Academic literature on the topic 'Mean-field stochastic differential equations (SDE)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mean-field stochastic differential equations (SDE).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mean-field stochastic differential equations (SDE)"

1

Briand, Phillippe, Abir Ghannoum, and Céline Labart. "Mean reflected stochastic differential equations with jumps." Advances in Applied Probability 52, no. 2 (2020): 523–62. http://dx.doi.org/10.1017/apr.2020.11.

Full text
Abstract:
AbstractIn this paper, a reflected stochastic differential equation (SDE) with jumps is studied for the case where the constraint acts on the law of the solution rather than on its paths. These reflected SDEs have been approximated by Briand et al. (2016) using a numerical scheme based on particles systems, when no jumps occur. The main contribution of this paper is to prove the existence and the uniqueness of the solutions to this kind of reflected SDE with jumps and to generalize the results obtained by Briand et al. (2016) to this context.
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Yabing, Jie Yang, and Weidong Zhao. "Itô-Taylor Schemes for Solving Mean-Field Stochastic Differential Equations." Numerical Mathematics: Theory, Methods and Applications 10, no. 4 (2017): 798–828. http://dx.doi.org/10.4208/nmtma.2017.0007.

Full text
Abstract:
AbstractThis paper is devoted to numerical methods for mean-field stochastic differential equations (MSDEs). We first develop the mean-field Itô formula and mean-field Itô-Taylor expansion. Then based on the new formula and expansion, we propose the Itô-Taylor schemes of strong order γ and weak order η for MSDEs, and theoretically obtain the convergence rate γ of the strong Itô-Taylor scheme, which can be seen as an extension of the well-known fundamental strong convergence theorem to the mean-field SDE setting. Finally some numerical examples are given to verify our theoretical results.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Tianxiao. "On closed-loop equilibrium strategies for mean-field stochastic linear quadratic problems." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 41. http://dx.doi.org/10.1051/cocv/2019057.

Full text
Abstract:
This article is concerned with linear quadratic optimal control problems of mean-field stochastic differential equations (MF-SDE) with deterministic coefficients. To treat the time inconsistency of the optimal control problems, linear closed-loop equilibrium strategies are introduced and characterized by variational approach. Our developed methodology drops the delicate convergence procedures in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. When the MF-SDE reduces to SDE, our Riccati system coincides with the analogue in Yong [Trans. Amer. Math. Soc. 369 (2017) 5467–5523]. However, thes
APA, Harvard, Vancouver, ISO, and other styles
4

Kubilius, Kęstutis, and Aidas Medžiūnas. "A Class of Fractional Stochastic Differential Equations with a Soft Wall." Fractal and Fractional 7, no. 2 (2023): 110. http://dx.doi.org/10.3390/fractalfract7020110.

Full text
Abstract:
In this paper we are interested in fractional stochactic differential equations (SDEs) with a soft wall. What do we mean by such a type of equation? It has been established that SDE with reflection can be imagined as equations having a hard wall. Now, by introducing repulsion instead of reflection, one obtains an SDE with a soft wall. In contrast to the SDE with reflection, where the process cannot pass the hard wall, the soft wall is repulsive but not impenetrable. As the process crosses the soft wall boundary, it experiences the force of a chosen magnitude in the opposite direction. When the
APA, Harvard, Vancouver, ISO, and other styles
5

Ferreiro-Castilla, A., A. E. Kyprianou, and R. Scheichl. "An Euler–Poisson scheme for Lévy driven stochastic differential equations." Journal of Applied Probability 53, no. 1 (2016): 262–78. http://dx.doi.org/10.1017/jpr.2015.23.

Full text
Abstract:
Abstract We describe an Euler scheme to approximate solutions of Lévy driven stochastic differential equations (SDEs) where the grid points are given by the arrival times of a Poisson process and thus are random. This result extends the previous work of Ferreiro-Castilla et al. (2014). We provide a complete numerical analysis of the algorithm to approximate the terminal value of the SDE and prove that the mean-square error converges with rate O(n-1/2). The only requirement of the methodology is to have exact samples from the resolvent of the Lévy process driving the SDE. Classical examples, su
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Yongguang, and Shuzhen Yao. "Neural Stochastic Differential Equations with Neural Processes Family Members for Uncertainty Estimation in Deep Learning." Sensors 21, no. 11 (2021): 3708. http://dx.doi.org/10.3390/s21113708.

Full text
Abstract:
Existing neural stochastic differential equation models, such as SDE-Net, can quantify the uncertainties of deep neural networks (DNNs) from a dynamical system perspective. SDE-Net is either dominated by its drift net with in-distribution (ID) data to achieve good predictive accuracy, or dominated by its diffusion net with out-of-distribution (OOD) data to generate high diffusion for characterizing model uncertainty. However, it does not consider the general situation in a wider field, such as ID data with noise or high missing rates in practice. In order to effectively deal with noisy ID data
APA, Harvard, Vancouver, ISO, and other styles
7

Higham, Desmond J., Xuerong Mao, and Andrew M. Stuart. "Exponential Mean-Square Stability of Numerical Solutions to Stochastic Differential Equations." LMS Journal of Computation and Mathematics 6 (2003): 297–313. http://dx.doi.org/10.1112/s1461157000000462.

Full text
Abstract:
AbstractPositive results are proved here about the ability of numerical simulations to reproduce the exponential mean-square stability of stochastic differential equations (SDEs). The first set of results applies under finite-time convergence conditions on the numerical method. Under these conditions, the exponential mean-square stability of the SDE and that of the method (for sufficiently small step sizes) are shown to be equivalent, and the corresponding second-moment Lyapunov exponent bounds can be taken to be arbitrarily close. The required finite-time convergence conditions hold for the c
APA, Harvard, Vancouver, ISO, and other styles
8

Kubilius, Kęstutis, and Aidas Medžiūnas. "Pathwise Convergent Approximation for the Fractional SDEs." Mathematics 10, no. 4 (2022): 669. http://dx.doi.org/10.3390/math10040669.

Full text
Abstract:
Fractional stochastic differential equation (FSDE)-based random processes are used in a wide spectrum of scientific disciplines. However, in the majority of cases, explicit solutions for these FSDEs do not exist and approximation schemes have to be applied. In this paper, we study one-dimensional stochastic differential equations (SDEs) driven by stochastic process with Hölder continuous paths of order 1/2<γ<1. Using the Lamperti transformation, we construct a backward approximation scheme for the transformed SDE. The inverse transformation provides an approximation scheme for the origin
APA, Harvard, Vancouver, ISO, and other styles
9

Rupšys, Petras. "Modeling Dynamics of Structural Components of Forest Stands Based on Trivariate Stochastic Differential Equation." Forests 10, no. 6 (2019): 506. http://dx.doi.org/10.3390/f10060506.

Full text
Abstract:
Research Highlights: Today’s approaches to modeling of forest stands are in most cases based on that the regression models and they are constructed as static sub-models describing individual stands variables. The disadvantages of this method; it is laborious because too many different equations need to be assessed and empirical choices of candidate equations make the results subjective; it does not relate to the stand variables dynamics against the age dimension (time); and does not consider the underlying covariance structure driving changes in the stand variables. In this study, the dynamica
APA, Harvard, Vancouver, ISO, and other styles
10

Jaworski, Piotr. "On Copula-Itô processes." Dependence Modeling 7, no. 1 (2019): 322–47. http://dx.doi.org/10.1515/demo-2019-0017.

Full text
Abstract:
AbstractWe study the dynamics of the family of copulas {Ct}t≥0 of a pair of stochastic processes given by stochastic differential equations (SDE). We associate to it a parabolic partial differential equation (PDE). Having embedded the set of bivariate copulas in a dual of a Sobolev Hilbert space H1 (ℝ2)* we calculate the derivative with respect to t and the *weak topology i.e. the tangent vector field to the image of the curve t → Ct. Furthermore we show that the family {Ct}t≥0 is an orbit of a strongly continuous semigroup of transformations and provide the infinitesimal generator of this sem
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mean-field stochastic differential equations (SDE)"

1

Manai, Arij. "Some contributions to backward stochastic differential equations and applications." Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1022.

Full text
Abstract:
Cette thèse est consacrée à l'étude des équations différentielles stochastiques rétrogrades (EDSR) et leurs applications. Dans le chapitre 1, on étudie le problème de maximisation de l'utilité de la richesse terminale où le prix de l'actif peut être discontinue sous des contraintes sur les stratégies de l'agent. Nous nous concentrons sur l'EDSR dont la solution représente l'utilité maximale, ce qui permet de transférer des résultats sur les EDSR quadratiques, en particulier les résultats de stabilité, au problème de maximisation d'utilité. Dans le chapitre 2, nous considèrons le problème de va
APA, Harvard, Vancouver, ISO, and other styles
2

Salhi, Rym. "Contributions to quadratic backward stochastic differential equations with jumps and applications." Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1023.

Full text
Abstract:
Cette thèse porte sur l'étude des équations différentielles stochastiques rétrogrades (EDSR) avec sauts et leurs applications.Dans le chapitre 1, nous étudions une classe d'EDSR lorsque le bruit provient d'un mouvement Brownien et d'une mesure aléatoire de saut indépendante à activité infinie. Plus précisément, nous traitons le cas où le générateur est à croissance quadratique et la condition terminale est non bornée. L'existence et l'unicité de la solution sont prouvées en combinant à la fois la procédure d'approximation monotone et une approche progressive. Cette méthode permet de résoudre l
APA, Harvard, Vancouver, ISO, and other styles
3

Mezerdi, Mohamed Amine. "Equations différentielles stochastiques de type McKean-Vlasov et leur contrôle optimal." Electronic Thesis or Diss., Toulon, 2020. http://www.theses.fr/2020TOUL0014.

Full text
Abstract:
Nous considérons les équations différentielles stochastiques (EDS) de Mc Kean-Vlasov, qui sont des EDS dont les coefficients de dérive et de diffusion dépendent non seulement de l'état du processus inconnu, mais également de sa loi de probabilité. Ces EDS, également appelées EDS à champ moyen, ont d'abord été étudiées en physique statistique et représentent en quelque sorte le comportement moyen d'un nombre infini de particules. Récemment, ce type d'équations a suscité un regain d'intérêt dans le contexte de la théorie des jeux à champ moyen. Cette théorie a été inventée par P.L. Lions et J.M.
APA, Harvard, Vancouver, ISO, and other styles
4

Mu, Tingshu. "Backward stochastic differential equations and applications : optimal switching, stochastic games, partial differential equations and mean-field." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1023.

Full text
Abstract:
Cette thèse est relative aux Equations Différentielles Stochastique Rétrogrades (EDSRs) réfléchies avec deux obstacles et leurs applications aux jeux de switching de somme nulle, aux systèmes d’équations aux dérivées partielles, aux problèmes de mean-field. Il y a deux parties dans cette thèse. La première partie porte sur le switching optimal stochastique et est composée de deux travaux. Dans le premier travail, nous montrons l’existence de la solution d’un système d’EDSR réfléchies à obstacles bilatéraux interconnectés dans le cadre probabiliste général. Ce problème est lié à un jeu de switc
APA, Harvard, Vancouver, ISO, and other styles
5

Bauer, Martin [Verfasser], and Thilo [Akademischer Betreuer] Meyer-Brandis. "Mean-field stochastic differential equations with irregular coefficients : solutions and regularity properties / Martin Bauer ; Betreuer: Thilo Meyer-Brandis." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1215499787/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mean-field stochastic differential equations (SDE)"

1

Algebraic And Geometric Aspects Of Integrable Systems And Random Matrices Ams Special Session Algebraic And Geometric Aspects Of Integrable Systems And Random Matrices January 67 2012 Boston Ma. American Mathematical Society, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mean-field stochastic differential equations (SDE)"

1

Field, Timothy R. "Dynamics of K-Scattering." In Electromagnetic Scattering from Random Media. Oxford University PressOxford, 2008. http://dx.doi.org/10.1093/oso/9780198570776.003.0010.

Full text
Abstract:
Abstract We derive the stochastic dynamics of the complex-valued amplitude resulting from coherent scattering from a random population of scatterers when this becomes asymptotically large. Considerations of a random walk model, introduced by Jakeman, are used to derive stochastic differential equations (SDEs) for the amplitude and corresponding intensity and phase stochastic processes. An analysis of the correlation structure in the fluctuations is provided and interpreted geometrically in terms of the gauge invariant properties of the field and the Markov property. A Fokker–Planck description for the evolution of the probability density is given and the equilibrium and detailed balance conditions are shown to hold. Expressions for the intensity autocorrelation function and power spectral density are provided in closed form. The practical implications of the stochastic theory are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Pérez-Mercade, Juan. "Coarse-Graining, Scaling, and Hierarchies." In Nonextensive Entropy. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195159769.003.0026.

Full text
Abstract:
We present a scenario that is useful for describing hierarchies within classes of many-component systems. Although this scenario may be quite general, it will be illustrated in the case of many-body systems whose space-time evolution can be described by a class of stochastic parabolic nonlinear partial differential equations. The stochastic component we will consider is in the form of additive noise, but other forms of noise such as multiplicative noise may also be incorporated. It will turn out that hierarchical behavior is only one of a class of asymptotic behaviors that can emerge when an out-of-equilibrium system is coarse grained. This phenomenology can be analyzed and described using the renormalization group (RG) [6, 15]. It corresponds to the existence of complex fixed points for the parameters characterizing the system. As is well known (see, for example, Hochberg and Perez-Mercader [8] and Onuki [12] and the references cited there), parameters such as viscosities, noise couplings, and masses evolve with scale. In other words, their values depend on the scale of resolution at which the system is observed (examined). These scaledependent parameters are called effective parameters. The evolutionary changes due to coarse graining or, equivalently, changes in system size, are analyzed using the RG and translate into differential equations for the probability distribution function [8] of the many-body system, or the n-point correlation functions and the effective parameters. Under certain conditions and for systems away from equilibrium, some of the fixed points of the equations describing the scale dependence of the effective parameters can be complex; this translates into complex anomalous dimensions for the stochastic fields and, therefore, the correlation functions of the field develop a complex piece. We will see that basic requirements such as reality of probabilities and maximal correlation lead, in the case of complex fixed points, to hierarchical behavior. This is a first step for the generalization of extensive behavior as described by real power laws to the case of complex exponents and the study of hierarchical behavior.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mean-field stochastic differential equations (SDE)"

1

Li, Li, and Han Yuqiao. "Mean-field backward stochastic differential equations with discontinuous coefficients." In 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6561843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, Hao, and Nana Zhao. "Mean-field Backward Stochastic Differential Equations with Quadratic Growth." In 2019 Chinese Control Conference (CCC). IEEE, 2019. http://dx.doi.org/10.23919/chicc.2019.8866613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hancheng, Guo, and Ren Xiuyun. "Mean-field backward stochastic differential equations with uniformly continuous generators." In 2014 26th Chinese Control And Decision Conference (CCDC). IEEE, 2014. http://dx.doi.org/10.1109/ccdc.2014.6852152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jinghan, Nana Zhao, and Yufeng Shi. "General mean-field backward stochastic differential equations with discontinuous coefficients." In 2022 41st Chinese Control Conference (CCC). IEEE, 2022. http://dx.doi.org/10.23919/ccc55666.2022.9902278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Min, Hui, and Chunzhen Wei. "Reflected mean-field backward stochastic differential equations with time delayed generators." In 2021 33rd Chinese Control and Decision Conference (CCDC). IEEE, 2021. http://dx.doi.org/10.1109/ccdc52312.2021.9601997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shanshan, Zuo, and Min Hui. "Optimal control problems of mean-field forward-backward stochastic differential equations with partial information." In 2013 25th Chinese Control and Decision Conference (CCDC). IEEE, 2013. http://dx.doi.org/10.1109/ccdc.2013.6561841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Safari, Mehdi. "Local Entropy Generation in Large Eddy Simulation of Turbulent Reacting Flows." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71525.

Full text
Abstract:
Analysis of local entropy generation is an effective means to investigate sources of efficiency loss in turbulent combustion from the standpoint of the second law of thermodynamics. A methodology, termed the entropy filtered density function (En-FDF), is developed for large eddy simulation (LES) of turbulent reacting flows to include the transport of entropy, which embodies the complete statistical information about entropy variations within the subgrid scale. The modeled En-FDF contains a stochastic differential equation (SDE) for entropy which is solved by a Lagrangian Monte Carlo method. In
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!