Books on the topic 'Measure metric space'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 46 books for your research on the topic 'Measure metric space.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Nicola, Gigli, and Savaré Giuseppe, eds. Gradient flows: In metric spaces and in the space of probability measures. Boston: Birkhäuser, 2005.
Find full textAmbrosio, Luigi. Gradient flows: In metric spaces and in the space of probability measures. Basel: Birkhauser, 2004.
Find full textNicola, Gigli, Savaré Giuseppe, Struwe Michael 1955-, and SpringerLink (Online service), eds. Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Basel: Birkhäuser Basel, 2008.
Find full textShirali, Satish. A Concise Introduction to Measure Theory. USA: Springer International Publishing AG, 2019.
Find full textInstytut Matematyczny (Polska Akademia Nauk), ed. Measure-additive coverings and measurable selectors. Warszawa: Państwowe Wydawn. Naukowe, 1987.
Find full textBarlow, Martin T. Stability of parabolic Harnack inequalities on metric measure spaces. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2004.
Find full text1951-, Domínguez Benavides T., and López Acedo G. 1956-, eds. Measures of noncompactness in metric fixed point theory. Basel: Birkhäuser Verlag, 1997.
Find full textCarlsson, Niclas. Markov chains on metric spaces: Invariant measures and asymptotic behaviour. Åbo: Åbo Akademi University Press, 2005.
Find full textChen, Zhen-Qing. Heat Kernel Estimates for Jump Processes of Mixed Types on Metric Measure Spaces. Kyoto, Japan: Research Institute for Mathematical Sciences, Kyoto University, 2006.
Find full textBillingsley, Patrick. Convergence of Probability Measures. 2nd ed. New York, USA: Wiley-Interscience, 1999.
Find full text1962-, Semmes Stephen, ed. Fractured fractals and broken dreams: Self-similar geometry through metric and measure. Oxford: Clarendon Press, 1997.
Find full text1983-, Spadaro Emanuele Nunzio, ed. Q-valued functions revisited. Providence, R.I: American Mathematical Society, 2010.
Find full text1968-, Dafni Galia Devora, McCann Robert John 1968-, and Stancu Alina 1968-, eds. Analysis and geometry of metric measure spaces: Lecture notes of the 50th Séminaire de Mathématiques Supérieures (SMS), Montréal, 2011. Providence, Rhode Island, USA: American Mathematical Society, 2013.
Find full textMitrea, Dorina. Groupoid Metrization Theory: With Applications to Analysis on Quasi-Metric Spaces and Functional Analysis. Boston: Birkhäuser Boston, 2013.
Find full textEcole d'été de probabilités de Saint-Flour (35th : 2005), ed. Probability and real trees: École d'Été de Probabilités de Saint-Flour XXXV-2005. Berlin: Springer, 2008.
Find full textGradient Flows: In Metric Spaces and in the Space of Probability Measures (Lectures in Mathematics. ETH Zürich (closed)). Birkhäuser Basel, 2006.
Find full textYeh, J. Metric in Measure Spaces. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/10289.
Full textKoskela, Pekka, Jeremy T. Tyson, Nageswari Shanmugalingam, and Juha Heinonen. Sobolev Spaces on Metric Measure Spaces. Cambridge University Press, 2015.
Find full textLukacs, E., K. R. Parthasarathy, and Z. W. Birnbaum. Probability Measures on Metric Spaces. Elsevier Science & Technology Books, 2014.
Find full textGauge Integrals over Metric Measure Spaces. Saarbrücken, German: Scholars' Press, 2014.
Find full textKoskela, Pekka, Jeremy T. Tyson, Nageswari Shanmugalingam, and Juha Heinonen. Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. Cambridge University Press, 2015.
Find full textKoskela, Pekka, Jeremy T. Tyson, Nageswari Shanmugalingam, and Juha Heinonen. Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. Cambridge University Press, 2015.
Find full textKoskela, Pekka, Jeremy T. Tyson, Nageswari Shanmugalingam, and Juha Heinonen. Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. Cambridge University Press, 2015.
Find full textKoskela, Pekka, Jeremy T. Tyson, Nageswari Shanmugalingam, and Juha Heinonen. Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. Cambridge University Press, 2015.
Find full textBillingsley, Patrick. Convergence of Probability Measures. Wiley & Sons, Incorporated, John, 2009.
Find full textBillingsley, Patrick. Convergence of Probability Measures. Wiley & Sons, Incorporated, John, 2013.
Find full textBillingsley, Patrick. Convergence of Probability Measures. Wiley & Sons, Incorporated, John, 2013.
Find full textGigli, Nicola. On the Differential Structure of Metric Measure Spaces and Applications. American Mathematical Society, 2015.
Find full textMondino, Andrea, Luigi Ambrosio, and Giuseppe Savare. Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces. American Mathematical Society, 2020.
Find full textPeterson, James K. Basic Analysis IV: Measure Theory and Integration. Taylor & Francis Group, 2020.
Find full textPeterson, James K. Basic Analysis IV: Measure Theory and Integration. Taylor & Francis Group, 2020.
Find full textPeterson, James K. Basic Analysis IV: Measure Theory and Integration. Taylor & Francis Group, 2020.
Find full textLimit Theorems For Nonlinear Cointegrating Regression. Singapore, Hong Kong: WPSC, 2015.
Find full textDavid, Guy, and Stephen Semmes. Fractured Fractals and Broken Dreams: Self-Similar Geometry through Metric and Measure (Oxford Lecture Series in Mathematics and Its Applications, No 7). Oxford University Press, USA, 1998.
Find full textBillingsley, Patrick. Convergence of Probability Measures. Wiley & Sons, Incorporated, John, 2007.
Find full textFarb, Benson, and Dan Margalit. Teichmuller Geometry. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691147949.003.0012.
Full textBrauner, Marygail, and Arthur W. Lackey. CWT and RWT Metrics Measure the Performance of the Army's Logistics Chain for Spare Parts. RAND Corporation, 2003. http://dx.doi.org/10.7249/rb3035.
Full textMitrea, Dorina, Marius Mitrea, and Irina Mitrea. Groupoid Metrization Theory: With Applications to Analysis on Quasi-Metric Spaces and Functional Analysis. Springer, 2012.
Find full textElements Of Real Analysis: Pure and Applied Mathematics. Boca Raton, Florida, USA: Chapman & Hall/ CRC, 2006.
Find full textBoules, Adel N. Fundamentals of Mathematical Analysis. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198868781.001.0001.
Full textAbstract Duality Pairs In Analysis: (Functional Analysis). Hackensack, New Jersey, USA: World Scientific Publishing Company, 2018.
Find full textEvans, Steven N. Probability and Real Trees: École d'Été de Probabilités de Saint-Flour XXXV-2005. Springer London, Limited, 2007.
Find full text