Academic literature on the topic 'Mechanical and aerospace'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mechanical and aerospace.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mechanical and aerospace"
Tennant, Roy. "Mechanical Surface Finishing in the Aerospace Industry." Aircraft Engineering and Aerospace Technology 64, no. 3 (March 1992): 4–14. http://dx.doi.org/10.1108/eb037216.
Full textSmith, Robert. "AEROSPACE SPACE: Report of the BINDT Aerospace Group." Insight - Non-Destructive Testing and Condition Monitoring 52, no. 3 (March 2010): 120–22. http://dx.doi.org/10.1784/insi.2010.52.3.120.
Full textButenegro, José Antonio, Mohsen Bahrami, Yentl Swolfs, Jan Ivens, Miguel Ángel Martínez, and Juana Abenojar. "Novel Sustainable Composites Incorporating a Biobased Thermoplastic Matrix and Recycled Aerospace Prepreg Waste: Development and Characterization." Polymers 15, no. 16 (August 18, 2023): 3447. http://dx.doi.org/10.3390/polym15163447.
Full textValenti, Michael. "Re-Engineering Aerospace Design." Mechanical Engineering 120, no. 01 (January 1, 1998): 70–72. http://dx.doi.org/10.1115/1.1998-jan-5.
Full textRandall, Jason P., Mary Ann B. Meador, and Sadhan C. Jana. "Tailoring Mechanical Properties of Aerogels for Aerospace Applications." ACS Applied Materials & Interfaces 3, no. 3 (March 2011): 613–26. http://dx.doi.org/10.1021/am200007n.
Full textBhat, Aayush, Sejal Budholiya, Sakthivel Aravind Raj, Mohamed Thariq Hameed Sultan, David Hui, Ain Umaira Md Shah, and Syafiqah Nur Azrie Safri. "Review on nanocomposites based on aerospace applications." Nanotechnology Reviews 10, no. 1 (January 1, 2021): 237–53. http://dx.doi.org/10.1515/ntrev-2021-0018.
Full textYogesh, P., Santaji Krishna Shinde, Shyamlal C, R. Suresh kumar, Moti Lal Rinawa, G. Puthilibai, M. Sudhakar, Kassu Negash, and Rajesh S. "Mechanical Strengthening of Lightweight Aluminium Alloys through Friction Stir Process." Advances in Materials Science and Engineering 2022 (April 6, 2022): 1–10. http://dx.doi.org/10.1155/2022/8907250.
Full textKovalev, I. V., N. A. Testoyedov, and A. A. Voroshilova. "Overview of IV International Conference on Advanced Technologies in Aerospace, Mechanical and Automation Engineering – MIST Aerospace-IV-2021." IOP Conference Series: Materials Science and Engineering 1227, no. 1 (February 1, 2022): 011001. http://dx.doi.org/10.1088/1757-899x/1227/1/011001.
Full textMorrison, Gale. "The Art of Aerospace Composites." Mechanical Engineering 121, no. 04 (April 1, 1999): 58–61. http://dx.doi.org/10.1115/1.1999-apr-4.
Full textSalkind, Michael. "Aerospace materials research opportunities." Advanced Materials 1, no. 5 (1989): 157–64. http://dx.doi.org/10.1002/adma.19890010506.
Full textDissertations / Theses on the topic "Mechanical and aerospace"
Moore, Gareth Edward. "Electro-mechanical interactions in aerospace gas turbines." Thesis, University of Nottingham, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.768249.
Full textStimac, Andrew K. (Andrew Kenneth) 1977. "Precision navigation for aerospace applications." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/16676.
Full textVita.
Includes bibliographical references (p. 162). Includes bibliographical references (p. 162).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Navigation is important in a variety of aerospace applications, and commonly uses a blend of GPS and inertial sensors. In this thesis, a navigation system is designed, developed, and tested. Several alternatives are discussed, but the ultimate design is a loosely-coupled Extended Kalman Filter using rigid body dynamics as the process with a small angle linearization of quaternions. Simulations are run using real flight data. A bench top hardware prototype is tested. Results show good performance and give a variety of insights into the design of navigation systems. Special attention is given to convergence and the validity of linearization.
by Andrew K. Stimac.
S.M.
Cauberghs, Julien. "Out-of-autoclave manufacturing of aerospace representative parts." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106593.
Full textL'utilisation de matériaux composites en fibres de carbone pour des structures aéronautiques a connu une croissance rapide ces dernières années, et continue de croitre. Le rapport raideur/masse de ce type de matériaux en fait une solution idéale pour les structures primaires d'avions, de satellites, ou de navettes spatiales. Toutefois, la fabrication de ces pièces en composites demeure extrêmement couteuse puisqu'elle nécessite de lourds investissements d'équipement tels que l'acquisition d'un autoclave, ainsi que de la main-d'oeuvre qualifiée. La technologie hors autoclave semble très prometteuse puisqu'elle ne requiert que l'utilisation d'un four traditionnel, tout en visant à obtenir des pièces de qualité similaire. Cependant, l'absence de pression extérieure provenant de l'autoclave rend plus délicate l'obtention de pièces ayant une faible porosité. Cette recherche a pour thème la fabrication d'éléments complexes avec la technologie hors autoclave. Les éléments étudiés sont des angles convexes et concaves ayant de faibles rayons de courbure, ainsi que des plis partiels. Des tests sur les plis partiels ont été réalisés pour déterminer si ils sont associés à une augmentation de la porosité. Dans les angles, l'arrangement des consommables a été modifié pour obtenir l'épaisseur la plus uniforme possible dans les zones de changement de courbure, et cela même pour de faibles rayons. Les conclusions de ces tests nous ont permis de considérer la fabrication de pièces représentatives de plus grande taille, et qui contiennent les éléments précédemment étudiés. Les pièces représentatives ont été testées pour déterminer leur niveau de porosité, l'uniformité de leur épaisseur, leur performance mécanique, et leur température de transition vitreuse. Au total, quatre pièces représentatives ont été fabriquées par technologie hors autoclave, et une a été fabriquée dans un autoclave afin de permettre une comparaison de bon aloi entre ces deux procédés de fabrication. Les matériaux utilisés pour cette recherche étaient du MTM45-1 5 harness satin et du CYCOM5320 plain weave pour les pièces hors autoclave, ainsi que du CYCOM5276-1 plain weave pour la pièce autoclave. La présence de plis partiels n'a pas été associable à une augmentation notable de la porosité. L'uniformité d'épaisseur s'est révélée être une combinaison de pontage des consommables, du facteur de foisonnement du pré-imprégné, et du cisaillement entre les plis de fibre. Globalement, les pré-imprégnés hors autoclave ont montré des performances similaires aux pré-imprégnés autoclave.
Nill, Scott T. (Scott Thomas). "Aerospace composite manufacturing cost models as geometric programs." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118731.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 108-110).
The introduction of large, composite transport aircraft, such as the Airbus A350 and the Boeing 787, has been fraught with billions of dollars of production cost overruns. This research develops a novel approach to manufacturing cost modeling during the conceptual design phase using Geometric Programming (GP). A new formulation of a closed queuing network as a GP is presented to capture the crucial cost trade-offs between capacity and inventory. Additionally, GP models are presented for modeling unit processes in composite manufacturing and for modeling cost accounting metrics. Applied to the challenges of conceptual design for composite aircraft, the cost models can be used as a tool to help inform decisions about which manufacturing process to use and what type of supply chain should be deployed. The special sensitivity-analysis properties of the GP solutions can be exploited to explain how different aspects of the design drive manufacturing costs and to find highly sensitive areas of the trade-space that would have a large impact on cost if the design needed to be altered. The framework is demonstrated for fast but informative analyses of process trade-offs in composite fuselage fabrication.
by Scott T. Nill.
Ph. D.
Kirtley, Aaron L. (Aaron Lloyd) 1977. "Fostering innovation across aerospace supplier networks." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/82696.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
"June 2002." Page 187 blank.
Includes bibliographical references (p. 180-184).
by Aaron L. Kirtley.
S.M.
Negri, Christopher Anthony. "Ductile Fracture of Laser Powder Bed Fusion Additively Manufactured Ti-6Al-4V." University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1627570434852405.
Full textChiu, Brendon W. "Additive manufacturing applications and implementation in aerospace." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126950.
Full textThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 107-108).
Many aerospace companies are turning to additive manufacturing solutions to stream-line current production processes and open opportunities for on-demand producibility. While many OEMs are drawn to the appeal of the benefits that additive manufacturing brings, they are beginning to understand the difficulties in what it takes to realize those benefits. This paper analyzes additive manufacturing from an industry perspective down to a company perspective to develop a deeper understanding of the practical use cases as well as the various challenges a company faces should they choose to enter this market. This study begins with market research on the additive manufacturing and aerospace industry before honing in on a several use-case parts from rotary aircraft. Selection criterion were created and applied to analyze the value that additive manufacturing would bring in comparison to that of conventional methods, ultimately determining its feasibility for additive manufacturing.
This study applied the selection criterion to various parts of differing functions among the aircraft, resulting in a group of candidate parts. An evaluation method was created and applied to provide an objective assessment on the candidate parts. Initial insights show that additive manufacturing favor casted parts with features that can be optimized to increase performance and reduce costs and weight. In addition, aerospace has the best product mix of low volume parts that are advantageous to the economies of scale for additive manufacturing. Additionally, this study analyzes a company's organization and previous additive manufacturing efforts to propose ways to approach future development. Venturing through the various road maps that lead to the final goal of certification and addressing organizational barriers generate momentum for continuous development.
These road maps, selection criterion, and evaluation method can be applied through many applications within the general aerospace industry.
by Brendon W Chiu.
M.B.A.
S.M.
M.B.A. Massachusetts Institute of Technology, Sloan School of Management
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Mohammed, Mohammed Abdelaziz Elamin. "IMPACT AND POST IMPACT RESPONSE OF COMPOSITE SANDWICH STRUCTURES IN ARCTIC CONDITION." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1518520473027006.
Full textFrauenberger, Douglas H. "Lean transformation in aerospace assembly operations." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39728.
Full textIncludes bibliographical references (p. 81-82).
For the past two decades, virtually all manufacturing companies in the United States have adopted or are in the process of adopting lean manufacturing. Globalization has resulted in the increased availability of reliable, low cost sources putting greater pressures on traditional US manufacturing companies to reduce costs. The need to successfully transform to lean has only grown in importance in this new operating environment, resulting in renewed focus on such initiatives in the United States. This thesis discusses various approaches to lean manufacturing with reference to specific examples from both academia and industry. In particular, lean transformation efforts in Mitchell Engine Company's* Final Assembly Plant will be provided as a case study. Focus on the JP-3525 fan case assembly cell provides specific examples on how shop floor improvements, assembly cell redesign, and flow can improve process cycle time and decrease variability. The direct result of this work has been a 15% decrease in cycle time and a 100% decrease in variability in the JP-3525 fan case assembly cell. Finally, the role front-line supervisors play in change initiatives will be introduced, discussing the position from both management and labor perspectives. Based on past research, recommendations will be made on how to improve cell leader effectiveness, recognizing these changes require systemic change within the organization.
by Douglas H. Frauenberger.
M.B.A.
S.M.
Buettner, Robert W. "Dynamic Modeling and Simulation of a Variable Cycle Turbofan Engine with Controls." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1496179248257409.
Full textBooks on the topic "Mechanical and aerospace"
J, Inman D., ed. Damage prognosis for aerospace, civil and mechanical systems. Chichester, England: Wiley, 2005.
Find full textRajendran, Parvathy, Nurul Musfirah Mazlan, Aslina Anjang Ab Rahman, Nurulasikin Mohd Suhadis, Norizham Abdul Razak, and Mohd Shukur Zainol Abidin, eds. Proceedings of International Conference of Aerospace and Mechanical Engineering 2019. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4756-0.
Full textFan, Wu. Mechanical and aerospace engineering: Selected, peer reviewed papers from the 2nd International Conference on Mechanical and Aerospace Engineering (ICMAE) 2011), July 29-31, 2011, Bangkok, Thailand. Durnten-Zurich: Trans Tech Publications, 2012.
Find full textScience, Department of Education &. Kingston Polytechnic: Aspects of mechanical aerospace andmanufacturing engineering provision : a report by HMI. Stanmore: Department of Education and Science, 1990.
Find full textW, Walker S., Boesiger E. A, and John F. Kennedy Space Center., eds. 32nd Aerospace Mechanisms Symposium: Proceedings of a symposium held at the Cocoa Beach Hilton, Cocoa Beach, Florida, and hosted by NASA, John F. Kennedy Space Center and sponsored by Lockheed Martin Missiles and Space, and the Aerospace Mechanisms Symposium Committee, May 13-15, 1998. KSC, Fla: National Aeronautics and Space Administration, John F. Kennedy Space Center, 1998.
Find full textAngelo, Miele, and Salvetti A, eds. Applied mathematics in aerospace science and engineering. New York: Plenum Press, 1994.
Find full textB, Magrab Edward, ed. An engineer's guide to MATLAB: With applications from mechanical, aerospace, electrical, and civil engineering. 2nd ed. Upper Saddle River, NJ: Pearson Prentice Hall, 2005.
Find full textUnited States. National Aeronautics and Space Administration., ed. Electro-mechanical actuator: DC resonant link controller. [Washington, D.C.]: National Aeronautics and Space Administration, 1996.
Find full textUnited States. National Aeronautics and Space Administration., ed. Electro-mechanical actuator: DC resonant link controller. [Washington, D.C.]: National Aeronautics and Space Administration, 1996.
Find full textUnited States. National Aeronautics and Space Administration., ed. Electro-mechanical actuator: DC resonant link controller. [Washington, D.C.]: National Aeronautics and Space Administration, 1996.
Find full textBook chapters on the topic "Mechanical and aerospace"
Hefazi, Hamid. "Aerospace Engineering." In Springer Handbook of Mechanical Engineering, 1085–137. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-47035-7_24.
Full textHuliraj, R. V., and H. L. Janardhana. "Aircraft Mechanical Systems." In Aerospace Materials and Material Technologies, 251–78. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2143-5_13.
Full textGopalakrishnan, S. "Smart Materials Technology for Aerospace Applications." In Springer Tracts in Mechanical Engineering, 423–37. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1913-2_25.
Full textHaddad, Yousef, Sandeep Jagtap, Emanuele Pagone, and Konstantinos Salonitis. "Sustainability Assessment of Aerospace Manufacturing: An LCA-Based Framework." In Lecture Notes in Mechanical Engineering, 712–20. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_80.
Full textdell’Erba, Ramiro. "How Swarm Robot Dynamic Can Describe Mechanical Systems." In Design Advances in Aerospace Robotics, 148–59. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-28447-2_12.
Full textMeher, Umakanta, Praveen Shakya, and Mohammed Rabius Sunny. "Electro-mechanical Impedance response of a delaminated glass-fibre composite beam." In Aerospace and Associated Technology, 437–41. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003324539-80.
Full textFranchino, Marco. "Framework for Sustainability in Aerospace: A Proof of Concept on Decision Making and Scenario Comparison." In Lecture Notes in Mechanical Engineering, 659–68. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_74.
Full textSavchuk, Olena. "Legal Support of Aerospace Environmental Monitoring." In Integrated Computer Technologies in Mechanical Engineering - 2021, 690–703. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94259-5_56.
Full textDumont, D., A. Deschamps, Yves Bréchet, and C. Sigli. "Mechanical Properties/Microstructure Relationships in Aerospace Aluminum Alloys." In Microstructures, Mechanical Properties and Processes - Computer Simulation and Modelling, 269–75. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606157.ch43.
Full textBonnard, Bernard, Mohamed Jabeur, and Gabriel Janin. "3 Control of Mechanical Systems from Aerospace Engineering." In Advanced Topics in Control Systems Theory, 65–113. London: Springer London, 2005. http://dx.doi.org/10.1007/11334774_3.
Full textConference papers on the topic "Mechanical and aerospace"
Batchellor, C. R., J. P. Dakin, and D. A. J. Pearce. "Fibre Optic Mechanical Sensors For Aerospace Applications." In O-E/Fibers '87, edited by Ramon P. DePaula and Eric Udd. SPIE, 1988. http://dx.doi.org/10.1117/12.942503.
Full textRedding, David C., Mark H. Milman, and Greg Loboda. "Linear analysis of opto-mechanical systems." In Aerospace Sensing, edited by John A. Breakwell. SPIE, 1992. http://dx.doi.org/10.1117/12.138160.
Full textJacob, J. "Aerospace engineering education in a mechanical engineering environment." In 38th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-527.
Full textNicholson, Elisabeth D., Charles S. J. Pickles, and John E. Field. "Mechanical properties of thin films for aerospace applications." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by Paul Klocek. SPIE, 1994. http://dx.doi.org/10.1117/12.187349.
Full textLarsen, Christopher G., and Daniel R. Wade. "Sensing challenges for mechanical aerospace prognostic health monitoring." In 2012 IEEE Conference on Prognostics and Health Management (PHM). IEEE, 2012. http://dx.doi.org/10.1109/icphm.2012.6299530.
Full textZIMMERMAN, KRISTIN. "Mechanical fastening of FGRP composites." In 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-182.
Full textBUSECK, R., and H. BENAROYA. "MECHANICAL MODELS FOR SLOSH OF LIQUID FUEL." In Aerospace Design Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1093.
Full textMulvihill, Robert J., and Yunnhon Lo. "Weld Analysis Methods for Aerospace Systems." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59242.
Full textReznikov, Lev. "Integrated Eco-Thermal Management for Aerospace." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82865.
Full textFigueroa, Fernando, and Carolyn R. Mercer. "Advancing Sensor Technology for Aerospace Propulsion." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33180.
Full textReports on the topic "Mechanical and aerospace"
Freeman, Arthur J., Oleg Y. Kontsevoi, Yuri N. Gornostyrev, and Nadezhda I. Medvedeva. Fundamental Electronic Structure Characteristics and Mechanical Behavior of Aerospace Materials. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada480633.
Full textHarvey, Dustin Yewell, Eric Brian Flynn, Stuart Glynn Taylor, Charles Reed Farrar, Octavio Jr Ramos, and Kelly Lynn Parker. SHMTools: Structural Health Monitoring Software for Aerospace, Civil, and Mechanical Infrastructure. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1178315.
Full textHayes, Michael. Introduction of Continuous Fiber-reinforced Polymer: A New Additive Manufacturing Path for Aerospace. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, August 2023. http://dx.doi.org/10.4271/epr2023019.
Full textTomar, Vikas. Understanding Nanoscale Thermal Conduction an Mechanical Strength Correlation in High Temperature Ceramics with Improved Thermal Shock Resistance for Aerospace Applications. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada581368.
Full textJenkins, Jerry E., Gregory A. Addington, Phillip S. Beran, Deborah S. Grismer, and Ernest S. Hanff. Dynamics of Aerospace Vehicles -- Nonlinear Flight Mechanics. Fort Belvoir, VA: Defense Technical Information Center, May 2000. http://dx.doi.org/10.21236/ada380300.
Full textMracek Dietrich, Anna, and Ravi Rajamani. Unsettled Issues Regarding the Certification of Electric Aircraft. SAE International, March 2021. http://dx.doi.org/10.4271/epr2021007.
Full text