Academic literature on the topic 'Measurement of electromagnetic interference'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Measurement of electromagnetic interference.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Measurement of electromagnetic interference"

1

Braun, S., A. Frech, and P. Russer. "Measurement of electromagnetic interference in time-domain." Advances in Radio Science 6 (May 26, 2008): 311–13. http://dx.doi.org/10.5194/ars-6-311-2008.

Full text
Abstract:
Abstract. Time-domain EMI measurement systems allow measurement time to be reduced by several orders of magnitude. In this paper a novel real-time operating time-domain EMI measurement system is presented. By the use of several analog-to-digital converters the dynamic range requested by the international EMC standards is achieved. A real-time operating digital signal processing unit is presented. The frequency band that is investigated is subdivided into several sub-bands. A novel implementation of the 9 kHz IF filter for the frequency 150 kHz to 1 GHz is presented. By this way the measurement time has been reduced by a factor of 8000 in comparison to conventional EMI receivers. During emission measurements performed with a modelled IF-bandwidth of 9 kHz the noise floor is decreased to −19 dBµV in the average detector mode by the implemented low noise power splitter. Measurements have been performed with the improved measurement system in the frequency range 30 MHz–1 GHz.
APA, Harvard, Vancouver, ISO, and other styles
2

Ge, Liang, Junxian Chen, Guiyun Tian, Wen Zeng, Qi Huang, and Ze Hu. "Study on a New Electromagnetic Flow Measurement Technology Based on Differential Correlation Detection." Sensors 20, no. 9 (April 28, 2020): 2489. http://dx.doi.org/10.3390/s20092489.

Full text
Abstract:
Under the conditions of low flow rate and strong noise, the current electromagnetic flowmeter (EMF) cannot satisfy the requirement for measurement or separate the actual flow signal and interference signal accurately. Correlation detection technology can reduce the bandwidth and suppress noise effectively using the periodic transmission of signal and noise randomness. As for the problem that the current anti-interference technology cannot suppress noise effectively, the noise and interference of the electromagnetic flowmeter were analyzed in this paper, and a design of the electromagnetic flowmeter based on differential correlation detection was proposed. Then, in order to verify the feasibility of the electromagnetic flow measurement system based on differential correlation, an experimental platform for the comparison between standard flow and measured flow was established and a verification experiment was carried out under special conditions and with flow calibration measurements. Finally, the data obtained in the experiment were analyzed. The research result showed that an electromagnetic flowmeter based on differential correlation detection satisfies the need for measurement completely. The lower limit of the flow rate of the electromagnetic flowmeter based on the differential correlation principle could reach 0.084 m/s. Under strong external interferences, the electromagnetic flowmeter based on differential correlation had a fluctuation range in output value of only 10 mV. This shows that the electromagnetic flowmeter based on the differential correlation principle has unique advantages in measurements taken under the conditions of strong noise, slurry flow, and low flow rate.
APA, Harvard, Vancouver, ISO, and other styles
3

Ganesan, R., and K. R. Kini. "Electromagnetic Interference/Compatibility (EMI/EMC) Measurement." IETE Technical Review 20, no. 5 (September 2003): 415–24. http://dx.doi.org/10.1080/02564602.2003.11417100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chiyo, Noritaka, Yuji Komine, Yasuhiro Tanaka, Atsuhiro Nishikata, Takuichi Hirano, and Takashi Maeno. "Visualization of Electromagnetic Field Distributions for Electromagnetic Interference Measurement." IEEJ Transactions on Fundamentals and Materials 132, no. 5 (2012): 379–80. http://dx.doi.org/10.1541/ieejfms.132.379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Eugene Rhee, and Changjae Kim. "Feature Analysis of Electromagnetic Interference Measurement Facilities." International Journal of Digital Content Technology and its Applications 7, no. 10 (June 30, 2013): 155–62. http://dx.doi.org/10.4156/jdcta.vol7.issue10.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Krug, F., and P. Russer. "The time-domain electromagnetic interference measurement system." IEEE Transactions on Electromagnetic Compatibility 45, no. 2 (May 2003): 330–38. http://dx.doi.org/10.1109/temc.2003.811303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mathur, Phalguni, and Sujith Raman. "Electromagnetic Interference (EMI): Measurement and Reduction Techniques." Journal of Electronic Materials 49, no. 5 (February 18, 2020): 2975–98. http://dx.doi.org/10.1007/s11664-020-07979-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gu, Jin Liang, Hong E. Luo, Jian Xin Li, Yan Xia, and Bao Ming Li. "Applications of Bragg Grating in Strain Measurement of Electromagnetic Railgun." Advanced Materials Research 317-319 (August 2011): 1007–11. http://dx.doi.org/10.4028/www.scientific.net/amr.317-319.1007.

Full text
Abstract:
A kind of strain measurement system of electromagnetic railguns based on Bragg Grating technology was introduced in this paper. The Bragg grating strain measurement system of electromagnetic railguns was designed. The data processing and the calibration of the measurement system were discussed. The experiments of strain measurement in electromagnetic launch were accomplished. The results show that the Bragg grating strain measurement system can work reliably in strong electromagnetic interference, which satisfied the special demand of anti- electromagnetic interference for the strain measurement system.
APA, Harvard, Vancouver, ISO, and other styles
9

Wetoszka, Patryk. "Analysis of the elimination of electromagnetic interference in railways security systems." AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe 19, no. 12 (December 31, 2018): 697–700. http://dx.doi.org/10.24136/atest.2018.481.

Full text
Abstract:
The article presents the study of conducted disturbance emission, which was subjected to the alarm control panel on the (+, -) 24V DC power supply ports and the method of elimination of electromagnetic interferences. The measurements were carried out in an accredited testing laboratory on a measurement stand with a standardized configuration of equipment in accordance with the applicable standards in the field of electromagnetic compatibility. During the measurements, exceedances of the limit value at the power terminals were observed. Appropriate steps have been taken to reduce the interference levels by using an appropriate anti-interference filter inside the control panel. Installing the filter in accordance with the manufacturer's instructions allowed to obtain the expected results. The article presents the effects of research in the form of electro-magnetic characteristics of conductive disturbances as a function of frequencies recorded on the measuring device.
APA, Harvard, Vancouver, ISO, and other styles
10

Ge, Liang, Yang He, Guiyun Tian, Guohui Wei, Junaid Ahmed, Hongxia Deng, and Qi Huang. "Measurement of Annular Flow for Drilling Engineering by Electromagnetic Flowmeter Based on Double-Frequency Excitation." Journal of Sensors 2019 (November 18, 2019): 1–14. http://dx.doi.org/10.1155/2019/4090632.

Full text
Abstract:
Using downhole annular electromagnetic flow measurement to obtain annular flow in real-time is a foundation of microflow control drilling technology. The existing annular flow electromagnetic measurement method based on low-frequency rectangular excitation is affected by slurry interference and formation fluid invasion, which results in large noise generated on the electrode output signal. These noise causes the instability of the flow measurement system output and lower accuracy. Double-frequency rectangular wave excitation has the advantages of excellent zero-point stability attributed to low-frequency rectangular wave excitation and fast response speed with great ability to suppress slurry interference. First, the double-frequency rectangular wave excitation for annular flow electromagnetic measurement is researched, and its corresponding electromagnetic induction signal process is investigated. In order to verify the feasibility of downhole annular electromagnetic flow measurement, a flow verification platform for comparison of standard and detected parameters is established for simulation experiment, and the ability to suppress slurry interference and response speed of the technology in downhole slurry flow measurement are analyzed. The test results show that the downhole annular electromagnetic flow measurement based on double-frequency rectangular wave excitation can not only satisfy the requirements of regular electromagnetic flow measurement but also suppress the annular slurry interference effectively.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Measurement of electromagnetic interference"

1

Freeman, Larry. "PREDICTION AND MEASUREMENT OF RADIATED EMISSIONS BASED ON EMPIRICAL TIME DOMAIN CONDUCTED MEASUREMENTS." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4232.

Full text
Abstract:
This thesis develops a novel method to predict radiated emissions measurements. The techniques used are based on standard Electromagnetic Compatibility (EMC) qualification test methods. The empirical data used to formulate the final results was restricted to pertinent data protocol waveforms however the entire method may be applied to any waveforms for which empirical radiated emissions have been measured. The method provides a concise means for predicting worst case radiated emissions profiles based on empirical measured data.
M.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
APA, Harvard, Vancouver, ISO, and other styles
2

Dawson, Linda. "New techniques for the measurement of radiated emissions in a screened room for frequencies up to 200MHz." Thesis, University of York, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tigga, Celine. "Modelling of Measurement Equipment for High Frequency Electromagnetic Fields." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-18894.

Full text
Abstract:
The aim of this thesis was to develop a model of a receiver which could be quickly used to analyze radiated interference levels from data captured at the output of the antenna equipment used to measure radiated energy. Active circuits were mainly used in developing this model for the ease with which the design and simulations could be carried out in OrCAD. The guiding document for the thesis work has been CISPR 16-1-1 (International Special Committee on Radio Interference part 16-1-1) which specifies the characteristics and performance of equipment for the measurement of radiated interference. The testing of this receiver model was carried out as far as possible based on the test setups recommended in CISPR, and all results have been compared with the standards laid down for the model. Using the results, it will be shown that a CISPR EMI receiver can be modeled as a simple EMI receiver consisting of filtering, mixing and detecting circuits built according to specifications.
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Xubo. "Measurement of electromagnetic interferences generated from repair work and vehcles." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-7983.

Full text
Abstract:
In the industrial and factory when the electronic and machinery instruments are working the huge electromagnetic interference (EMI) would be generated by them which are big deal to the main disturbance of wireless communication. So the measurement of EMI is quite useful and important for electromagnetic compatibility (EMC). The main goal of my paper is analysis in which bandwidth of EMI influences to wireless communication system in the industrial and factory generated by working arc-welding instrument and moped. The method is used the traditional and classic statistical methodology to identify the strength of electromagnetic field.
APA, Harvard, Vancouver, ISO, and other styles
5

Azpúrua, Marco A. "Full time-domain electromagnetic interference measurements and applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/587194.

Full text
Abstract:
This thesis presents a technology that has been called the Full Time-Domain Electromagnetic Interference measurement systems and its applications. Full TDEMI measurement systems are an implementation of an FFT-based receiver that enables the usage of oscilloscopes for EMI measurements. They follow the virtual instrumentation approach for transforming oscilloscopes into a compliant CISPR 16-1-1 receiver. Full TDEMI measurement systems have been assessed for characterizing their performance using waveform oriented calibration procedures that bridge the gap between direct measurements in the time domain and the processed frequency domain magnitudes. As a result, the conformity of Full TDEMI receivers is attested with respect to the requirements defined in the standards. Full TDEMI systems have advantages over the conventional swept receivers for performing challenging measurements typical of EMI assessments. Time-domain captures enable full spectrum measurements that allow analyzing transient phenomena. The number of channels available in most oscilloscopes enable synchronous measurements that allow recording the EMI using a combination of transducers. Some of the applications of the multichannel EMI measurements are the single stage evaluation of the conducted EMI of all the EUT mains lines, the instantaneous measurement of the common-mode and the differential mode voltage noise, the concurrent conducted and radiated EMI measurements, and the parallelization of multi-antenna radiated emissions testing. Such alternative test methods, have improved the EMC testing process in a variety of industries by reducing the time and the efforts required for performing a complete EMI evaluation due to the following reasons. First, Full TDEMI measurements deliver faster results because the interferences' spectrum is simultaneously estimated for all the weighting detectors. Second, the number of measurement iterations is reduced because of the multichannel possibilities and also because of an agile identification of the worst case emissions. Thirdly, Full TDEMI measurement system are a cost-effective alternative to the real-time spectrum analysers. Full TDEMI measurement systems have extended the state-of-the-art with the expected maximum detector and the empirical interference decomposition. The expected maximum detector is a statistical measure of the most probable level of the peak emissions that is based on a time-frequency modelling of the measured EMI using the extreme value theory. Using the variability information of the EMI level at each frequency bin, the expected maximum detector estimates the equivalent max hold value of a random EMI. The expected maximum detector also provides a model for quantifying the uncertainty of peak detector measurement of stochastic EMI. The Empirical Interference Decomposition is a modified implementation of the Hilbert-Huang transform with time-gating capabilities that allow a heuristic determination of characteristic oscillatory patterns without neither domain transformation nor a predefined set of basis function. The EID has been used successfully for ambient noise cancellation purposes during outdoor EMI measurements, obtaining more than 20 dB of attenuation of the usual broadcasting signals. The fundamentals of the ANC by means of EID is the identification, in the time and in the frequency domain, of intrinsic modes of emissions that area attributable to the EUT while subtracting the residual modes from the measurement results. Applications of the Full TDEMI measurement systems have been published in recognized conferences and journal. From the reasons mentioned before, the Full TDEMI measurement technology has advantages for EMI testing, analyzing and troubleshooting. It provides a complementary approach to the typical measurements entirely focused in the frequency domain and it exhibits a level of maturity that could allow it to be standardized in forthcoming years.
Esta Tesis comprende un compendio de contribuciones hechas por el autor al campo de la tecnología de medición de radiofrecuencia para la compatibilidad electromagnética. En particular, esta Tesis presenta una tecnología de sistemas medición de interferencias electromagnéticas completamente basado en dominio del tiempo (Full TDEMI) y algunas de sus aplicaciones más relevantes. Los sistemas de medición Full TDEMI son una implementación de un receptor de medida basado en FFT que permite el uso de osciloscopios para mediciones de interferencias electromagnéticas. Los sistemas de medición Full TDEMI siguen el enfoque de instrumentación virtual para transformar los osciloscopios de propósito general en un receptor de medida completamente funcional y conforme con la norma CISPR 16-1-1. Por un lado, esto es factible debido a las técnicas específicas de procesamiento de señales aplicadas sobre las adquisiciones en el dominio del tiempo utilizando una capa de software dedicada. Por otro lado, los sistemas de medida Full TDEMI se han evaluado exhaustivamente para caracterizar su rendimiento utilizando procedimientos novedosos de calibración orientados a formas de onda que acortan la brecha entre las magnitudes medidas en el dominio del tiempo y las aquellas procesadas en el dominio de frecuencia. Como resultado, se certifica la conformidad de los sistemas completos de medición TDEMI con respecto a los requisitos definidos en los estándares internacionales paramediciones EMI. Además, se ha demostrado que los sistemas de medición Full TDEMI ofrecen ventajas en comparación con los receptores de barrido convencionales para realizar varias medidas desafiantes típicas de las evaluaciones de emisiones electromagnéticas. Por ejemplo, las capturas de dominio de tiempo posibilitan mediciones de espectro completo que permiten un análisis adecuado de fenómenos transitorios. Del mismo modo, la cantidad de canales disponibles en la mayoría de los osciloscopios hace viables múltiples mediciones síncronas que para registrar las perturbaciones interferentes mediante una combinación de transductores. Algunas de las aplicaciones de la medición EMI multicanal son la evaluación de etapa única de la EMI conducida de todas las líneas de alimentación de los equipos bajo prueba (EUT), la medición instantánea del voltaje del ruido en modo común y en modo diferencial, las mediciones concurrentes de la EMI conducida y radiada y la paralelización de los ensayos de emisiones radiadas con múltiples antenas. Tales métodos de prueba alternativos, han mejorado significativamente el proceso de prueba de EMC en una variedad de industrias al reducir la cantidad de tiempo y los esfuerzos necesarios para realizar una evaluación completa del sistema principalmente debido a las siguientes razones. En primer lugar, las mediciones de EMI en el dominio del tiempo arrojan resultados más rápidos porque el espectro de interferencias se estima simultáneamente para todos los detectores de ponderación estándar necesarios para determinar el cumplimiento de los límites máximos de emisiones definidos en las respectivas normas de producto. En segundo lugar, el número de iteraciones de medición se reduce debido a las posibilidades multicanal y también debido a una identificación ágil del peor caso de las emisiones de un EUT que tiene diferentes modos de funcionamiento. En tercer lugar, el sistema Full TDEMI es una alternativa económica y versátil a los analizadores de espectro en tiempo real más avanzados en lo concerniente a mediciones EMI en el rango de pocos gigahertzios. Desde el punto de vista teórico, los sistemas de medición Full TDEMI han extendido el estado del arte, como en el caso de un par de contribuciones denominadas el detector de máximo esperado y la descomposición empírica de interferencias. El detector de máximo esperado es una medida estadística del nivel más probable de las emisiones pico que se basa en un modelado tiempo-frecuencia de las interferencias medidas utilizando la teoría del valor extremo. Usando la información de variabilidad del nivel de interferencia en cada componente de frecuencia, el detector de máximo esperado se puede usar para estimar el valor de retención máximo (max-hold) equivalente de una interferencia aleatoria. El detector demáximo esperado también proporciona un modelo que cuantifica la incertidumbre de lamedición del detector de picos ante interferencias estocásticas. La descomposición de interferencia empírica (EID) es una implementación modificada de la transformada de Hilbert-Huang con capacidades de sincronización de tiempo que permiten una determinación heurística de patrones oscilatorios característicos sin requerir transformación de dominio ni un conjunto predefinido de funciones base. La descomposición de la interferencia empírica se ha utilizado con éxito para la cancelación del ruido ambiental durante prueba de concepto de mediciones de EMI de al aire libre, obteniendo más de 20 dB de atenuación de las señales habituales de radiodifusión. El fundamento de la cancelación del ruido ambiental mediante EID es la identificación, en el tiempo y en el dominio de la frecuencia, de los modos de emisión intrínsecos que son atribuibles al EUT al restar los modos residuales (ruido ambiental) de los resultados de medición. Las contribuciones mencionadas se distribuyen en cuatro artículos de revista. Los resultados de medición complementarios y las aplicaciones de los sistemas de medición Full TDEMI también se han publicado en conferencias notables en el área. Por los motivos antes mencionados, la tecnología Full TDEMI tiene ventajas significativas para los ensayos, el análisis y la resolución de problemas de EMI. Asimismo, proporciona un enfoque complementario a las mediciones típicas completamente enfocadas en el dominio de la frecuencia y exhibe un nivel de madurez que podría permitir su estandarización en los próximos años.
APA, Harvard, Vancouver, ISO, and other styles
6

Midya, Surajit. "Conducted and Radiated Electromagnetic Interference in Modern Electrified Railways with Emphasis on Pantograph Arcing." Doctoral thesis, Stockholm : Skolan för elektro- och systemteknik, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ebertsohn, Nolan Wade. "Cable trays and EMC : modelling and measurement." Thesis, Stellenbosch : Stellenbosch University, 2005. http://hdl.handle.net/10019.1/50293.

Full text
Abstract:
Thesis (MScEng)--University of Stellenbosch, 2005.
ENGLISH ABSTRACT: Common mode currents are a major source of interference in electrical and electronic systems. A universal solution to counteract common mode interference is to introduce an electromagnetic shield with known characteristics. Cable trays are often used to shield cables from unwanted electromagnetic interference (EM!) and its shielding characteristics are defined in terms of its transfer impedance. This thesis pursues the modelling and measurement of the transfer impedance and mutual inductance of non-magnetic cable trays. Theoretical analysis is firstly employed by means of Maxwell's equations after which method of moments (MoM) simulations are performed in order to determine the transfer impedance and mutual inductance within the interior region of a cable tray. The results obtained through simulation are then validated with measurements conducted with an automatic network analyser (ANA). The computational and measured data are in good agreement and the developed model can be used to predict the transfer impedance in the cross-section of non-magnetic cable trays.
AFRIKAANSE OPSOMMING: Gemenernodus strome is 'n bron van interferensie in elektriese en elektroniese stelsels. 'n Universele oplossing om hierdie gemenernodus interferensie teen werk is om 'n elektromagnetiese skerm met bekende eienskappe te implementeer. Geleier leikanale word dikwels gebruik om kabels teen elektromagnetiese interferensie te beskerm en die afskermings eienskappe word in terme van die kanaal se oordragsimpedansie gedefinieer. Hierdie tesis ondersoek die modelering en meting van die wedersydse induktansie en oordragsimpedansie van nie-magnetiese geleier leikanale. 'n Teoretiese analise word eers uitgevoer deur middel van Maxwell se vergelykings waarna metode van momente (MvM) simulasies uitgevoer word om die oordragsimpedansie en wedersydse induktansie in die interne gebied van 'n leikanaal te bepaal. Die resultate verkry deur simulasie word dan bevestig deur meting wat uitgevoer word met behulp van 'n automatiese netwerk analiseerder (ANA). Die numeriese en gemete data stem goed ooreen en die ontwikkelde model kan deurgaans gebruik word om die oordragsimpedansie in die deursnit area van nie-magnetiese geleier leikanale te voorspel.
APA, Harvard, Vancouver, ISO, and other styles
8

Khan, Zulfiqar A. "EMI/EMC analysis of electronic systems subject to near zone illuminations." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196207323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Slim, Hassan Hani [Verfasser]. "Methods to Increase the Bandwidth of Broad-Band Time-Domain Electromagnetic Interference Measurement Systems / Hassan Hani Slim." Aachen : Shaker, 2014. http://d-nb.info/104937990X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Váško, Ondřej. "Virtuální měřicí systém pro nestandardní bezodrazové komory." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219966.

Full text
Abstract:
Master thesis examines a selected part of electromagnetic compatibility. In this work, there is theoretically discussed how electromagnetic interference appears and how is spread through free space environment. To eliminate ambient interference signals, the measurements have been performed in anechoic chamber where the undesirable interference signals were suppressed. In the thesis, there are also described parameters of EMI receivers and limits of electromagnetic interference. The description of calculations of the antenna height for finding maximum intensity of electric field strength for standard measurement distance has been made. For proposed transformed measurement distance, calculations of intensity electric field with addition of parameters measuring antenna and object under test were performed. Correction curves for conversion intensity electric field have been obtained as the result.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Measurement of electromagnetic interference"

1

U.S. Dept. of Defense. Measurement of electromagnetic interference characteristics. Ascot: ILI, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1935-, Smith Albert A., ed. Measuring the radio frequency environment. New York: Van Nostrand Reinhold Co., 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Silventoinen, Pertti. Electromagnetic compatibility and EMC-measurements in DC-voltage link converters. [Lappeenranta]: Lappeenrannan teknillinen korkeakoulu, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haus, Hermann A. Electromagnetic Noise and Quantum Optical Measurements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sanders, Frank H. Measurements of pulsed co-channel interference in a 4-GHz digital earth station receiver. [Boulder, Colo.]: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Accredited Standards Committee on Electromagnetic Compatibility, C63. American national standard for electromagnetic compatibility: Radiated emission measurements in electromagnetic interference (EMI) control : calibration of antennas (9 kHz to 40 GHz). New York, N.Y: Institute of Electrical and Electronics Engineers, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Engineers, Society of Automotive, ed. IDB-C data bus: Report on studies for a) Modeling, simulation, and signal analysis, b) EMC/EMI measurements and testing. Warrendale, Pa: Society of Automotive Engineers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Development, North Atlantic Treaty Organization Advisory Group for Aerospace Research and. Electromagnetic interference and electromagnetic compatibility. Neuilly sur Seine, France: AGARD, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

RCED, United States General Accounting Office. Electromagnetic interference with medical devices. Washington, D.C: The Office, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Norman, Ellis. Electrical interference handbook. 2nd ed. Oxford: Newnes, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Measurement of electromagnetic interference"

1

Braun, Stephan, Arnd Frech, and Peter Russer. "Time-Domain Measurements of Electromagnetic Interference." In Springer Proceedings in Physics, 375–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68768-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

King, Ronold W. P., Margaret Owens, and Tai Tsun Wu. "Interference Patterns; Comparison of Approximate Formulas with General Integrals and Measurements." In Lateral Electromagnetic Waves, 223–40. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4613-9174-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smolenski, Robert. "Standardized Measurements of Conducted EMI." In Conducted Electromagnetic Interference (EMI) in Smart Grids, 23–35. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2960-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schoof, Adrien, and Jan Luiken ter Haseborg. "Measurement of the Mutual Interference Between Independent Bluetooth Devices." In Ultra-Wideband, Short-Pulse Electromagnetics 7, 517–26. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-37731-5_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weik, Martin H. "electromagnetic interference." In Computer Science and Communications Dictionary, 493. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_5926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hardage, Mike, and Philip D. Henry. "Electromagnetic Interference (EMI)." In Developments in Cardiovascular Medicine, 325–50. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1055-0_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weik, Martin H. "electromagnetic interference control." In Computer Science and Communications Dictionary, 493. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_5927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tran, Thanh T. "Electromagnetic Interference (EMI)." In High-Speed DSP and Analog System Design, 195–210. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6309-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Munro, Neil. "Electromagnetic Interference and Electromagnetic Weapons." In Electronic Combat and Modern Warfare, 35–55. London: Palgrave Macmillan UK, 1991. http://dx.doi.org/10.1007/978-1-349-12422-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Violette, J. L. Norman, Donald R. J. White, and Michael F. Violette. "Sources of Electromagnetic Interference." In Electromagnetic Compatibility Handbook, 13–62. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-7144-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Measurement of electromagnetic interference"

1

Eliardsson, Patrik, Karina Fors, Kia Wiklundh, Bjorn Gabrielsson, Mikael Alexandersson, and Johan Hedstrom. "Automatic measurement of electromagnetic interference environment." In 2016 International Symposium on Electromagnetic Compatibility - EMC EUROPE. IEEE, 2016. http://dx.doi.org/10.1109/emceurope.2016.7739290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tu, Meng-Hua, Ren-Fang Hsu, Sung-Mao Wu, and Cheng-Chang Chen. "Electromagnetic interference measurement study in BGA package." In 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC). IEEE, 2015. http://dx.doi.org/10.1109/apemc.2015.7175315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Uchimura and Aida. "Measurement of Electromagnetic Interference from DC - Switching Relays." In Conference on Precision Electromagnetic Measurements. IEEE, 1988. http://dx.doi.org/10.1109/cpem.1988.671321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Allampalli, Anil, and Amitabha Bhattacharya. "Resistive sensor for high power microwave pulse measurement." In 2016 International Conference on Electromagnetic Interference & Compatibility (INCEMIC). IEEE, 2016. http://dx.doi.org/10.1109/incemic.2016.7921512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lv, Changchun, Fan Li, Lugao Yin, Zhihong Chen, Siyang Chen, and Ce Chen. "Design of Long-periods Electromagnetic Interference Measurement System." In 2019 IEEE 6th International Symposium on Electromagnetic Compatibility (ISEMC). IEEE, 2019. http://dx.doi.org/10.1109/isemc48616.2019.8986128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Song, Woncheol, Yang Zhong, Cheolhan Kim, Changyul Park, and Chulsoon Hwang. "Transfer Function Measurement for Automotive Intentional Electromagnetic Interference." In 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2020. http://dx.doi.org/10.1109/emcsi38923.2020.9191649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Subramanya, P. Bala, and Deepak Sharma. "Far field measurement using near field magnetic probing method." In 2016 International Conference on ElectroMagnetic Interference & Compatibility (INCEMIC). IEEE, 2016. http://dx.doi.org/10.1109/incemic.2016.7921499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Selvan, K. T., V. Venkatesan, and R. Sivaramakrishnan. "Uncertainty analysis for the three-antenna gain measurement method." In 8th International Conference on Electromagnetic Interference and Compatibility. IEEE, 2003. http://dx.doi.org/10.1109/icemic.2003.238072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mahesh, G., S. K. Das, B. George, V. Jayashankar, and V. Jagadeesh Kumar. "Virtual instrument based instrumentation for harmonic current emission measurement." In 8th International Conference on Electromagnetic Interference and Compatibility. IEEE, 2003. http://dx.doi.org/10.1109/icemic.2003.238090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liang, Zhenguang, and Yueguang Tong. "Radiated electromagnetic interference (EMI) measuring system." In Sixth International Symposium on Instrumentation and Control Technology: Sensors, Automatic Measurement, Control, and Computer Simulation, edited by Jiancheng Fang and Zhongyu Wang. SPIE, 2006. http://dx.doi.org/10.1117/12.717950.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Measurement of electromagnetic interference"

1

DEPARTMENT OF DEFENSE WASHINGTON DC. Military Standard. Measurement of Electromagnetic Interference Characteristics. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada294943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lawry, Dean I., S. L. Langdon, and S. J. Gutierrez. Summary of Electromagnetic Interference Measurements at Mt. Haleakala Observation Facilities. Fort Belvoir, VA: Defense Technical Information Center, April 1998. http://dx.doi.org/10.21236/ada406808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Mark T. Electromagnetic compatibility and interference metrology. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.tn.1099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zabin, Serena M. Signal Processing in Impulsive Electromagnetic Interference. Fort Belvoir, VA: Defense Technical Information Center, December 1992. http://dx.doi.org/10.21236/ada260755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zabin, Serena M. Signal Processing in Impulsive Electromagnetic Interference. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada252385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zabin, Serena M. Signal Processing in Impulsive Electromagnetic Interference. Fort Belvoir, VA: Defense Technical Information Center, June 1993. http://dx.doi.org/10.21236/ada266425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lin, Ching-Tai. Radar Pulse Compression and Electromagnetic Interference (EMI). Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Deline, Chris, and Geoff Dann. Renewable Energy, Photovoltaic Systems Near Airfields. Electromagnetic Interference. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1215061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

ARMY TANK-AUTOMOTIVE COMMAND WARREN MI. Electromagnetic Interference Testing and Electrical Subsystem - Non- Communication. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada286591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dann, Geoff, and Chris Deline. Renewable Energy, Photovoltaic Systems Near Airfields: Electromagnetic Interference. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada627632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography