Academic literature on the topic 'Mechanical and optical properties'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanical and optical properties.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mechanical and optical properties"
Nakayama, T., H. Murotani, and T. Harada. "Optical characteristics and mechanical properties of optical thin films on weathered substrates." Chinese Optics Letters 11, S1 (2013): S10301. http://dx.doi.org/10.3788/col201311.s10301.
Full textHartman, H., A. Casajus, and U. Richter. "On-line measurement of mechanical, optical properties and roughness parameters." Revista de Metalurgia 41, Extra (December 17, 2005): 74–82. http://dx.doi.org/10.3989/revmetalm.2005.v41.iextra.1002.
Full textBortchagovsky, E. G. "Direct synthesized graphene-like film on SiO2: Mechanical and optical properties." Semiconductor Physics Quantum Electronics and Optoelectronics 19, no. 4 (December 5, 2016): 328–33. http://dx.doi.org/10.15407/spqeo19.04.328.
Full textPati, Manoj Kumar. "Mechanical, Thermal, Optical and Electrical Properties of Graphene/ Poly (sulfaniic acid) Nanocomposite." Journal of Advance Nanobiotechnology 2, no. 4 (August 30, 2018): 39–50. http://dx.doi.org/10.28921/jan.2018.02.25.
Full textKarlsson, Anette, Sofia Enberg, Mats Rundlöf, Magnus Paulsson, and Per Edström. "Determining optical properties of mechanical pulps." Nordic Pulp & Paper Research Journal 27, no. 3 (August 1, 2012): 531–41. http://dx.doi.org/10.3183/npprj-2012-27-03-p531-541.
Full textH. GUERRERO G. V. GUINEA J. ZOIDO. "Mechanical Properties of Polycarbonate Optical Fibers." Fiber and Integrated Optics 17, no. 3 (July 1998): 231–42. http://dx.doi.org/10.1080/014680398244966.
Full textKIYOTA, Takumi, Taro TOYOTA, Kazuaki NAGAYAMA, and Kaoru UESUGI. "Evaluating Mechanical Properties of Liposomes with Optical Mechanical Properties for Molecular Robot Development." Proceedings of Mechanical Engineering Congress, Japan 2022 (2022): J025p—11. http://dx.doi.org/10.1299/jsmemecj.2022.j025p-11.
Full textSaito, M., M. Takizawa, and M. Miyagi. "Optical and mechanical properties of infrared fibers." Journal of Lightwave Technology 6, no. 2 (February 1988): 233–39. http://dx.doi.org/10.1109/50.3994.
Full textSglavo, Vincenzo M., Emanuele Mura, Daniel Milanese, and Joris Lousteau. "Mechanical Properties of Phosphate Glass Optical Fibers." International Journal of Applied Glass Science 5, no. 1 (August 26, 2013): 57–64. http://dx.doi.org/10.1111/ijag.12040.
Full textWasserman, S., M. Snir, H. Dodiuk, and S. Kenig. "Transmission and Mechanical Properties of Optical Adhesives." Journal of Adhesion 27, no. 2 (January 1989): 67–81. http://dx.doi.org/10.1080/00218468908050594.
Full textDissertations / Theses on the topic "Mechanical and optical properties"
Hartschuh, Ryan D. "Optical Spectroscopy of Nanostructured Materials." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1195016254.
Full textConley, Jill Anne. "Hygro-thermo-mechanical behavior of fiber optic apparatus." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/17308.
Full textJohnson, Jeremy A. (Jeremy Andrew). "Optical characterization of complex mechanical and thermal transport properties." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68543.
Full textPage 176 blank. Cataloged from PDF version of thesis.
Includes bibliographical references (p. 163-175).
Time-resolved impulsive stimulated light scattering (ISS), also known as transient grating spectroscopy, was used to investigate phonon mediated thermal transport in semiconductors and mechanical degrees of freedom linked to structural relaxation in supercooled liquids. In ISS measurements, short optical pulses are crossed to produce a periodic excitation profile in or at the surface of the sample. Light from a probe beam that diffracts off the periodic material response is monitored to observe the dynamics of interest. A number of improvements were put into practice including the ability to separate so-called amplitude and phase grating signal contributions using heterodyne detection. This allowed the measurement of thermal transport in lead telluride and gallium arsenide-aluminum arsenide superlattices, and also provided the first direct observation of the initial crossover from diffusive to ballistic thermal transport in single crystal silicon and gallium arsenide at room temperature. Recent first-principles calculations of the thermal conductivity accumulation as a function of phonon mean free path allowed direct comparison to our measured results. In an effort to test theoretical predictions of the prevailing first principles theory of the glass transition, the mode coupling theory (MCT), photoacoustic measurements throughout much of the MHz acoustic frequency range were conducted in supercooled liquids. Longitudinal and shear acoustic waves were generated and monitored in supercooled liquid triphenyl phosphite in order to compare the dynamics. An additional interferometric technique analogous to ISS was developed to probe longitudinal acoustic waves at lower frequencies than was typically accessible with ISS. Lower frequency acoustic data were collected in supercooled tetramethyl tetraphenyl trisiloxane in conjunction with piezotransducer, ISS, and picosecond ultrasonics measurements to produce the first truly broadband mechanical spectra of a viscoelastic material covering frequencies continuously from mHz to hundreds of GHz. This allowed direct testing of the MCT predicted connection between fast and slow relaxation in supercooled liquids. Measurements of the quasi-longitudinal speed of sound in the energetic material cyclotrimethylene trinitramine (RDX) were also performed with ISS and picosecond ultrasonics from 0.5 to 15 GHz in order to resolve discrepancies in published low and high frequency elastic constants.
by Jeremy A. Johnson.
Ph.D.
Wagner, Christian Friedemann. "Mechanical, Electronic and Optical Properties of Strained Carbon Nanotubes." Doctoral thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-226260.
Full textDiese Dissertation befasst sich mit der Berechnung der mechanischen Eigenschaften, der elektronischen Struktur, der Transport- und der optischen Eigenschaften von verspannten Kohlenstoffnanoröhrchen (engl. carbon nanotubes, CNTs). CNTs werden für die Straintronik diskutiert, da ihre elektronischen Bänder eine starke Dehnungsempfindlichkeit aufweisen. Weiterhin sind CNTs steif, besitzen eine hohe Zugfestigkeit und sind chemisch inert, weshalb sie in Bezug auf Zuverlässigkeit und Funktionalität ein geeignetes Material für straintronische Bauelemente sind. Ziel dieser Arbeit ist es daher, das Potenzial von dehnungsabhängigen CNT-Bauteilen hinsichtlich ihrer mechanischen, elektronischen und optischen Eigenschaften aus der Perspektive von first principles-Methoden zu untersuchen. Es gibt bisher keine Arbeit, in der die Ergebnisse verschiedener Methoden – ab initio-basierte Berechnungen für kleine CNTs und tight-binding Berechnungen, die näherungsweise die elektronische Struktur großer CNTs beschreiben – miteinander systematisch vergleicht. Einführend werden die strukturellen und mechanischen Eigenschaften von CNTs untersucht: Strukturelle Eigenschaften ergeben sich durch Geometrieoptimierung vieler CNTs mittels Dichtefunktionaltheorie (DFT). Die mechanischen Eigenschaften von CNTs werden in gleicher Weise berechnet. Die daraus resultierenden Spannungs-Dehnungs-Beziehungen werden untersucht und deren relevante Parameter systematisch in Abhängigkeit von CNT-Chiralität und CNT-Radius dargestellt. Die Eigenschaften des CNT-Grundzustands werden unter Verwendung von tight-binding-Modellen und DFT berechnet. Beide Methoden werden systematisch verglichen und es wird untersucht, wo die tight-binding-Näherung angewendet werden kann, um aussagekräftige Ergebnisse zu erzielen. Basierend auf der elektronischen Struktur der CNTs wird ein Transportmodell aufgesetzt, durch das der Strom durch verspannte CNTs berechnet werden kann. Dieses Modell beinhaltet den Einfluss der ballistischen Leitfähigkeit, Elektron-Phonon-Streuung in parametrisierter Form und den Einfluss eines Gates. Damit wird ein numerisch effizientes Modell beschrieben, das in der Lage ist, den Strom durch verspannte CNT-Transistoren vorherzusagen. Auf dessen Basis wird es möglich, optimale Arbeitsbereiche für reine CNT-Bauelemente und Bauelemente mit CNT-Mischungen zu berechnen. Die optischen Eigenschaften verspannter CNTs werden durch die Berechnung von Quasiteilchenanregungen mittels der GW-Approximation und der Lösung der Bethe-Salpeter-Gleichung für CNT-Exzitonen untersucht. Aufgrund des numerischen Aufwandes dieser Ansätze werden diese Daten für nur ein CNT erhalten. Daran wird der Zusammenhang zwischen den oben genannten Vielteilchen-Eigenschaften und den Grundzustandseigenschaften für dieses CNT demonstriert. Daraus ergeben sich empirische Ansätze, die es gestatten, die Vielteilchen-Ergebnisse näherungsweise auf die elektronischen Grundzustandseigenschaften zurückzuführen. Es wird dargestellt, wie ein solches Modell für andere CNTs verallgemeinert werden kann, um die Verspannungsabhängigkeit ihrer optischen Übergänge zu beschreiben
Franze, Kristian. "Mechanical and optical properties of nervous tissue and cells." Leipzig Leipziger Univ.-Verl, 2007. http://d-nb.info/99874204X/04.
Full textCheng, Yi. "Detecting tissue optical and mechanical properties with an ultrasound-modulated optical imaging system." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24845.
Full textGallivan, Rebecca Anne. "Investigating coordinate network based films through mechanical and optical properties." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111257.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (page 31).
Both biological and synthetic materials crosslinked via metal coordinate dynamic chemistry display interesting advanced behavior. In particular, coordinate networks have been shown to form self-healing, self-assembling, and stimuli-responsive behaviors through its tunable optical and mechanical properties as well as its ability to for dynamic networks. However, while the majority of research has focused on characterization of bulk coordinate networks, coordinate complexes have also been shown to be useful in molecular film formation [1 and 2]. This study investigates the mechanical and optical properties of tannic acid and 4 arm catechol polyethylene glycol based coordinate network films. It shows that these films can contribute to energy dissipation and undergo pH-induced optical shifts when used as coatings on soft hydrogels. It also provides evidence that the molecular architecture of the network formers may have considerable effect on the properties and behavior of coordinate network films. Ultimately this work lays the foundation for further investigation of the underlying mechanisms and engineering potential of coordinate network based films.
by Rebecca Anne Gallivan.
S.B.
Drew, Christopher W. "Mechanical Loading for Modifying Tissue Water Content and Optical Properties." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/32714.
Full textMaster of Science
Liao, Guangxun. "Mechanical and Electro-Optical Properties of Unconventional Liquid Crystal Systems." Kent State University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=kent1131600449.
Full textGunawidjaja, Ray. "Organic/inorganic nanostructured materials towards synergistic mechanical and optical properties /." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29733.
Full textCommittee Chair: Tsukruk, Vladimir; Committee Member: Bucknall, David; Committee Member: Kalaitzidou, Kyriaki; Committee Member: Shofner, Meisha; Committee Member: Tannenbaum, Rina. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Books on the topic "Mechanical and optical properties"
J, Pouch John, and United States. National Aeronautics and Space Administration., eds. Boron nitride: Composition, optical properties, and mechanical behavior. [Washington, DC]: National Aeronautics and Space Administration, 1987.
Find full textBarton, James. Le verre, science et technologie. Les Ulis: EDP sciences, 2005.
Find full textPatterson, James D. Micro-mechanical voltage tunable Fabry-Perot filters formed in (111) silicon. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textPatterson, James D. Micro-mechanical voltage tunable Fabry-Perot filters formed in (111) silicon. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1997.
Find full textPatterson, James D. Micro-mechanical voltage tunable Fabry-Perot filters formed in (111) silicon. Washington, D.C: National Aeronautics and Space Administration, 1997.
Find full textWei, Chunyang. Mechanical properties of GRP strength members and dynamic behaviour of optical cables. Birmingham: University of Birmingham, 1999.
Find full textEsteve, Jaume, E. M. Terentjev, and Eva M. Campo. Nano-opto-mechanical systems (NOMS): 21 August 2011, San Diego, California, United States. Bellingham, Wash: SPIE, 2011.
Find full textDutta, Mitra, and Michael A. Stroscio. Biological nanostructures and applications of nanostructures in biology: Electrical, mechanical, and optical properties. New York: Kluwer Academic/Plenum Publishers, 2004.
Find full text1949-, Stroscio Michael A., and Dutta Mitra, eds. Biological nanostructures and applications of nanostructures in biology: Electrical, mechanical, and optical properties. New York: Kluwer Academic/Plenum Publishers, 2004.
Find full textTorres, C. M. Sotomayor. Optical Properties of Narrow-Gap Low-Dimensional Structures. Boston, MA: Springer US, 1987.
Find full textBook chapters on the topic "Mechanical and optical properties"
Carter, S. F. "Mechanical properties." In Fluoride Glass Optical Fibres, 219–37. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-6865-6_9.
Full textNattermann, Kurt, Norbert Neuroth, and Robert J. Scheller. "Mechanical Properties." In The Properties of Optical Glass, 179–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-57769-7_4.
Full textBala, Anu, and Suman Rani. "Garnet: Structural and Optical Properties." In Lecture Notes in Mechanical Engineering, 365–71. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4147-4_37.
Full textHummel, Rolf E. "Quantum Mechanical Treatment of the Optical Properties." In Electronic Properties of Materials, 165–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-02424-9_12.
Full textHummel, Rolf E. "Quantum Mechanical Treatment of the Optical Properties." In Electronic Properties of Materials, 204–13. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-4914-5_12.
Full textHummel, Rolf E. "Quantum Mechanical Treatment of the Optical Properties." In Electronic Properties of Materials, 227–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-86538-1_12.
Full textHummel, Rolf E. "Quantum Mechanical Treatment of the Optical Properties." In Electronic Properties of Materials, 204–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02954-1_12.
Full textHummel, Rolf E. "Quantum Mechanical Treatment of the Optical Properties." In Electronic Properties of Materials, 247–57. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-8164-6_12.
Full textAlexandrovskaya, Yulia M., Olga I. Baum, Vladimir Yu. Zaitsev, Alexander A. Sovetsky, Alexander L. Matveyev, Lev A. Matveev, Kirill V. Larin, Emil N. Sobol, and Valery V. Tuchin. "Optical and mechanical properties of cartilage during optical clearing." In Handbook of Tissue Optical Clearing, 185–98. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003025252-10.
Full textCourtois, Loïc, Eric Maire, Michel Perez, Yves Brechet, and David Rodney. "Mechanical properties of Monofilament entangled materials." In Optical Measurements, Modeling, and Metrology, Volume 5, 33–38. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0228-2_5.
Full textConference papers on the topic "Mechanical and optical properties"
Klemberg-Sapieha, Jolanta E., and Ludvik Martinu. "Mechanical properties of optical coatings." In Optical Interference Coatings. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/oic.2004.the1.
Full textRichter, Frank, Thomas Chudoba, and Norbert Schwarzer. "Mechanical Properties of Thin Films." In Optical Interference Coatings. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/oic.2007.tub1.
Full textMahodaux, C., H. Rigneault, H. Giovannini, and P. Morreti. "Mechanical properties of dielectric thin films." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/oic.1998.tug.1.
Full textKirkpatrick, Sean J. "Optical assessment of tissue mechanical properties." In Saratov Fall Meeting '99, edited by Valery V. Tuchin, Dmitry A. Zimnyakov, and Alexander B. Pravdin. SPIE, 2000. http://dx.doi.org/10.1117/12.381478.
Full textMedrano, Ricardo E. "Mechanical properties of weak optical fibers." In Photonics East '99, edited by M. John Matthewson. SPIE, 1999. http://dx.doi.org/10.1117/12.372782.
Full textRomaniuk, Ryszard S., and Jan Dorosz. "Mechanical properties of hollow optical fibers." In SPIE Proceedings, edited by Ryszard S. Romaniuk. SPIE, 2006. http://dx.doi.org/10.1117/12.714623.
Full textPulker, Hans K., and Johannes Edlinger. "Mechanical properties of optical thin films." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mnn1.
Full textRigneault, Herve, Christine Mahodaux, Hugues Giovannini, Ludovic Escoubas, and Paul Moretti. "Mechanical properties of dielectric thin films." In Optical Science, Engineering and Instrumentation '97, edited by Randolph L. Hall. SPIE, 1997. http://dx.doi.org/10.1117/12.290191.
Full textMichel, Bernd, Dietmar Vogel, and Volker Grosser. "Mechanical properties of microsystem components." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Ryszard J. Pryputniewicz, Gordon M. Brown, and Werner P. O. Jueptner. SPIE, 1998. http://dx.doi.org/10.1117/12.316443.
Full textBARK, PETER R. "Minitutorial: fiber-optic cables and their mechanical properties." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 1987. http://dx.doi.org/10.1364/ofc.1987.tul1.
Full textReports on the topic "Mechanical and optical properties"
Bogaard, Ronald H., and David L. Taylor. Optical, Thermoradiative, Thermophysical, and Mechanical Properties of Silicon. Fort Belvoir, VA: Defense Technical Information Center, August 1994. http://dx.doi.org/10.21236/ada363877.
Full textGreen, Peter F. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1167194.
Full textPadmanabhan, Prashant, Kevin Kwock, Finn Buessen, Roxanne Tutchton, Samuel Gilinsky, Min Lee, Srinivasa Rao, et al. The transient properties of 2D magnets: from mechanical exfoliation to ultrafast optical spectroscopy of CrX3 materials. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1669071.
Full textLong, Wendy, Zackery McClelland, Dylan Scott, and C. Crane. State-of-practice on the mechanical properties of metals for armor-plating. Engineer Research and Development Center (U.S.), January 2023. http://dx.doi.org/10.21079/11681/46382.
Full textRamos, Nuno M. M., Joana Maia, Rita Carvalho Veloso, Andrea Resende Souza, Catarina Dias, and João Ventura. Envelope systems with high solar reflectance by the inclusion of nanoparticles – an overview of the EnReflect Project. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541621982.
Full textRoesler, Collin S. Particulate Optical Closure: Reconciling Optical Properties of Individual Particles with Bulk Optical Properties. Fort Belvoir, VA: Defense Technical Information Center, January 1995. http://dx.doi.org/10.21236/ada300437.
Full textSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/5991403.
Full textSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6164447.
Full textSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/7245066.
Full textSelf, S. A. Optical properties of flyash. Office of Scientific and Technical Information (OSTI), April 1992. http://dx.doi.org/10.2172/5127564.
Full text