Academic literature on the topic 'Mean sea level pressure (MSLP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mean sea level pressure (MSLP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mean sea level pressure (MSLP)"

1

Lavers, David, Christel Prudhomme, and David M. Hannah. "European precipitation connections with large-scale mean sea-level pressure (MSLP) fields." Hydrological Sciences Journal 58, no. 2 (February 2013): 310–27. http://dx.doi.org/10.1080/02626667.2012.754545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Allan, Rob, and Tara Ansell. "A New Globally Complete Monthly Historical Gridded Mean Sea Level Pressure Dataset (HadSLP2): 1850–2004." Journal of Climate 19, no. 22 (November 15, 2006): 5816–42. http://dx.doi.org/10.1175/jcli3937.1.

Full text
Abstract:
Abstract An upgraded version of the Hadley Centre’s monthly historical mean sea level pressure (MSLP) dataset (HadSLP2) is presented. HadSLP2 covers the period from 1850 to date, and is based on numerous terrestrial and marine data compilations. Each terrestrial pressure series used in HadSLP2 underwent a series of quality control tests, and erroneous or suspect values were either corrected, where possible, or removed. Marine observations from the International Comprehensive Ocean Atmosphere Data Set were quality controlled (assessed against climatology and near neighbors) and then gridded. The final gridded form of HadSLP2 was created by blending together the processed terrestrial and gridded marine MSLP data. MSLP fields were made spatially complete using reduced-space optimal interpolation. Gridpoint error estimates were also produced. HadSLP2 was found to have generally stronger subtropical anticyclones and higher-latitude features across the Northern Hemisphere than an earlier product (HadSLP1). During the austral winter, however, it appears that the pressures in the southern Atlantic and Indian Ocean midlatitude regions are too high; this is seen in comparisons with both HadSLP1 and the 40-yr ECMWF Re-Analysis (ERA-40). Over regions of high altitude, HadSLP2 and ERA-40 showed consistent differences suggestive of potential biases in the reanalysis model, though the region over the Himalayas in HadSLP2 is biased compared with HadSLP1 and improvements are required in this region. Consistent differences were also observed in regions of sparse data, particularly over the higher latitudes of the Southern Ocean and in the southeastern Pacific. Unlike the earlier HadSLP1 product, error estimates are available with HadSLP2 to guide the user in these regions of low confidence. An evaluation of major phenomena in the climate system using HadSLP2 provided further validation of the dataset. Important climatic features/indices such as the North Atlantic Oscillation, Arctic Oscillation, North Pacific index, Southern Oscillation index, Trans-Polar index, Antarctic Oscillation, Antarctic Circumpolar Wave, East Asian Summer Monsoon index, and the Siberian High index have all been resolved in HadSLP2, with extensions back to the mid-nineteenth century.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Yun, and Ian Smith. "A Statistical Downscaling Model for Southern Australia Winter Rainfall." Journal of Climate 22, no. 5 (March 1, 2009): 1142–58. http://dx.doi.org/10.1175/2008jcli2160.1.

Full text
Abstract:
Abstract A technique for obtaining downscaled rainfall projections from climate model simulations is described. This technique makes use of the close association between mean sea level pressure (MSLP) patterns and rainfall over southern Australia during winter. Principal components of seasonal mean MSLP anomalies are linked to observed rainfall anomalies at regional, gridpoint, and point scales. A maximum of four components is sufficient to capture a relatively large fraction of the observed variance in rainfall at most locations. These are used to interpret the MSLP patterns from a single climate model, which has been used to simulate both present-day and future climate. The resulting downscaled values provide 1) a closer representation of the observed present-day rainfall than the raw climate model values and 2) alternative estimates of future changes to rainfall that arise owing to changes in mean MSLP. While decreases are simulated for later this century (under a single emissions scenario), the downscaled values, in percentage terms, tend to be less.
APA, Harvard, Vancouver, ISO, and other styles
4

Berg, P., R. Döscher, and T. Koenigk. "Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic." Geoscientific Model Development Discussions 6, no. 1 (January 23, 2013): 495–520. http://dx.doi.org/10.5194/gmdd-6-495-2013.

Full text
Abstract:
Abstract. The performance of the Rossby Centre regional climate model RCA4 is investigated for the Arctic CORDEX region, with an emphasis on its suitability to be coupled to a regional ocean and sea-ice model. Large biases in mean sea level pressure (MSLP) are identified, with pronounced too high pressure centred over the North Pole in summer of over 5 hPa, and too low pressure in winter of a similar magnitude. These lead to biases in the surface winds, which will potentially lead to strong sea-ice biases in a future coupled system. The large scale circulation is believed to be the major reason for the biases, and an implementation of spectral nudging is applied to remedy the problems by constraining the large scale components of the driving fields within the interior domain. It is found that the spectral nudging generally corrects for the MSLP and wind biases, while not significantly affecting other variables such as surface radiative components, two metre temperature and precipitation.
APA, Harvard, Vancouver, ISO, and other styles
5

Berg, P., R. Döscher, and T. Koenigk. "Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic." Geoscientific Model Development 6, no. 3 (June 22, 2013): 849–59. http://dx.doi.org/10.5194/gmd-6-849-2013.

Full text
Abstract:
Abstract. The performance of the Rossby Centre regional climate model RCA4 is investigated for the Arctic CORDEX (COordinated Regional climate Downscaling EXperiment) region, with an emphasis on its suitability to be coupled to a regional ocean and sea ice model. Large biases in mean sea level pressure (MSLP) are identified, with pronounced too-high pressure centred over the North Pole in summer of over 5 hPa, and too-low pressure in winter of a similar magnitude. These lead to biases in the surface winds, which will potentially lead to strong sea ice biases in a future coupled system. The large-scale circulation is believed to be the major reason for the biases, and an implementation of spectral nudging is applied to remedy the problems by constraining the large-scale components of the driving fields within the interior domain. It is found that the spectral nudging generally corrects for the MSLP and wind biases, while not significantly affecting other variables, such as surface radiative components, two-metre temperature and precipitation.
APA, Harvard, Vancouver, ISO, and other styles
6

Turner, John, Tom Lachlan-Cope, Steve Colwell, and Gareth J. Marshall. "A positive trend in western Antarctic Peninsula precipitation over the last 50 years reflecting regional and Antarctic-wide atmospheric circulation changes." Annals of Glaciology 41 (2005): 85–91. http://dx.doi.org/10.3189/172756405781813177.

Full text
Abstract:
AbstractIn situ observations of precipitation days (days when snow or rain was reported in routine synoptic observations) from Faraday/Vernadsky station on the western side of the Antarctic Peninsula, and fields from the 40 year European Centre for Medium-Range Weather Forecasts re-analysis (ERA-40) project are used to investigate precipitation and atmospheric circulation changes around the Antarctic Peninsula. It is shown that the number of precipitation days is a good proxy for mean sea-level pressure (MSLP) over the Amundsen–Bellingshausen Sea. The annual total of precipitation days at the station has been increasing at a statistically significant rate of +12.4 days decade–1 since the early 1950s, with the greatest increase taking place during the summer and autumn. This is the time of year when the Southern Annular Mode (SAM) has experienced its greatest shift to a positive phase, with MSLP values decreasing in the Antarctic coastal zone. The lower pressures in the circumpolar trough have resulted in greater ascent and increased precipitation at Faraday/Vernadsky.
APA, Harvard, Vancouver, ISO, and other styles
7

Jeong, Dae Il, and Laxmi Sushama. "Projected Changes to Mean and Extreme Surface Wind Speeds for North America Based on Regional Climate Model Simulations." Atmosphere 10, no. 9 (August 27, 2019): 497. http://dx.doi.org/10.3390/atmos10090497.

Full text
Abstract:
This study evaluates projected changes to surface wind characteristics for the 2071–2100 period over North America (NA), using four Global Environmental Multiscale regional climate model simulations, driven by two global climate models (GCMs) for two Representative Concentration Pathway scenarios. For the current climate, the model simulates well the climatology of mean sea level pressure (MSLP) and associated wind direction over NA. Future simulations suggest increases in mean wind speed for northern and eastern parts of Canada, associated with decreases in future MSLP, which results in more intense low-pressure systems situated in those regions such as the Aleutian and Icelandic Lows. Projected changes to annual maximum 3-hourly wind speed show more spatial variability compared to seasonal and annual mean wind speed, indicating that extreme wind speeds are influenced by regional level features associated with instantaneous surface temperature and air pressure gradients. The simulations also suggest some increases in the future 50-year return levels of 3-hourly wind speed and hourly wind gusts, mainly due to increases in the inter-annual variability of annual maximum values. The variability of projected changes to both extreme wind speed and gusts indicate the need for a larger set of projections, including those from other regional models driven by many GCMs to better quantify uncertainties in future wind extremes and their characteristics.
APA, Harvard, Vancouver, ISO, and other styles
8

Wilson, Ian R. G., and Nikolay S. Sidorenkov. "Long-Term Lunar Atmospheric Tides in the Southern Hemisphere." Open Atmospheric Science Journal 7, no. 1 (May 17, 2013): 51–76. http://dx.doi.org/10.2174/1874282320130415001.

Full text
Abstract:
The longitudinal shift-and-add method is used to show that there are N=4 standing wave-like patterns in the summer (DJF) mean sea level pressure (MSLP) and sea-surface temperature (SST) anomaly maps of the Southern Hemisphere between 1947 and 1994. The patterns in the MSLP anomaly maps circumnavigate the Earth in 36, 18, and 9 years. This indicates that they are associated with the long-term lunar atmospheric tides that are either being driven by the 18.0 year Saros cycle or the 18.6 year lunar Draconic cycle. In contrast, the N=4 standing wave-like patterns in the SST anomaly maps circumnavigate the Earth once every 36, 18 and 9 years between 1947 and 1970 but then start circumnavigating the Earth once every 20.6 or 10.3 years between 1971 and 1994. The latter circumnavigation times indicate that they are being driven by the lunar Perigee-Syzygy tidal cycle. It is proposed that the different drift rates for the patterns seen in the MSLP and SST anomaly maps between 1971 and 1994 are the result of a reinforcement of the lunar Draconic cycle by the lunar Perigee-Syzygy cycle at the time of Perihelion. It is claimed that this reinforcement is part of a 31/62/93/186 year lunar tidal cycle that produces variations on time scales of 9.3 and 93 years. Finally, an N=4 standing wave-like pattern in the MSLP that circumnavigates the Southern Hemisphere every 18.6 years will naturally produce large extended regions of abnormal atmospheric pressure passing over the semi-permanent South Pacific subtropical high roughly once every ~ 4.5 years. These moving regions of higher/lower than normal atmospheric pressure will increase/decrease the MSLP of this semi-permanent high pressure system, temporarily increasing/reducing the strength of the East-Pacific trade winds. This may led to conditions that preferentially favor the onset of La Nina/El Nino events.
APA, Harvard, Vancouver, ISO, and other styles
9

Cecelski, Stefan F., and Da-Lin Zhang. "Genesis of Hurricane Julia (2010) within an African Easterly Wave: Sensitivity Analyses of WRF-LETKF Ensemble Forecasts." Journal of the Atmospheric Sciences 71, no. 9 (August 28, 2014): 3180–201. http://dx.doi.org/10.1175/jas-d-14-0006.1.

Full text
Abstract:
Abstract In this study, the predictability of tropical cyclogenesis (TCG) is explored by conducting ensemble sensitivity analyses on the TCG of Hurricane Julia (2010). Using empirical orthogonal functions (EOFs), the dominant patterns of ensemble disagreements are revealed for various meteorological parameters such as mean sea level pressure (MSLP) and upper-tropospheric temperature. Using the principal components of the EOF patterns, ensemble sensitivities are generated to elucidate which mechanisms drive the parametric ensemble differences. The dominant pattern of MSLP ensemble spread is associated with the intensity of the pre–tropical depression (pre-TD), explaining nearly half of the total variance at each respective time. Similar modes of variance are found for the low-level absolute vorticity, though the patterns explain substantially less variance. Additionally, the largest modes of variability associated with upper-level temperature anomalies closely resemble the patterns of MSLP variance, suggesting interconnectedness between the two parameters. Sensitivity analyses at both the pre-TD and TCG stages reveal that the MSLP disturbance is strongly correlated to upper-tropospheric temperature and, to a lesser degree, surface latent heat flux anomalies. Further sensitivity analyses uncover a statistically significant correlation between upper-tropospheric temperature and convective anomalies, consistent with the notion that deep convection is important for augmenting the upper-tropospheric warmth during TCG. Overall, the ensemble forecast differences for the TCG of Julia are strongly related to the processes responsible for MSLP falls and low-level cyclonic vorticity growth, including the growth of upper-tropospheric warming and persistent deep convection.
APA, Harvard, Vancouver, ISO, and other styles
10

Prado, Luciana F., Ilana Wainer, and Ronald B. de Souza. "The Representation of the Southern Annular Mode Signal in the Brazilian Earth System Model." Atmosphere 12, no. 8 (August 14, 2021): 1045. http://dx.doi.org/10.3390/atmos12081045.

Full text
Abstract:
The Southern Annular Mode (SAM, also known as the Antarctic Oscillation—AAO) explains most of the climate variability in the Southern Hemisphere. A ring pattern in mean sea level pressure (MSLP) or 500 hPa geopotential height around Antarctica characterizes SAM. Differences of MSLP values between SH mid and high latitudes define positive and negative SAM phases with impacts on mean atmospheric circulation. Thus, investigating how different models represent SAM is of paramount importance, as it can improve their ability to describe or even predict most of the SH climate variability. Here we examine how the Brazilian Earth System Model (BESM) represents SAM’s signal compared with observations, reanalysis, and other climate models contributing to the Coupled Modeling Intercomparison Project version 5 (CMIP5). We also evaluate how SAM relates to the South American surface temperature and precipitation and discuss the models’ limitations and biases compared with reanalysis data.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mean sea level pressure (MSLP)"

1

Donald, Alexis. "The application of the real-time multivariate Madden-Julian Oscillation Index to intraseasonal rainfall forecasting in the mid-latitudes." University of Southern Queensland, Faculty of Sciences, 2004. http://eprints.usq.edu.au/archive/00001423/.

Full text
Abstract:
The Madden-Julian Oscillation is a tropical atmospheric phenomenon detected as anomalies in zonal winds, convection and cloudiness. This perturbation has a definitive timescale of about thirty to sixty days, allowing its signal to be extracted from background data. The Madden-Julian Oscillation originates over the western Indian Ocean and generates a convective region which moves east along the equatorial region. This perturbation is thought to contribute to the timing and intensity of the eastern hemisphere monsoons, the El Niño/ Southern Oscillation and tropical storms and cyclones. The current understanding of the Madden-Julian Oscillation is that it restricts the bulk of its' influence to the tropics, however some evidence suggested that the impact is more extensive. Analysis of about 30 years of data showed significant modulation of rainfall by the equatorial passage of the MJO. The real-time multivariate Madden-Julian Oscillation Index was used to estimate the location and amplitude of the Madden-Julian Oscillation, and forms the basis of the basic rainfall prediction tool developed. The method developed here clearly linked the low latitude passage of the Madden-Julian Oscillation with suppressed and enhanced rainfall events in the Australasian region and beyond. A rudimentary forecasting capability at the intraseasonal time scale has been developed suitable for assisting Australian agricultural sector. A subsequent and independent analysis of global mean sea level pressure anomalies provided evidence of teleconnections between the Madden-Julian Oscillation and higher latitude atmospheric entities. These anomalies confirm the existence of teleconnections capable of producing the rainfall pattern outputs. The MJO is strongly influenced by the season. However the seasonally dependant analysis of rainfall with respect to the Madden Julian Oscillation conducted was inconclusive, suggesting aspects of the MJO influence still require clarification. Considering the importance of rainfall variability to the Australian agricultural sector the forecasting tool developed, although basic, is significant.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mean sea level pressure (MSLP)"

1

Barnston, A. G. Atlas of climatology and variability of monthly mean Northern Hemisphere sea level pressure, 700 mb geopotential height, and 1000-700 mb thickness, 1950-1992. Camp Springs, Md: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tibaldi, Stefano, and Franco Molteni. Atmospheric Blocking in Observation and Models. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.611.

Full text
Abstract:
The atmospheric circulation in the mid-latitudes of both hemispheres is usually dominated by westerly winds and by planetary-scale and shorter-scale synoptic waves, moving mostly from west to east. A remarkable and frequent exception to this “usual” behavior is atmospheric blocking. Blocking occurs when the usual zonal flow is hindered by the establishment of a large-amplitude, quasi-stationary, high-pressure meridional circulation structure which “blocks” the flow of the westerlies and the progression of the atmospheric waves and disturbances embedded in them. Such blocking structures can have lifetimes varying from a few days to several weeks in the most extreme cases. Their presence can strongly affect the weather of large portions of the mid-latitudes, leading to the establishment of anomalous meteorological conditions. These can take the form of strong precipitation episodes or persistent anticyclonic regimes, leading in turn to floods, extreme cold spells, heat waves, or short-lived droughts. Even air quality can be strongly influenced by the establishment of atmospheric blocking, with episodes of high concentrations of low-level ozone in summer and of particulate matter and other air pollutants in winter, particularly in highly populated urban areas.Atmospheric blocking has the tendency to occur more often in winter and in certain longitudinal quadrants, notably the Euro-Atlantic and the Pacific sectors of the Northern Hemisphere. In the Southern Hemisphere, blocking episodes are generally less frequent, and the longitudinal localization is less pronounced than in the Northern Hemisphere.Blocking has aroused the interest of atmospheric scientists since the middle of the last century, with the pioneering observational works of Berggren, Bolin, Rossby, and Rex, and has become the subject of innumerable observational and theoretical studies. The purpose of such studies was originally to find a commonly accepted structural and phenomenological definition of atmospheric blocking. The investigations went on to study blocking climatology in terms of the geographical distribution of its frequency of occurrence and the associated seasonal and inter-annual variability. Well into the second half of the 20th century, a large number of theoretical dynamic works on blocking formation and maintenance started appearing in the literature. Such theoretical studies explored a wide range of possible dynamic mechanisms, including large-amplitude planetary-scale wave dynamics, including Rossby wave breaking, multiple equilibria circulation regimes, large-scale forcing of anticyclones by synoptic-scale eddies, finite-amplitude non-linear instability theory, and influence of sea surface temperature anomalies, to name but a few. However, to date no unique theoretical model of atmospheric blocking has been formulated that can account for all of its observational characteristics.When numerical, global short- and medium-range weather predictions started being produced operationally, and with the establishment, in the late 1970s and early 1980s, of the European Centre for Medium-Range Weather Forecasts, it quickly became of relevance to assess the capability of numerical models to predict blocking with the correct space-time characteristics (e.g., location, time of onset, life span, and decay). Early studies showed that models had difficulties in correctly representing blocking as well as in connection with their large systematic (mean) errors.Despite enormous improvements in the ability of numerical models to represent atmospheric dynamics, blocking remains a challenge for global weather prediction and climate simulation models. Such modeling deficiencies have negative consequences not only for our ability to represent the observed climate but also for the possibility of producing high-quality seasonal-to-decadal predictions. For such predictions, representing the correct space-time statistics of blocking occurrence is, especially for certain geographical areas, extremely important.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mean sea level pressure (MSLP)"

1

Blindheim, Johan, and Svend-Aage Malmberg. "The mean sea level pressure gradient across the Denmark Strait as an indicator of conditions in the North Icelandic Irminger current." In The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling, 65–71. Washington, D. C.: American Geophysical Union, 2005. http://dx.doi.org/10.1029/158gm06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"field pressure reduction to mean sea level." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 518. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_60703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Whiteman, C. David. "Atmospheric Structure and the Earth's Boundary Layer." In Mountain Meteorology. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195132717.003.0011.

Full text
Abstract:
The earth's atmosphere is divided into four layers: the troposphere, stratosphere, mesosphere, and thermosphere (figure 4.1). These layers are defined by alternating decreases and increases in air temperature with height. The boundaries between the layers are called the tropopause, stratopause, and mesopause. The troposphere, the lowest layer of the atmosphere, supports life on the planet and is the layer in which “weather” occurs. It extends about 7 mi (11 km) above sea level and is characterized by a mean temperature decrease with height (—ΔT/ Δz) of about 3.5°F per 1000 ft, or 6.5°C per km. This decrease explains the lower temperatures encountered at higher elevations in the mountains. Although the mean temperature decreases with height in the troposphere, the atmospheric structure, particularly at the base of the troposphere, varies significantly over time as the earth warms during the day and cools at night, as the seasons change, and as weather systems move through the atmosphere. The vertical structure of the atmosphere is characterized by an exponential decrease in air density and pressure with height. Air density is the mass per unit volume of the atmosphere as expressed, for example, in kilograms per cubic meter or pounds per cubic foot. Air pressure is the force exerted on a unit area by the weight of the air molecules above the measurement point as expressed, for example, in millibars or pounds per square inch. Air pressure at any given level is thus a measurement of the weight of a column of air above that level. Although there is no "edge" to the earth's atmosphere, approximately 99.9% of the air molecules (and therefore the weight of the atmosphere) are found below 31 mi (50 km). Temperature, density, and pressure are interrelated, so that a change in one will result in changes in the other two. The mathematical description of this relationship is called the gas law (appendix A). The gas law allows any one of these variables to be calculated if values for the other two variables are known.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mean sea level pressure (MSLP)"

1

Mes, M. J. "A New Laser Tool and Seabed Pressure Gauges for Measuring Platform Elevations With Respect to the Mean Sea Level." In Offshore Technology Conference. Offshore Technology Conference, 1991. http://dx.doi.org/10.4043/6565-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Volino, Ralph J. "Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions: Part 1 — Mean Flow and Turbulence Statistics." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30236.

Full text
Abstract:
Boundary layer separation, transition and reattachment have been studied experimentally under low-pressure turbine airfoil conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Mean and fluctuating velocity and intermittency profiles are presented for streamwise locations all along the airfoil, and turbulent shear stress profiles are provided for the downstream region where separation and transition occur. Higher Re or free-stream turbulence level moves transition upstream. Transition is initiated in the shear layer over the separation bubble and leads to rapid boundary layer reattachment. At the lowest Re, transition did not occur before the trailing edge, and the boundary layer did not reattach. Turbulent shear stress levels can remain low in spite of high free-stream turbulence and high fluctuating streamwise velocity in the shear layer. The beginning of a significant rise in the turbulent shear stress signals the beginning of transition. A slight rise in the turbulent shear stress near the trailing edge was noted even in those cases which did not undergo transition or reattachment. The present results provide detailed documentation of the boundary layer and extend the existing database to lower Re. The present results also serve as a baseline for an investigation of turbulence spectra in Part 2 of the present paper, and for ongoing work involving transition and separation control.
APA, Harvard, Vancouver, ISO, and other styles
3

Volino, Ralph J., and Lennart S. Hultgren. "Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0260.

Full text
Abstract:
Detailed velocity measurements were made along a flat plate subject to the same dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil. Reynolds numbers based on wetted plate length and nominal exit velocity were varied from 50, 000 to 300, 000, covering cruise to takeoff conditions. Low and high inlet free-stream turbulence intensities (0.2% and 7%) were set using passive grids. The location of boundary-layer separation does not depend strongly on the free-stream turbulence level or Reynolds number, as long as the boundary layer remains non-turbulent prior to separation. Strong acceleration prevents transition on the upstream part of the plate in all cases. Both free-stream turbulence and Reynolds number have strong effects on transition in the adverse pressure gradient region. Under low free-stream turbulence conditions transition is induced by instability waves in the shear layer of the separation bubble. Reattachment generally occurs at the transition start. At Re = 50, 000 the separation bubble does not close before the trailing edge of the modeled airfoil. At higher Re, transition moves upstream, and the boundary layer reattaches. With high free-stream turbulence levels, transition appears to occur in a bypass mode, similar to that in attached boundary layers. Transition moves upstream, resulting in shorter separation regions. At Re above 200,000, transition begins before separation. Mean velocity, turbulence and intermittency profiles are presented.
APA, Harvard, Vancouver, ISO, and other styles
4

Hja¨rne, Johan, Valery Chernoray, Jonas Larsson, and Lennart Lo¨fdahl. "An Experimental Investigation of Secondary Flows and Loss Development Downstream of a Highly Loaded Low Pressure Turbine Outlet Guide Vane Cascade." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90561.

Full text
Abstract:
This paper presents a detailed experimental investigation of the evolution of secondary flow field characteristics and losses at several measurement planes downstream of a highly loaded low pressure turbine/outlet guide vane (LPT/OGV). The experiments were carried out in a linear cascade at Chalmers in Sweden. Several realistic upstream incidences and turbulence intensities have been investigated for one Reynolds number. Downstream characteristics have been measured with a 5-hole pneumatic probe. This allows for the determination of the mean vortical structures, their development and their interactions. The passage vortex and the blade shed vorticity are clearly visible at different downstream positions. Their intensity is shown to be strongly dependent on the inlet flow angle. The turbulence level seems to play a role on both the mixing within, and between the structures. The measurements also show that the losses along the blade span are dependent on the development of these structures.
APA, Harvard, Vancouver, ISO, and other styles
5

Akturk, Ali, and Cengiz Camci. "Development of a Tip Leakage Control Device for an Axial Flow Fan." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50785.

Full text
Abstract:
Performance of an axial fan unit used in ducted fan based propulsion systems is closely related to its tip leakage mass flow rate and the level of tip/casing interactions. The present experimental study uses a stereoscopic Particle Image Velocimeter to quantify the three dimensional mean flow observed at just downstream of a ducted fan unit. After a comprehensive description of the baseline fan exit flow, a number of novel tip treatments based on pressure side extensions are introduced. Various tip leakage mitigation schemes are introduced by varying the chordwise location and the width of the extension in the circumferential direction. The current study shows that a proper selection of the pressure side bump location and width are the two critical parameters influencing the success of each tip leakage mitigation approach. Significant gains in axial mean velocity component are observed when a proper pressure side tip extension is used. It is also observed that a proper tip leakage mitigation scheme significantly reduces the tangential velocity component near the tip of the axial fan blade. Reduced tip clearance interactions are essential in improving the energy efficiency of ducted fan systems. A reduction or elimination of the momentum deficit in tip vortices are also expected to reduce the adverse performance effects originating from the unsteady and highly turbulent tip leakage vortical flows rotating against a stationary casing.
APA, Harvard, Vancouver, ISO, and other styles
6

Schobeiri, M. T., and B. O¨ztu¨rk. "Experimental Study of the Effect of Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Re-Attachment Along the Surface of a Low Pressure Turbine Blade." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53929.

Full text
Abstract:
The paper experimentally studies the effects of periodic unsteady wake flow on boundary layer development, separation and re-attachment along the suction surface of a low pressure turbine blade. The experimental investigations were performed on a large scale, subsonic unsteady turbine cascade research facility at Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. The experiments were carried out at a Reynolds number of 110,000 (based on suction surface length and exit velocity) with a free-stream turbulence intensity of 1.9%. One steady and two different unsteady inlet flow conditions with the corresponding passing frequencies, wake velocities, and turbulence intensities were investigated. The reduced frequencies cover the entire operating range of LP turbines. In addition to the unsteady boundary layer measurements, blade surface measurements were performed at the same Reynolds number. The surface pressure measurements were also carried out at one steady and two periodic unsteady inlet flow conditions. The results presented in ensemble-averaged, and the contour plot forms help to understand the physics of the separation phenomenon under periodic unsteady wake flow. It was found that the suction surface displayed a strong separation bubble for these three different reduced frequencies. For each condition, the locations and the heights defining the separation bubble were determined by carefully analyzing and examining the pressure and the mean velocity profile data. The location of boundary layer separation was independent of the reduced frequency level. However, the extent of the separation was strongly dependent on the reduced frequency level. Once the unsteady wake started to penetrate into the separation bubble, the turbulent spot produced in the wake paths caused a reduction of the separation bubble height.
APA, Harvard, Vancouver, ISO, and other styles
7

Nguyen, Quang-Viet. "Measurements of Equivalence Ratio Fluctuations in a Lean Premixed Prevaporized (LPP) Combustor and Its Correlation to Combustion Instability." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30060.

Full text
Abstract:
Experimental evidence correlating equivalence ratio fluctuations with combustion instabilities and NOX emissions in a jet-A fueled lean premixed prevaporized (LPP) combustor utilizing a non-proprietary ‘generic’ fuel injector is presented. Real-time laser absorption measurements of equivalence ratio, together with dynamic combustor pressure, flame luminosity and fuel pressure were obtained at inlet air conditions up to 16.7 atm and 817 K. From this data, an extensive database of real-time variables was obtained for the purposes of providing validation data for future studies of LPP combustion modeling. In addition, time and frequency space analysis of the data revealed measurable levels of acoustic coupling between all variables. Equivalence ratio and dynamic pressure cross-correlations were found to predict the level of combustion instability. Furthermore, NOX production was found to follow the root-mean-square (RMS) flame luminosity and RMS combustor dynamic pressure. However, the unmixedness of the fuel-air mixture was not found to predict NOX production in this combustor. The generic LPP injector, although not optimized for low-emissions or combustion stability, provides some of the essential features of real injectors for the purposes of studying the relationship between fluctuations in equivalence ratios and combustion instability. In particular, the fuel premixer advection time was found to have a significant and direct impact on the level of combustion instability. The results of this work support the time-lag concept for avoiding combustion instability when designing injector/premixers in LPP combustors.
APA, Harvard, Vancouver, ISO, and other styles
8

Heidecke, Axel, and Bernd Stoffel. "Numerical Investigation on a Stator Vane Bypass Transition Over a Separation Bubble Using v′2-f and LCL-Models." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90543.

Full text
Abstract:
With this paper, results of a numerical investigation of the influence of the inlet condition variation on a stator vane suction side boundary layer and its separation tendencies are presented. The profile used for the examination is a so called high-lift-profile and designed for a laminar-turbulent transition over a steady separation bubble in a 1.5-stage low pressure turbine. Hence, the turbulence model must be capable for these effects. Especially, the stream line curvature has to be kept properly which leads to higher level turbulence models. The calculations were conducted with a two-dimensional Navier-Stokes solver using a finite volume discretisation scheme. The turbulence models used are the v′2-f and the LCL turbulence model which are both of higher order. In the first part of the paper, wake free averaged inflow conditions were used. Through this, the influence of the mean flow on the bubble could be examined.
APA, Harvard, Vancouver, ISO, and other styles
9

Delgado, Irebert R., Gary R. Halford, Bruce M. Steinetz, and Clare M. Rimnac. "Strain-Life Assessment of Grainex Mar-M 247 for NASA’s Turbine Seal Test Facility." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53939.

Full text
Abstract:
NASA’s Turbine Seal Test Facility is used to test air-to-air seals for use primarily in advanced jet engine applications. Combinations of high temperature, high speed, and high pressure limit the disk life, due to the concern of crack initiation in the bolt holes of the Grainex Mar-M 247 disk. The primary purpose of this current work is to determine an inspection interval to ensure safe operation. The current work presents high temperature fatigue strain-life data for test specimens cut from an actual Grainex Mar-M 247 disk. Several different strain-life models were compared to the experimental data including the Manson-Hirschberg Method of Universal Slopes, the Halford-Nachtigall Mean Stress Method, and the Modified Morrow Method. The Halford-Nachtigall Method resulted in only an 18% difference between predicted and experimental results. Using the experimental data at a −99.95% prediction level and the presence of 6 bolt holes it was found that the disk should be inspected after 665 cycles based on a total strain of 0.5% at 649°C.
APA, Harvard, Vancouver, ISO, and other styles
10

Chow, Yi-Chih, Oguz Uzol, and Joseph Katz. "Flow Non-Uniformities and Turbulent “Hot Spots” Due to Wake-Blade and Wake-Wake Interactions in a Multistage Turbomachine." In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30667.

Full text
Abstract:
This experimental study provides striking examples of the complex flow and turbulence structure resulting from blade-wake and wake-wake interactions in a multi-stage turbomachine. Particle Image Velocimetry (PIV) measurements are performed within the entire 2nd stage of a two-stage turbomachine. The experiments are performed in a facility that allows unobstructed view of the entire flow field, facilitated using transparent rotor and stator and a fluid that has the same optical index of refraction as the blades. This paper contains data on the phase-averaged flow structure including velocity, vorticity and strain-rate, as well as the turbulent kinetic energy and shear stress, at mid span, for several orientation of the rotor relative to the stator. Two different test setups with different blade geometries are used in order to highlight and elucidate complex phenomena involved, as well as to demonstrate that some of the interactions are characteristic to turbomachines and can be found in a variety of geometries. The first part of the paper deals with the interaction of a 2nd stage rotor with the wakes of both the rotor and the stator of the 1st stage. Even before interacting with the blade, localized regions with concentrated mean vorticity and elevated turbulence levels form at the intersection of the rotor and stator wakes of the 1st stage. These phenomena persist even after being ingested by the rotor blade of the 2nd stage. As the wake segment of the 1st stage rotor blade arrives to the 2nd stage, the rotor blades become submerged in its elevated turbulence levels, and separate the region with positive vorticity that travels along the pressure side of the blade, from the region with negative vorticity that remains on the suction side. The 1st stage stator wake is chopped-off by the blades. Due to difference in mean tangential velocity, the stator wake segment on the pressure side is advected faster than the segment on the suction side (in the absolute frame of reference), creating discontinuities in the stator wake trajectory. The non-uniformities in phase-averaged velocity distributions generated by the wakes of the 1st stage persist while passing through the 2nd stage rotor. The combined effects of the 1st stage blade rows cause 10°–12° variations of flow angle along the pressure side of the blade. Thus, in spite of the large gap between the 1st and 2nd rotors (compared to typical rotor-stator spacings in axial compressors), 6.5 rotor axial chords, the wake-blade interactions are substantial. The second part focuses on the flow structure at the intersection of the wakes generated by a rotor and a stator located upstream of it. In both test setups the rotor wake is sheared by the non-uniformities in the horizontal velocity distributions, which are a direct result of the “discontinuities” in the trajectories of the stator wake. This shearing creates a kink in the trajectory of the rotor wake, a quadruple structure in the distribution of strain, regions with concentrated vorticity, high turbulence levels and high shear stresses, the latter with a complex structure that resembles the mean strain. Although the “hot spots” diffuse as they are advected downstream, they still have elevated turbulence levels compared to the local levels around them. In fact, every region of wake intersection has an elevated turbulence level.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mean sea level pressure (MSLP)"

1

Ruosteenoja, Kimmo. Applicability of CMIP6 models for building climate projections for northern Europe. Finnish Meteorological Institute, September 2021. http://dx.doi.org/10.35614/isbn.9789523361416.

Full text
Abstract:
In this report, we have evaluated the performance of nearly 40 global climate models (GCMs) participating in Phase 6 of the Coupled Model Intercomparison Project (CMIP6). The focus is on the northern European area, but the ability to simulate southern European and global climate is discussed as well. Model evaluation was started with a technical control; completely unrealistic values in the GCM output files were identified by seeking the absolute minimum and maximum values. In this stage, one GCM was rejected totally, and furthermore individual output files from two other GCMs. In evaluating the remaining GCMs, the primary tool was the Model Climate Performance Index (MCPI) that combines RMS errors calculated for the different climate variables into one index. The index takes into account both the seasonal and spatial variations in climatological means. Here, MCPI was calculated for the period 1981—2010 by comparing GCM output with the ERA-Interim reanalyses. Climate variables explored in the evaluation were the surface air temperature, precipitation, sea level air pressure and incoming solar radiation at the surface. Besides MCPI, we studied RMS errors in the seasonal course of the spatial means by examining each climate variable separately. Furthermore, the evaluation procedure considered model performance in simulating past trends in the global-mean temperature, the compatibility of future responses to different greenhouse-gas scenarios and the number of available scenario runs. Daily minimum and maximum temperatures were likewise explored in a qualitative sense, but owing to the non-existence of data from multiple GCMs, these variables were not incorporated in the quantitative validation. Four of the 37 GCMs that had passed the initial technical check were regarded as wholly unusable for scenario calculations: in two GCMs the responses to the different greenhouse gas scenarios were contradictory and in two other GCMs data were missing from one of the four key climate variables. Moreover, to reduce inter-GCM dependencies, no more than two variants of any individual GCM were included; this led to an abandonment of one GCM. The remaining 32 GCMs were divided into three quality classes according to the assessed performance. The users of model data can utilize this grading to select a subset of GCMs to be used in elaborating climate projections for Finland or adjacent areas. Annual-mean temperature and precipitation projections for Finland proved to be nearly identical regardless of whether they were derived from the entire ensemble or by ignoring models that had obtained the lowest scores. Solar radiation projections were somewhat more sensitive.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography