Contents
Academic literature on the topic 'Mécanismes de maintenance des télomères'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mécanismes de maintenance des télomères.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mécanismes de maintenance des télomères"
Shay, Jerry W., Harold Werbin, and Woodring E. Wright. "You Haven't Heard the End of It: Telomere Loss May Link Human Aging with Cancer." Canadian Journal on Aging / La Revue canadienne du vieillissement 14, no. 3 (1995): 511–24. http://dx.doi.org/10.1017/s0714980800009089.
Full textCollin, Vanessa, and Louis Flamand. "L’importance des télomères dans les infections par les Herpèsvirus humains-6A/B." médecine/sciences 38, no. 2 (February 2022): 168–76. http://dx.doi.org/10.1051/medsci/2022008.
Full textCherfils-Vicini, Julien, and Éric Gilson. "Les horloges de la longévité." médecine/sciences 36, no. 12 (December 2020): 1113–17. http://dx.doi.org/10.1051/medsci/2020242.
Full textBulteau, S., A. Sauvaget, M. Guitteny, A. Pichot, P. Valriviere, M. Grall-Bronnec, and J. M. Vanelle. "Place relative et complémentarité de l’ECT et de la rTMS dans le traitement de la dépression sévère ou résistante." European Psychiatry 29, S3 (November 2014): 652–53. http://dx.doi.org/10.1016/j.eurpsy.2014.09.026.
Full textZWINGELSTEIN, Gilles. "Les principaux mécanismes de défaillance pour le diagnostic en maintenance." Maintenance, April 2020. http://dx.doi.org/10.51257/a-v1-mt9132.
Full textVenuleo, Claudia, Lucrezia Ferrante, and Simone Rollo. "Facing Life Problems Through the Internet. The Link Between Psychosocial Malaise and Problematic Internet Use in an Adolescent Sample." Journal of Gambling Issues 46 (December 1, 2020). http://dx.doi.org/10.4309/jgi.2021.46.7.
Full textDissertations / Theses on the topic "Mécanismes de maintenance des télomères"
Jeitany, Maya. "Les mécanismes ALTernatifs de maintenance des télomères dans les cellules souches de gliome." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05T010/document.
Full textGlioma stem cells (GSC), a subpopulation of tumor cells, are partly responsible for the failure of treatment of gliomas because of their resistance and regenerative capacity. The mechanism of alternative lengthening of telomere (ALT), based on homologous recombination, is detected in approximately 30 % of human gliomas. Therefore, therapeutic strategies directed specifically against ALT may have a therapeutic value. In this work, we further characterized the first model of human ALT GSC, the TG20 cells. We showed that despite their very high rate of recombination, the telomeres were still capable of fulfilling their protective function of chromosomes. We verified that the TG20 cells retained their ability to generate intracerebral tumors after serial transplantations in immunocompromised mice, while preserving an ALT phenotype. These results confirm the cancer stem properties of TG20 cells and the ability of ALT to ensure telomeres maintenance, which is required for the self-renewal and the high proliferation rate of GSC in vivo. Intracerebral grafts of TG20 cells in immunocompromised mice represent thus a good preclinical model for studying ALT gliomas. We have shown that treatment with a ligand of telomeric G-quadruplexes, the 360B, at an early stage of TG20 tumor engraftment, was able to inhibit tumor growth, showing the interest of the use of G-quadruplex ligands to specifically target ALT GSC. Transcriptomic profiling of TG20 cells and several other GSC telomerase-positive lines, incited us to study the roles of two homologous lysine acetyl transferases, PCAF (p300/CBP Associated Factor) and GCN5 (General Control Nonderepressible 5), in the regulation of telomeric recombination in ALT cells. We showed that the inhibition of these two proteins has opposite effects on the ALT mechanism. We propose that a balance of expression of PCAF and GCN5 regulates the telomere maintenance in ALT cells by controlling the turnover of TRF1. This model could serve for the development of new therapeutic strategies targeting ALT gliomas
Ayouaz, Ali. "Implication des mécanismes de la réparation de l'ADN dans la maintenance des télomères et l'instabilité chromosomique dans les cellules humaines." Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00410383.
Full textBillard, Pauline. "Maintenance télomérique : intérêt dans le diagnostic des gliomes en lien avec le métabolisme mitochondrial." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSE1303.
Full textThe Shelterin complex, made of 6 proteins (POT1 / TRF1 / TRF2 / TIN2 / RAP1 and ACD) plays a major role in telomeres. Thus, it allows the protection of the telomeric single-stranded end by the formation of the D-loop, the regulation of DNA damage signaling pathways; it participates in telomere replication and controls the accessibility and processivity of the telomerase, the unique enzyme allowing telomere lengthening. During this thesis, my work was organized in 2 main axes, the first, fundamental, was interested in the extra-telomeric effects of the ACD protein (also called TPP1). The second, more transversal, focused on the processes of telomere maintenance in gliomas. Concerning the first aspect, it is now known that the ACD protein makes the link between TIN2 and TERT (catalytic subunit of telomerase) in the telomeres. These two proteins can also partially localize to the mitochondria and then have various effects on mitochondrial metabolism, on the oxidative stress regulation or on the mitophagy process. Thus, and following in silico predictions of a putative MTS for ACD, we hypothesized that ACD could be the missing partner of TIN2 and TERT in the mitochondria. In this case, it then remained to identify its mitochondrial functions. After demonstrating the partial localization of ACD in the mitochondria by different methods, we were able to demonstrate its influence in the protection against oxidative stress. Thus overexpression of ACD reduces secondary production of mitochondrial oxygen radicals and loss of mitochondrial DNA. Oxidative stress causing reduction of ACD mitochondrial foci. Secondly, we looked at the telomere maintenance mechanisms (TMM) that cancer cells acquire in order to override replicative senescence. In this sense, tumors can reactivate telomerase (95% of cancer) or use an alternative process (ALT) based on homologous recombination (5% of cancer). In the case of gliomas, up to 25% of tumors use the ALT process, associated with the loss of ATRX, the other gliomas use telomerase and typically have a mutation of the TERT promoter (TERTmt). These two molecular markers also have diagnostic and prognostic value and are part of the WHO histo-molecular classification criteria. But, 4 to 28% of gliomas (depending on the subtypes) do not have an ATRX alteration or TERT mutation suggesting activation of one of the TMM by other alterations or even other pathways. In this sense, we have developed a test measuring the true TMM based on the detection of c-circles (a marker of ALT) and proposed a patented algorithm (TeloDiag) taking into account this TMM, IDH mutations and the histological grading. The TeloDiag makes it possible to re-classify 38% of atypical gliomas (at the molecular level). It generated a new category of high grade IDHwt and ALT + tumors, not found in the WHO classification and showing a tendency for a better prognosis than IDHwt glioblastomas (TERTmt). Finally, we provided the proof of concept of the feasibility of this circulating test for IDHmt astrocytomas
Bakhos, Al Douaihy Dalal. "Implication des lysines acétyl transférases dans les mécanismes ALTernatifs de maintenance des télomères Opposite effects of GCN5 and PCAF knockdowns on the alternative mechanism of telomere maintenance ALT cancer cells are specifically sensitive to lysine acetyl transferase inhibition." Thesis, Sorbonne Paris Cité, 2018. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=2322&f=12888.
Full textSome cancer cells can use a telomerase-independent mechanism, known as alternative lengthening of telomeres (ALT), to elongate their telomeres. ALT cells present unusual characteristics: extremely long and heterogeneous telomeres that colocalize with PML bodies to form nuclear structures called ALT-associated PML Bodies (APB), and high frequency of exchange events between sisters chromatid telomere referred to as Telomeric Sister Chromatid Exchange (T-SCE). Although it is agreed that homologous recombination is the key mechanism allowing the maintenance of the telomeres of ALT cells, the molecular actors involved are not yet known. We identified new actors potentially involved in the ALT mechanism: general control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF). Although they represent transcription factors, they can also acetylate non-histone proteins. They are mutually exclusive subunits in SAGA-like complexes. Here, we reveal that down regulation of GCN5 and PCAF had differential effects on some phenotypic characteristics of ALT cells. While GCN5 knockdown increased T-SCE and telomere instability, PCAF knockdown decreased T-SCE, APBs formation and telomere instability. GCN5 and PCAF knockdowns had thus differential effects on ALT, up-regulating it or down-regulating it respectively. Our results suggest that in ALT cells GCN5 is present at telomeres and opposes telomere recombination and does not affect the formation of APBs, unlike PCAF which may indirectly favour them and stimulate the APB formation. Then we evaluate the mechanisms by which PCAF and GCN5 contribute to the maintenance of telomeres in ALT cells. We have proposed that the participation of these two proteins should involve regulating the turnover of the telomeric protein TRF1 via USP22, a deubiquitinase identified for the first time as a component of APBs. In addition, the interest of targeting lysine acetyl transferase activities in ALT cells to oppose the maintenance of telomeres was subsequently tested in vitro using inhibitors alone or combined to irradiation. We have shown that ALT cells are particularly sensitive to the inhibition of acetyltransferases activities using Anacardic Acid (AA). AA treatment recapitulates the effect of PCAF knockdown on several ALT features, suggesting that AA decreased the ALT mechanism through the inhibition of lysine transferase activity of PCAF, but not that of GCN5. Furthermore, AA specifically sensitizes human ALT cells to radiation as compared to telomerase-positive cells suggesting that the inhibition of lysine acetyltransferases activity may be used to increase the radiotherapy efficiency against ALT cancers
Benyelles, Maname. "Le rôle de l'oncoprotéine INT6 dans la maintenance des télomères." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL0978/document.
Full textThe INT6/EIF3E protein encoded by the mammalian integration site 6 (int-6) gene, has been implicated in mouse and human breast carcinogenesis. Although, INT6 is a subunit of the eIF3 translation initiation factor, it is not essential for bulk translation but for specific mRNAs expression as histone mRNA translation. It has also been implicated in DNA replication by stabilizing the DNA replication licensing factor MCM7, in DNA Damage Response (DDR) and in the Nonsense mRNA Decay (NMD) pathway. Relative to the latter activity, I investigated whether INT6 can specifically meddle in telomere homeostasis by acting on TERRA transcripts. Deletion of INT6 by RNA interference approach revealed an increase in the telomeric RNA TERRA levels which is depending on the chromosome and cellular type. Although INT6 is a NMD factor, it doesn’t change TERRA steady-state. DNA-FISH experiments showed an increase in Telomere Induced Foci (TIFs) in INT6 depleted cells. These aberrations correspond to Telomere Free Ends (TFE) and Multi-Telomeric signals (MTS) which implicate INT6 in DDR. By means of Microccocal Nuclease (MNase) mapping assay, we found a rapid accumulation of telomeric mono-nucleosomes in INT6-depleted cells, suggesting a role in telomeric chromatin structure. These findings evidenced that INT6 is a novel key player in telomere stability
Fallet, Emilie. "Reconnaissance et maintenance des télomères en sénescence chez saccharomyces cerevisiae." Paris 6, 2013. http://www.theses.fr/2013PA066800.
Full textTelomeres are the ends of linear chromosomes. Their specific nucleoprotein structure, consisting in repeated DNA sequences associated with specialized proteins, allows cells to distinguish them from DNA double-strand breaks. In Eukaryotes, they are maintained by a specialized cellular reverse-transcriptase, the telomerase. In the absence of telomerase, telomeres progressively shorten with each round of DNA replication until they promote a cycle arrest, termed replicative senescence. This arrest involves the DNA damage signalling pathway. During my PhD, I explored the specificities of the telomeric structure during the shortening process leading to replicative senescence. I discovered that the DNA damage tolerance pathway is involved at telomeres. I also showed that short telomeres accumulate long 3’-single-stranded DNA tails, providing an explanation for the type of signalling and subsequent cell cycle arrest. These short telomeres are also subject to the action of the homologous recombination factors. I found that these factors act in a process that preserves the structure of short telomeres without elongating them, thus ensuring cell proliferation potential after the loss of telomerase
Dionne, Isabelle. "La réplication des télomères et la réplication conventionnelle deux mécanismes concertés." Thèse, Université de Sherbrooke, 2001. http://savoirs.usherbrooke.ca/handle/11143/4143.
Full textPorreca, Rosa Maria. "The role of human RTEL1 in telomere maintenance." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066422.
Full textRtel1, regulator of telomere elongation helicase 1, was discovered as an essential factor for telomere length maintenance and genomic stability in mice. In humans, germline mutations in RTEL1 have been found in patients with Hoyeraal-Hreidarsson syndrome (HHS), a severe form of dyskeratosis congenita. However, the precise mechanism of action of the protein in human cells remains largely unknown. To investigate the function of RTEL1 in human telomere metabolism we used a knockdown approach by specific siRNAs and quantitative-FISH to measure telomere length after depletion of RTEL1 in different cancer cell lines. Our results show that down-regulation of RTEL1 induces shortening of telomeres only in cells with very long telomeres and high telomerase activity. We also demonstrate that upon depletion of RTEL1 there is a different stochiometry of shelterin proteins at telomeres: increased levels of TRF2 and decreased levels of POT1. Importantly, the overexpression of the POT1 OB fold can rescue the shortening of telomeres caused by the knockdown of RTEL1 indicating that RTEL1 may play an important role in the stability of the overhang and in its accessibility to telomerase. We also find an affect of RTEL1 on Telomeric non-coding RNA (TERRA) metabolism. Indeed, depletion of RTEL1 in human cell lines reduces the total amount of TERRA present in the nucleus and in particular of telomere-associated TERRA. Moreover, we find that this reduced number of UUAGGG repeats is caused by TERRA degradation, therefore we propose that RTEL1 has a role in stabilizing TERRA at telomeres
Reyes, Céline. "Mécanismes de séparation des télomères en mitose chez la levure à fission S. pombe." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30020.
Full textChromatin is the support of the genetic information throughout the cell cycle. It is subject to various modifications that occur with precise coordination. This coordination is led by CDK-cyclins under the control of cell cycle checkpoints. In mitosis, correct chromosome segregation is ensured by Aurora kinases. Aurora participates to centromere bi-orientation, chromosome condensation and cytokinesis. A dysfunction in the activity of this kinase leads to chromosomal instability and aneuploidy, phenotypes frequently observed in cancer. The results obtained during this thesis reveal a new function for fission yeast Aurora kinase during mitosis in telomere dispersion and disjunction. Telomere dispersion is triggered in metaphase by the dissociation of Swi6/HP1 and cohesion Rad21 from telomeres. Then, during anaphase, the phosphorylation of the condensin subunit Cnd2 is required for telomere disjunction. Aurora inhibition leads to anaphase chromosome bridges with unseparated telomeres. Deletion of a specific telomeric protein, Ccq1, prevents the formation of anaphase chromosome bridges by favoring condensin loading despite Aurora inhibition
Bigot, Anne. "Mécanismes de sénescence et programme myogénique." Paris 6, 2007. http://www.theses.fr/2007PA066397.
Full text