i zhelezobetona. Tbilisi: "Met͡s︡niereba", 1986.
Find full textZanganeh, Mehdi. Mechanical properties of fiber-reinforced concrete with ACM applications. Ottawa: National Library of Canada, 1997.
Find full textLige̦za, Wiesław. Redystrybucja sił wewnętrznych we wzmacnianych betonowych elementach tarczowych. Kraków: Politechnika Krakowska im. Tadeusza Koʹsciuszki, 2000.
Find full textZalesov, Aleksandr Sergeevich. Prochnostʹ zhelezobetonnykh konstrukt͡s︡iĭ pri deĭstvii poperechnykh sil. Kiev: "Budivėlʹnyk", 1989.
Find full textBook chapters on the topic "Mechanical properties of concrete"
Benboudjema, Farid, Jérôme Carette, Brice Delsaute, Tulio Honorio de Faria, Agnieszka Knoppik, Laurie Lacarrière, Anne Neiry de Mendonça Lopes, Pierre Rossi, and Stéphanie Staquet. "Mechanical Properties." In Thermal Cracking of Massive Concrete Structures, 69–114. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76617-1_4.
Full textDesnerck, Pieter, Veerle Boel, Bart Craeye, and Petra Van Itterbeeck. "Mechanical Properties." In Mechanical Properties of Self-Compacting Concrete, 15–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03245-0_2.
Full textPimienta, Pierre, Jean-Christophe Mindeguia, Gérard Debicki, Ulrich Diederichs, Izabela Hager, Sven Huismann, Ulla-Maija Jumppanen, Fekri Meftah, Katarzyna Mróz, and Klaus Pistol. "Mechanical Properties." In Physical Properties and Behaviour of High-Performance Concrete at High Temperature, 71–128. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95432-5_5.
Full textVaghela, Ajaysinh R., and Gaurang R. Vesmawala. "Mechanical Properties of Nano Concrete." In Advances in Structural Integrity, 137–45. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7197-3_12.
Full textShahidan, Shahiron, and Nurul Izzati Raihan Ramzi Hannan. "Mechanical Properties of CBA Concrete." In Acoustic And Non-Acoustic Performance Coal Bottom Ash Concrete, 47–63. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7463-4_6.
Full textKhayat, Kamal H., and Pieter Desnerck. "Bond Properties of Self-Compacting Concrete." In Mechanical Properties of Self-Compacting Concrete, 95–139. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03245-0_4.
Full textGu, Xianglin, Xianyu Jin, and Yong Zhou. "Mechanical Properties of Concrete and Steel Reinforcement." In Basic Principles of Concrete Structures, 21–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48565-1_2.
Full textMayama, Masakazu, and Michio Mori. "Vibrating and Mechanical Properties of Ferrite Concrete." In Brittle Matrix Composites 3, 488–97. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3646-4_52.
Full textDe Schutter, Geert, and Kamal H. Khayat. "Introduction and Glossary." In Mechanical Properties of Self-Compacting Concrete, 1–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03245-0_1.
Full textLeemann, Andreas, and Pietro Lura. "Creep and Shrinkage of SCC." In Mechanical Properties of Self-Compacting Concrete, 73–94. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03245-0_3.
Full textConference papers on the topic "Mechanical properties of concrete"
Linchun Zhang. "Fundamental mechanical properties of Lytag concrete." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002898.
Full textShkolnik, Iosif E. "Nonlinear NDE of Concrete Mechanical Properties." In INNOVATIONS IN NONLINEAR ACOUSTICS: ISNA17 - 17th International Symposium on Nonlinear Acoustics including the International Sonic Boom Forum. AIP, 2006. http://dx.doi.org/10.1063/1.2210314.
Full textKallel, Hatem, Hélène Carré, Christian Laborderie, Benoit Masson, and Nhu Cuong Tran. "influence of Moisture and Temperature on Mechanical Properties of the Concrete." In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2016. http://dx.doi.org/10.21012/fc9.053.
Full textAbas, Noor Faisal. "Mechanical Properties Of Steel Fibres Reinforced Concrete." In ICRP 2019 - 4th International Conference on Rebuilding Place. Cognitive-Crcs, 2019. http://dx.doi.org/10.15405/epms.2019.12.61.
Full text"Mechanical Properties of Bamboo Fibre Reinforced Concrete." In 2nd International Conference on Research in Science, Engineering and Technology. International Institute of Engineers, 2014. http://dx.doi.org/10.15242/iie.e0314522.
Full textDong, Shuhui, Wencui Yang, Yong Ge, Shouheng Jiang, Tuo Sun, and Jiaping Deng. "Mechanical Properties of Concrete Containing Ceramsite Sand." In Fifth International Conference on Transportation Engineering. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479384.158.
Full textUlfberg, Adrian, Andreas Seger, Dipen Bista, Marie Westberg Wilde, Fredrik Johansson, Oisik Das, and Gabriel Sas. "Influence of Concrete's Mechanical Properties on the Cracking of Concrete Dams." In Proceedings of the 31st European Safety and Reliability Conference. Singapore: Research Publishing Services, 2021. http://dx.doi.org/10.3850/978-981-18-2016-8_549-cd.
Full textGao, Yuan, Chunhua Lu, Siqi Yuan, and Jinmu Yang. "Effect of Non-uniform Corrosion on the mechanical properties of corroded steal bars." In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. IA-FraMCoS, 2016. http://dx.doi.org/10.21012/fc9.037.
Full textYehia, Sherif, Sharef Farrag, Anaam Abu-Sharhk, Amani Zaher, Heba Istayteh, and Kareem Helal. "Concrete with Recycled Aggregate: Evaluation of Mechanical Properties." In Annual International Conference on Architecture and Civil Engineering. Global Science & Technology Forum (GSTF), 2015. http://dx.doi.org/10.5176/2301-394x_ace15.65.
Full textKarolina, Rahmi, Rinaldy Simanjuntak, Syahrizal Syahrizal, and M. Handana. "The Effect of Polystyrene on Concrete Mechanical Properties." In Proceedings of the 2nd Annual Conference of Engineering and Implementation on Vocational Education (ACEIVE 2018), 3rd November 2018, North Sumatra, Indonesia. EAI, 2019. http://dx.doi.org/10.4108/eai.3-11-2018.2285654.
Full textReports on the topic "Mechanical properties of concrete"
Phan, Long T., and Nicholas J. Carino. Mechanical properties of high-strength concrete at elevated temperatures. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.ir.6726.
Full textLaHucik, Jeffrey, and Jeffery Roesler. Material Constituents and Proportioning for Roller-Compacted Concrete Mechanical Properties. Illinois Center for Transportation, August 2018. http://dx.doi.org/10.36501/0197-9191/18-016.
Full textLawson, J. Randall, Long T. Phan, and Frank Davis. Mechanical properties of high performance concrete after exposure to elevated temperatures. Gaithersburg, MD: National Institute of Standards and Technology, 2000. http://dx.doi.org/10.6028/nist.ir.6475.
Full textPhan, Long T., and Richard D. Peacock. Experimental plan for testing the mechanical properties of high-strength concrete at elevated temperatures. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6210.
Full textRamsey, Monica, Stephanie Wood, and Robert Moser. Residual expansion capacity and degradation of mechanical properties in alkali-silica reaction (ASR) damaged concrete. Engineer Research and Development Center (U.S.), April 2019. http://dx.doi.org/10.21079/11681/32485.
Full textMalhotra, V. M. Mechanical properties and freezing and thawing durability of concrete incorporating a ground granulated blast-furnace slag. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1988. http://dx.doi.org/10.4095/307077.
Full textRagalwar, Ketan, William Heard, Brett Williams, Dhanendra Kumar, and Ravi Ranade. On enhancing the mechanical behavior of ultra-high performance concrete through multi-scale fiber reinforcement. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41940.
Full textSadek, Fahim, Travis Thonstad, Sorin Marcu, Jonathan M. Weigand, Timothy J. Barrett, Hai S. Lew, Long T. Phan, and Adam L. Pintar. Structural Performance of Nuclear Power Plant Concrete Structures Affected by Alkali-Silica Reaction (ASR) Task 1: Assessing In-Situ Mechanical Properties of ASR-Affected Concrete. National Institute of Standards and Technology, February 2021. http://dx.doi.org/10.6028/nist.tn.2121.
Full textPatel, Reena. Complex network analysis for early detection of failure mechanisms in resilient bio-structures. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41042.
Full textScott, Dylan, Steven Graham, Bradford Songer, Brian Green, Michael Grotke, and Tony Brogdon. Laboratory characterization of Cor-Tuf Baseline and UHPC-S. Engineer Research and Development Center (U.S.), March 2021. http://dx.doi.org/10.21079/11681/40121.
Full text