Academic literature on the topic 'Measurements uncertainty'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Measurements uncertainty.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Measurements uncertainty"
Białek, Agnieszka, Sarah Douglas, Joel Kuusk, Ilmar Ansko, Viktor Vabson, Riho Vendt, and Tânia Casal. "Example of Monte Carlo Method Uncertainty Evaluation for Above-Water Ocean Colour Radiometry." Remote Sensing 12, no. 5 (February 29, 2020): 780. http://dx.doi.org/10.3390/rs12050780.
Full textShi, Zhao Yao, Jia Chun Lin, and Michael Paul Krystek. "Uncertainty Analysis of Helical Deviation Measurements." Key Engineering Materials 437 (May 2010): 212–16. http://dx.doi.org/10.4028/www.scientific.net/kem.437.212.
Full textVasilevskyi, О. М., M. Yu Yakovlev, and P. I. Kulakov. "SPECTRAL METHOD TO EVALUATE THE UNCERTAINTY OF DYNAMIC MEASUREMENTS." Tekhnichna Elektrodynamika 2017, no. 4 (June 8, 2017): 72–78. http://dx.doi.org/10.15407/techned2017.04.072.
Full textXu, Ning, Jing Fang Guo, and Jin Fang Han. "Measurements and Mathematical Characterization of Uncertain Information." Applied Mechanics and Materials 530-531 (February 2014): 591–96. http://dx.doi.org/10.4028/www.scientific.net/amm.530-531.591.
Full textRitchie, Nicholas W. M. "Embracing Uncertainty: Modeling the Standard Uncertainty in Electron Probe Microanalysis—Part I." Microscopy and Microanalysis 26, no. 3 (May 21, 2020): 469–83. http://dx.doi.org/10.1017/s1431927620001555.
Full textVulevic, Branislav, Cedomir Belic, and Luka Perazic. "Measurement uncertainty in broadband radiofrequency radiation level measurements." Nuclear Technology and Radiation Protection 29, no. 1 (2014): 53–57. http://dx.doi.org/10.2298/ntrp1401053v.
Full textBernstein, Johannes, and Albert Weckenmann. "Measurement uncertainty evaluation of optical multi-sensor-measurements." Measurement 45, no. 10 (December 2012): 2309–20. http://dx.doi.org/10.1016/j.measurement.2011.10.032.
Full textRay, Jr., Elden F. "Measurement uncertainty in conducting environmental sound level measurements." Noise Control Engineering Journal 48, no. 1 (2000): 8. http://dx.doi.org/10.3397/1.2827978.
Full textKrechmer, Ken. "Relational measurements and uncertainty." Measurement 93 (November 2016): 36–40. http://dx.doi.org/10.1016/j.measurement.2016.06.058.
Full textMcMonnies, Charles W. "Uncertainty of clinical measurements." Clinical and Experimental Optometry 89, no. 5 (September 2006): 332–33. http://dx.doi.org/10.1111/j.1444-0938.2006.00064.x.
Full textDissertations / Theses on the topic "Measurements uncertainty"
Mihaylov, Blagovest V. "Uncertainty considerations in photovoltaic measurements." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/23251.
Full textFawzi, Omar. "Uncertainty relations for multiple measurements with applications." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110554.
Full textLes relations d'incertitude expriment l'incompatibilité de certaines observables en mécanique quantique. Les relations d'incertitude sont utiles pour comprendre pourquoi certaines primitives cryptographiques impossibles dans le monde classique deviennent possibles avec de la communication quantique. Cette thèseétudie des notions fortes de relations d'incertitude et leurs applications à la théorie de l'information quantique.Une manifestation opérationnelle de telles relations d'incertitude est un effet purement quantique appelé verrouillage d'information. Un système de verrouillage peut être considéré comme un protocole cryptographique dans lequel un message aléatoire composé de n bits est encodé dans un système quantique en utilisant une clé classique de taille beaucoup plus petite que n. Sans la clé, aucune mesure sur cet état quantique ne peut extraire plus qu'une quantité négligeable d'information sur le message, auquel cas le message est "verrouillé". Par ailleurs, connaissant la clé, il est possible de récupérer ou "déverrouiller" le message. Nous proposons de nouvelles constructions efficaces de bases vérifiant de fortes relations d'incertitude conduisant à la première construction explicite d'un système de verrouillage. Nous exposons également plusieurs autres applications de nos relations d'incertitude à des tâches cryptographiques et des tâches de communication.Nous définissons également des objets appelés QC-extracteurs, qui peuventêtre considérés comme de fortes relations d'incertitude qui tiennent contre des adversaires quantiques. Nous fournissons plusieurs constructions deQC-extracteurs, que nous utilisons pour prouver la sécurité de protocoles cryptographiques pour le calcul sécurisé à deux joueurs en supposant uniquement que la mémoire des joueurs soit limitée en ce qui concerne la transmission d'information quantique. Ce faisant, nous résolvons une question centrale dans le modèle de mémoire bruitée en mettant en relation la sécurité et la capacité quantique de la mémoire.
Sooväli, Lilli. "Spectrophotometric measurements and their uncertainty in chemical analysis and dissociation constant measurements /." Online version, 2006. http://dspace.utlib.ee/dspace/bitstream/10062/627/5/soovalililli.pdf.
Full textSozak, Ahmet. "Uncertainty Analysis Of Coordinate Measuring Machine (cmm) Measurements." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/2/12608887/index.pdf.
Full textBußhardt, Michael [Verfasser]. "Timing and uncertainty in pointer-based quantum measurements / Michael Bußhardt." München : Verlag Dr. Hut, 2011. http://d-nb.info/1015607969/34.
Full textSILVA, GUTEMBERG BRUNO DA. "COLORIMETRY: PROPAGATION OF ERRORS AND UNCERTAINTY CALCULATIONS IN SPECTROPHOTOMETRIC MEASUREMENTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5012@1.
Full textMINISTÉRIO DA CIÊNCIA E TECNOLOGIA
Colorimetria - Propagação de erros e cálculo da incerteza da medição nos resultados espectrofotométricos trata da medição da cor de objetos, baseada nas medições de irradiância espectral (objetos luminosos) ou de refletância ou transmitância espectral (objetos opacos ou transparentes), seguidas por cálculos colorimétricos conforme o sistema CIE. As medições são normalmente feitas em intervalos de 5nm (ou 10 nm) na faixa espectral de 360 a 780nm, e os três valores triestímulos (X, Y e Z) são calculados usando-se 42-84 pontos medidos por equações padrões. A distribuição dos valores medidos R(lambda) é, provavelmente, normal, com uma correlação entre os valores obtidos variável em posições diferentes do espectro. As distribuições dos valores e as correlações entre X, Y e Z são desconhecidas e dependem da forma da curva espectral da cor e do funcionamento dos instrumentos de medição. No controle instrumental das cores são usadas fórmulas muito complexas, baseadas nas transformações não lineares dos valores X, Y e Z em L*, a*, b*, C* e h°. A determinação da incerteza dos resultados dados em coordenadas CIELAB ou expressos em fórmulas de diferenças (delta)E*, (delta) ECMC ou CIE (delta) E2000 é fundamental no controle instrumental das cores em qualquer indústria. À base de um número elevado de medições repetidas de várias amostras têxteis e padrões cerâmicos, são analisadas a distribuição e outras características estatísticas dos valores R(lambda) diretamente medidos, e - usando o método de propagação de erros - são calculadas as incertezas das medições em termos colorimétricos. A pesquisa de mestrado objeto do presente trabalho desenvolve- se sob a égide de um convênio de cooperação que o Programa de Pós-Graduação em Metrologia da PUC-Rio está celebrando com o SENAI/CETIQT, viabilizado a inclusão dessa pesquisa dentre os dez projetos-piloto que participaram do Convênio FINEP/MCT número 22.01.0692.00, Referência 1974/01, que aportou recursos do Fundo Setorial Verde Amarelo para direcionar o esforço de pesquisa em metrologia para a solução de um problema de interesse do setor têxtil que fez uso de conhecimentos avançados de metrologia da cor. Relacionado à demanda de medições espectrofotométricas com elevado controle metrológico, o desenvolvimento e a orientação acadêmico-científica da presente dissertação de mestrado deu-se nas instalações do SENAI/CETIQT, que possui comprovada competência técnica e científica na área e uma adequada infra-estrutura laboratorial em metrologia da cor de suporte ao trabalho.
Colorimetry - Propagation of Errors and Uncertainty Calculations in Spectrophotometric Measurements treats the measurement of the colour of objects, based on the measurement of spectral irradiance (self-luminous objects) or that of spectral reflectance or transmittance (opaque or transparent objects), followed by colorimetric calculations according to the CIE system. Measurements are generally made in 5nm (or 10 nm) intervals in the spectral range of 360 to 780nm, and the 3 tristimulus values (X, Y and Z) are calculated from the 42-84 measurement points by standard equations. The statistical distribution of the measured R (lambda) values is probably normal; the correlation between the values varies depending on their position in the spectrum. The distribution of and the correlation between the X, Y and Z values are not known and they depend on the form of the spectral curve of each colour and on the operation of the measuring instrument. Complex formulae are used in the instrumental control of colours based on non-linear transformations of the X, Y and Z values into L*a*b*C*h°. The determination of the uncertainty of the results given in CIELAB coordinates or expressed in one of the colour difference formulae (delta)E*, (delta)ECMC or CIE(delta) E2000 is fundamental in the instrumental control of colours in any industry. Based on a large number of repeated measurements of different textile samples and ceramic standards, the distribution and other statistical characteristics of the directly measured R(lambda) values are analysed and - using the propagation of errors method - the uncertainties are calculated in colorimetric terms. The present research, a M. Sc. Dissertation work, was developed under the auspices of a co-operation agreement celebrated between the Post-graduate Programme in Metrology of PUC-Rio and SENAI/CETIQT, allowing for the inclusion of this M.Sc. Dissertation among the ten pilot projects which benefited from the financial support received from the FINEP/MCT Agreement number 22.01.0692.00, Reference 1974/01 (Fundo Verde-Amarelo). The project aims at driving the research effort in metrology to the solution of industrial problems, in this case the solution of a problem identified within the textile sector which requires to its solution advanced knowledge of colour metrology. Related the spectrophotometer measurements under the highest level of metrological control, the development and academic-scientific supervision of this M. Sc. Dissertation was performed at the laboratory facility of SENAI/CETIQT, an institution with proven technical and scientific competence in the field having sophisticated and well equipped laboratories in colour metrology meeting the measurement requirements needed to support the development of this research.
Greenall, Nicholas Robert. "Parameter extraction and uncertainty in terahertz time-domain spectroscopic measurements." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/19045/.
Full textAmbrosini, Marco <1976>. "The uncertainty in standardised sound power measurements: complying with ISO 17025." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1243/.
Full textThekkadath, Guillaume. "Joint Measurements of Complementary Properties of Quantum Systems." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36669.
Full textBinder, Tanja [Verfasser], and Ekaterina [Akademischer Betreuer] Kostina. "Optimization under uncertainty : robust parameter estimation with erroneous measurements and uncertain model coefficients / Tanja Binder. Betreuer: Ekaterina Kostina." Marburg : Philipps-Universität Marburg, 2013. http://d-nb.info/1032315245/34.
Full textBooks on the topic "Measurements uncertainty"
Fornasini, Paolo. The Uncertainty in Physical Measurements. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-78650-6.
Full textKu, Harry H. Uncertainty and accuracy in physical measurements. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1990.
Find full textThe uncertainty in physical measurements: An introduction to data analysis in the physics laboratory. New York, N.Y: Springer, 2008.
Find full textShoaib, Nosherwan. Vector Network Analyzer (VNA) Measurements and Uncertainty Assessment. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-44772-8.
Full textFornasini, Paolo. The uncertainty in physical measurements: An introduction to data analysis in the physics laboratory. New York, N.Y: Springer, 2008.
Find full textThe uncertainty of measurements: Physical and chemical metrology : impact and analysis. Milwaukee, Wis: ASQ Quality Press, 2002.
Find full textUncertainties in the measurement and dosimetry of external radiation: Recommendations of the National Council on Radiation Protection and Measurements. Bethesda, MD: National Council on Radiation Protection and Measurements, 2008.
Find full textMeyer, Robert W. Assessment of peak discharge uncertainty in the American River Basin, California. Sacramento, Calif: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.
Find full textDemuren, A. O. Estimating uncertainty in computations of two-dimensional separated flows. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Find full textDemuren, A. O. Estimating uncertainty in computations of two-dimensional separated flows. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Find full textBook chapters on the topic "Measurements uncertainty"
Fridman, A. E. "Measurement Uncertainty." In The Quality of Measurements, 55–71. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1478-0_3.
Full textFerrero, Alessandro, and Dario Petri. "Measurement Models and Uncertainty." In Modern Measurements, 1–45. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119021315.ch1.
Full textPeters, Robert. "Uncertainty in Acoustic Measurements." In Uncertainty in Acoustics, 13–51. First edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429470622-2.
Full textFuntowicz, Silvio O., and Jerome R. Ravetz. "Measurements." In Uncertainty and Quality in Science for Policy, 69–82. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0621-1_7.
Full textSalicone, Simona, and Marco Prioli. "Measurements." In Measuring Uncertainty within the Theory of Evidence, 9–15. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74139-0_2.
Full textBartiromo, Rosario, and Mario De Vincenzi. "Uncertainty in Electrical Measurements." In Undergraduate Lecture Notes in Physics, 53–78. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31102-9_3.
Full textJames, Adrian. "Uncertainty in Room Acoustics Measurements." In Uncertainty in Acoustics, 175–215. First edition. | Boca Raton, FL : CRC Press, Taylor & Francis Group, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429470622-6.
Full textShoaib, Nosherwan. "Waveguide Measurement Uncertainty." In Vector Network Analyzer (VNA) Measurements and Uncertainty Assessment, 23–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44772-8_2.
Full textBenedini, Marcello, and George Tsakiris. "Water Quality Measurements and Uncertainty." In Water Quality Modelling for Rivers and Streams, 231–43. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5509-3_19.
Full textRösslein, M., and B. Wampfler. "Evaluation of Uncertainty in Analytical Measurement." In Quality in Chemical Measurements, 43–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56604-2_5.
Full textConference papers on the topic "Measurements uncertainty"
Stecher. "Measurement uncertainty in EMI emission measurements." In Proceedings of International Symposium on Electromagnetic Compatibility. IEEE, 1997. http://dx.doi.org/10.1109/elmagc.1997.617139.
Full textHurll, J. "Uncertainty and confidence in measurements." In IEE Uncertainties Workshop-Electrical Measurements. IEE, 1998. http://dx.doi.org/10.1049/ic:19980755.
Full textHurll, J. "Uncertainty and confidence in measurements." In 14th IEE Microwave Measurements Training Course. IEE, 2005. http://dx.doi.org/10.1049/ic:20050145.
Full textHurll, J. "Uncertainty and confidence in measurements." In IEE Workshop Uncertainties Workshop: Electrical Measurements. IEE, 1999. http://dx.doi.org/10.1049/ic:19990876.
Full textAarniovuori, L., J. Kolehmainen, A. Kosonen, M. Niemela, and J. Pyrhonen. "Uncertainty in motor efficiency measurements." In 2014 XXI International Conference on Electrical Machines (ICEM). IEEE, 2014. http://dx.doi.org/10.1109/icelmach.2014.6960200.
Full textTruyts, C. F., and M. L. C. C. Reis. "Uncertainty evaluation for dynamic measurements." In 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2020. http://dx.doi.org/10.1109/metroaerospace48742.2020.9160038.
Full textGoudar, D. M., S. Hossain, C. E. Truman, and D. J. Smith. "Uncertainty in Residual Stress Measurements." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61343.
Full textSassi, G., S. Pavarelli, C. Divieto, and M. P. Sassi. "Uncertainty in cell confluency measurements." In 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE, 2015. http://dx.doi.org/10.1109/memea.2015.7145279.
Full textQuintana, J. P. G. "Uncertainty determination in QXAFS measurements." In The 11th US national synchrotron radiation instrumentation conference (SRI99). AIP, 2000. http://dx.doi.org/10.1063/1.1291784.
Full textHurll, J. "Uncertainty in AC voltage measurements." In IEE Colloquium on Precision AC Voltage and Current Measurements up to 1 MHz. IEE, 1997. http://dx.doi.org/10.1049/ic:19970886.
Full textReports on the topic "Measurements uncertainty"
Muth, L. A., and R. L. Lewis. Proposed uncertainty analysis for RCS measurements. Gaithersburg, MD: National Institute of Standards and Technology, 1994. http://dx.doi.org/10.6028/nist.ir.5019.
Full textKu, Harry H., and Harry H. Ku. Uncertainty and accuracy in physical measurements. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.sp.805.
Full textRanda, James. Uncertainty analysis for NIST noise-parameter measurements. Gaithersburg, MD: National Bureau of Standards, 2008. http://dx.doi.org/10.6028/nist.tn.1530.
Full textMathew, Kattathu Joseph. Guide to the expression of uncertainty in measurements. Office of Scientific and Technical Information (OSTI), October 2017. http://dx.doi.org/10.2172/1402579.
Full textKimball, Brian R., Barry S. DeCristofano, and Masata Nakashima. Experimental Uncertainty in Laser-Based Optical Density Measurements. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada354056.
Full textKinzel, G. A., R. C. Wittmann, and L. A. Muth. Uncertainty analysis for NRaD radar cross section measurements. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.5061.
Full textNederbragt, W. INSPECTION SHOP: PLAN TO PROVIDE UNCERTAINTY ANALYSIS WITH MEASUREMENTS. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/898455.
Full textLiu, Zhen, Cosmin Safta, Khachik Sargsyan, Habib N. Najm, Bart Gustaaf van Bloemen Waanders, Brian W. LaFranchi, Mark D. Ivey, Paul E. Schrader, Hope A. Michelsen, and Ray P. Bambha. Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1322290.
Full textBergman, Rolf, Maria L. Paget, and Eric E. Richman. CALiPER Exploratory Study: Accounting for Uncertainty in Lumen Measurements. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1018153.
Full textLave, Matthew Samuel. Albedo and Diffuse POA Measurements to Evaluate Transposition Model Uncertainty. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1529054.
Full text