Academic literature on the topic 'Measure metric space'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Measure metric space.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Measure metric space"
Wildrick, K., and T. Zürcher. "Space filling with metric measure spaces." Mathematische Zeitschrift 270, no. 1-2 (November 3, 2010): 103–31. http://dx.doi.org/10.1007/s00209-010-0787-1.
Full textScheepers, Marion. "Finite powers of strong measure zero sets." Journal of Symbolic Logic 64, no. 3 (September 1999): 1295–306. http://dx.doi.org/10.2307/2586631.
Full textHeikkinen, Toni, Juha Lehrbäck, Juho Nuutinen, and Heli Tuominen. "Fractional Maximal Functions in Metric Measure Spaces." Analysis and Geometry in Metric Spaces 1 (May 28, 2013): 147–62. http://dx.doi.org/10.2478/agms-2013-0002.
Full textEdgar. "PACKING MEASURE IN GENERAL METRIC SPACE." Real Analysis Exchange 26, no. 2 (2000): 831. http://dx.doi.org/10.2307/44154081.
Full textHan, Bang-Xian, and Andrea Mondino. "Angles between Curves in Metric Measure Spaces." Analysis and Geometry in Metric Spaces 5, no. 1 (September 2, 2017): 47–68. http://dx.doi.org/10.1515/agms-2017-0003.
Full textYaoyao, Han, and Zhao Kai. "Herz type Hardy spaces on non-homogeneous metric measure space." SCIENTIA SINICA Mathematica 48, no. 10 (October 1, 2018): 1315. http://dx.doi.org/10.1360/n012018-00118.
Full textMazurenko, N., and M. Zarichnyi. "Invariant idempotent measures." Carpathian Mathematical Publications 10, no. 1 (July 3, 2018): 172–78. http://dx.doi.org/10.15330/cmp.10.1.172-178.
Full textAïssaoui, Noureddine. "Strongly nonlinear potential theory on metric spaces." Abstract and Applied Analysis 7, no. 7 (2002): 357–74. http://dx.doi.org/10.1155/s1085337502203024.
Full textXie, Jialiang, Qingguo Li, Shuili Chen, and Huan Huang. "The fuzzy metric space based on fuzzy measure." Open Mathematics 14, no. 1 (January 1, 2016): 603–12. http://dx.doi.org/10.1515/math-2016-0051.
Full textHonda, Shouhei. "Bakry-Émery Conditions on Almost Smooth Metric Measure Spaces." Analysis and Geometry in Metric Spaces 6, no. 1 (October 1, 2018): 129–45. http://dx.doi.org/10.1515/agms-2018-0007.
Full textDissertations / Theses on the topic "Measure metric space"
Färm, David. "Upper gradients and Sobolev spaces on metric spaces." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5816.
Full textThe Laplace equation and the related p-Laplace equation are closely associated with Sobolev spaces. During the last 15 years people have been exploring the possibility of solving partial differential equations in general metric spaces by generalizing the concept of Sobolev spaces. One such generalization is the Newtonian space where one uses upper gradients to compensate for the lack of a derivative.
All papers on this topic are written for an audience of fellow researchers and people with graduate level mathematical skills. In this thesis we give an introduction to the Newtonian spaces accessible also for senior undergraduate students with only basic knowledge of functional analysis. We also give an introduction to the tools needed to deal with the Newtonian spaces. This includes measure theory and curves in general metric spaces.
Many of the properties of ordinary Sobolev spaces also apply in the generalized setting of the Newtonian spaces. This thesis includes proofs of the fact that the Newtonian spaces are Banach spaces and that under mild additional assumptions Lipschitz functions are dense there. To make them more accessible, the proofs have been extended with comments and details previously omitted. Examples are given to illustrate new concepts.
This thesis also includes my own result on the capacity associated with Newtonian spaces. This is the theorem that if a set has p-capacity zero, then the capacity of that set is zero for all smaller values of p.
Estep, Dewey. "Prime End Boundaries of Domains in Metric Spaces and the Dirichlet Problem." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439295199.
Full textMeizis, Roland [Verfasser], and Anita [Akademischer Betreuer] Winter. "Metric two-level measure spaces : a state space for modeling evolving genealogies in host-parasite systems / Roland Meizis ; Betreuer: Anita Winter." Duisburg, 2019. http://d-nb.info/1191693414/34.
Full textMalý, Lukáš. "Sobolev-Type Spaces : Properties of Newtonian Functions Based on Quasi-Banach Function Lattices in Metric Spaces." Doctoral thesis, Linköpings universitet, Matematik och tillämpad matematik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105616.
Full textEnflo, Karin. "Measures of Freedom of Choice." Doctoral thesis, Uppsala universitet, Avdelningen för praktisk filosofi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179078.
Full textDavtyan, Ashot. "Measure generation in the spaces of planes und lines in R^3." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:swb:105-7072226.
Full textJones, Rebekah. "A characterization of quasiconformal maps in terms of sets of finite perimeter." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560867563841096.
Full textMalý, Lukáš. "Newtonian Spaces Based on Quasi-Banach Function Lattices." Licentiate thesis, Linköpings universitet, Matematik och tillämpad matematik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-79166.
Full textAlleche, Boualem. "Quelques résultats sur la consonance, les multi-applications, et la séquentialité." Rouen, 1996. http://www.theses.fr/1996ROUES027.
Full textBelili, Nacereddine. "Problèmes des marges et de transport." Rouen, 1998. http://www.theses.fr/1998ROUES022.
Full textBooks on the topic "Measure metric space"
Nicola, Gigli, and Savaré Giuseppe, eds. Gradient flows: In metric spaces and in the space of probability measures. Boston: Birkhäuser, 2005.
Find full textAmbrosio, Luigi. Gradient flows: In metric spaces and in the space of probability measures. Basel: Birkhauser, 2004.
Find full textNicola, Gigli, Savaré Giuseppe, Struwe Michael 1955-, and SpringerLink (Online service), eds. Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Basel: Birkhäuser Basel, 2008.
Find full textShirali, Satish. A Concise Introduction to Measure Theory. USA: Springer International Publishing AG, 2019.
Find full textInstytut Matematyczny (Polska Akademia Nauk), ed. Measure-additive coverings and measurable selectors. Warszawa: Państwowe Wydawn. Naukowe, 1987.
Find full textBarlow, Martin T. Stability of parabolic Harnack inequalities on metric measure spaces. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2004.
Find full text1951-, Domínguez Benavides T., and López Acedo G. 1956-, eds. Measures of noncompactness in metric fixed point theory. Basel: Birkhäuser Verlag, 1997.
Find full textCarlsson, Niclas. Markov chains on metric spaces: Invariant measures and asymptotic behaviour. Åbo: Åbo Akademi University Press, 2005.
Find full textChen, Zhen-Qing. Heat Kernel Estimates for Jump Processes of Mixed Types on Metric Measure Spaces. Kyoto, Japan: Research Institute for Mathematical Sciences, Kyoto University, 2006.
Find full textBook chapters on the topic "Measure metric space"
van Nes, Akkelies, and Claudia Yamu. "Analysing Linear Spatial Relationships: The Measures of Connectivity, Integration, and Choice." In Introduction to Space Syntax in Urban Studies, 35–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59140-3_2.
Full textItoh, Tsubasa. "Logarithmic Hölder estimates of 𝑝-harmonic extension operators in a metric measure space." In Complex Analysis and Potential Theory, 163–69. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/crmp/055/11.
Full textSawano, Yoshihiro, Giuseppe Di Fazio, and Denny Ivanal Hakim. "General metric measure spaces." In Morrey Spaces, 247–91. First edition. | Boca Raton : C&H/CRC Press, 2020. | Series: Chapman & Hall/CRC monographs and research notes in mathematics: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9780429085925-6.
Full textSawano, Yoshihiro, Giuseppe Di Fazio, and Denny Ivanal Hakim. "General metric measure spaces." In Morrey Spaces, 247–91. First edition. | Boca Raton : C&H/CRC Press, 2020. | Series: Chapman & Hall/CRC monographs and research notes in mathematics: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781003042341-6.
Full textSawano, Yoshihiro, Giuseppe Di Fazio, and Denny Ivanal Hakim. "Morrey spaces over metric measure spaces." In Morrey Spaces, 103–42. First edition. | Boca Raton : C&H/CRC Press, 2020. | Series: Chapman & Hall/CRC monographs and research notes in mathematics: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781003029076-14.
Full textPachl, Jan. "Measures on Complete Metric Spaces." In Uniform Spaces and Measures, 63–79. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5058-0_6.
Full textVillani, Cédric. "Convergence of metric-measure spaces." In Grundlehren der mathematischen Wissenschaften, 743–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71050-9_27.
Full textSavaré, Giuseppe. "Sobolev Spaces in Extended Metric-Measure Spaces." In Lecture Notes in Mathematics, 117–276. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84141-6_4.
Full textSimovici, Dan A., and Chabane Djeraba. "Metric Spaces Topologies and Measures." In Advanced Information and Knowledge Processing, 399–433. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6407-4_8.
Full textLi, Zenghu. "Random Measures on Metric Spaces." In Probability and Its Applications, 1–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15004-3_1.
Full textConference papers on the topic "Measure metric space"
Argoun, Mohamed B., and Atef Omar Sherif. "A needed metric to measure utilization of indigenous satellite images in developing countries." In 2011 5th International Conference on Recent Advances in Space Technologies (RAST). IEEE, 2011. http://dx.doi.org/10.1109/rast.2011.5966821.
Full textZhu, Pengfei, Ren Qi, Qinghua Hu, Qilong Wang, Changqing Zhang, and Liu Yang. "Beyond Similar and Dissimilar Relations : A Kernel Regression Formulation for Metric Learning." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/450.
Full textLarochelle, Pierre, and J. Michael McCarthy. "Designing Planar Mechanisms Using a Bi-Invariant Metric in the Image Space of SO (3)." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0198.
Full textWei, Xinpeng, and Xiaoping Du. "A New Robustness Metric for Robust Design Optimization Under Time- and Space-Dependent Uncertainty Through Metamodeling." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97611.
Full textKazerounian, Kazem, and Jahangir Rastegar. "Object Norms: A Class of Coordinate and Metric Independent Norms for Displacements." In ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0390.
Full textMagalhães, Dimmy, Aurora Pozo, and Roberto Santana. "An empirical comparison of distance/similarity measures for Natural Language Processing." In Encontro Nacional de Inteligência Artificial e Computacional. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/eniac.2019.9328.
Full textBespalov, Dmitriy, Ali Shokoufandeh, William C. Regli, and Wei Sun. "Local Feature Extraction Using Scale-Space Decomposition." In ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/detc2004-57702.
Full textZhao, Qiang, HongTao Wu, and Minghu Zhou. "Generalized Mass Metric and Recursive Momentum Formulation for Dynamics of Multibody Systems." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86311.
Full textHuai, Mengdi, Hongfei Xue, Chenglin Miao, Liuyi Yao, Lu Su, Changyou Chen, and Aidong Zhang. "Deep Metric Learning: The Generalization Analysis and an Adaptive Algorithm." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/352.
Full textMendez, Mauricio, Gilberto Ochoa-Ruiz, Ivan Garcia, and Andres Mendez-Vazquez. "Finding Significant Features for Few-Shot Learning using Dimensionality Reduction Techniques." In LatinX in AI at Computer Vision and Pattern Recognition Conference 2021. Journal of LatinX in AI Research, 2021. http://dx.doi.org/10.52591/lxai202106213.
Full textReports on the topic "Measure metric space"
Rao, C. R. Differential Metrics in Probability Spaces Based on Entropy and Divergence Measures. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada160301.
Full text