Academic literature on the topic 'MDSC'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MDSC.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MDSC"
Gjerstorff, Morten F., Sofie Traynor, Odd L. Gammelgaard, Simone Johansen, Christina B. Pedersen, Henrik J. Ditzel, and Mikkel G. Terp. "PDX Models: A Versatile Tool for Studying the Role of Myeloid-Derived Suppressor Cells in Breast Cancer." Cancers 14, no. 24 (December 13, 2022): 6153. http://dx.doi.org/10.3390/cancers14246153.
Full textSmith, Alyssa D., Chunwan Lu, Daniela Payne, Amy V. Paschall, John David Klement, Priscilla S. Redd, Mohammed Ibrahim, et al. "Autocrine IL6 activates the STAT3-DNMT axis to silence the TNFa-RIP1 necroptosis pathway to sustain myeloid-derived suppressor cell survival and accumulation." Journal of Immunology 204, no. 1_Supplement (May 1, 2020): 164.10. http://dx.doi.org/10.4049/jimmunol.204.supp.164.10.
Full textAristova, T. A., E. V. Batorov, V. V. Sergeevicheva, S. A. Sizikova, G. Yu Ushakova, A. V. Gilevich, E. Ya Shevela, A. A. Ostanin, and E. R. Chernykh. "Myeloidderived peripheral blood suppressor cells at haematopoietic stem cell mobilisation in multiple myeloma patients." Russian journal of hematology and transfusiology 66, no. 2 (September 2, 2021): 218–30. http://dx.doi.org/10.35754/0234-5730-2021-66-2-218-230.
Full textGreen, Kathy, Li Wang, Randolph Noelle, and William Green. "MDSC suppression of B cell responses in murine retrovirus-induced immunodeficiency: a role for VISTA (IRC4P.603)." Journal of Immunology 194, no. 1_Supplement (May 1, 2015): 57.20. http://dx.doi.org/10.4049/jimmunol.194.supp.57.20.
Full textXie, Qifa, Jingwen Zhang, Smita Ghare, Shirish Barve, and Craig McClain. "CD11b+/Gr-1int monocytic myeloid derived suppressor cells contribute to high-fat induced inflammation and delayed tolerance in mouse liver (54.15)." Journal of Immunology 186, no. 1_Supplement (April 1, 2011): 54.15. http://dx.doi.org/10.4049/jimmunol.186.supp.54.15.
Full textPark, Young-Jun, Boyeong Song, Yun-Sun Kim, Eun-Kyung Kim, Jung-Mi Lee, Ga-Eun Lee, Jae-Ouk Kim, Yeon-Jeong Kim, Woo-Sung Chang, and Chang-Yuil Kang. "Myeloid derived suppressor cells(MDSCs) emergence from distinct splenic precursors (162.28)." Journal of Immunology 188, no. 1_Supplement (May 1, 2012): 162.28. http://dx.doi.org/10.4049/jimmunol.188.supp.162.28.
Full textLi, Xing, Qing-Jian Ye, Yan-Fang Xing, Jin-Xiang Lin, Qu Lin, and Xiang-yuan Wu. "Expansion of Lox-1+CD15+ myeloid-derived suppressor cells in hepatocellular carcinoma patients." Journal of Clinical Oncology 35, no. 7_suppl (March 1, 2017): 124. http://dx.doi.org/10.1200/jco.2017.35.7_suppl.124.
Full textGreen, Kathy A., Randolph J. Noelle, William R. Green, and Li Wang. "Checkpoint Regulator VISTA plays a role in Suppression of B-Cell Responsiveness by Monocytic Myeloid Derived Suppressor Cells from LP-BM5 retrovirus-infected Mice." Journal of Immunology 196, no. 1_Supplement (May 1, 2016): 195.14. http://dx.doi.org/10.4049/jimmunol.196.supp.195.14.
Full textGreen, Kathy, Li Wang, and William Green. "Suppression of B cell responsiveness by LP-BM5 retrovirus-induced myeloid derived suppressor cells generated during a murine acquired immunodeficiency syndrome: a role for negative checkpoint regulator expression on the MDSCs (VIR7P.1059)." Journal of Immunology 192, no. 1_Supplement (May 1, 2014): 208.11. http://dx.doi.org/10.4049/jimmunol.192.supp.208.11.
Full textFallah, Jaleh, C. Marcela Diaz-Montero, Patricia A. Rayman, Wei (Auston) Wei, Iris Yeong Fung Sheng, James Finke, Jin Sub Kim, et al. "Correlation of myeloid-derived suppressor cells (MDSC) with pathologic complete response (pCR), recurrence free survival (RFS), and overall survival (OS) in patients with urothelial carcinoma (UC) undergoing cystectomy." Journal of Clinical Oncology 37, no. 7_suppl (March 1, 2019): 437. http://dx.doi.org/10.1200/jco.2019.37.7_suppl.437.
Full textDissertations / Theses on the topic "MDSC"
Limagne, Emeric. "Implication des cellules myéloïdes immunosuppressives (MDSC) et des lymphocytes TH17 dans l’efficacité des chimiothérapies et de l’immunothérapie." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEP004/document.
Full textActual oncology is still facing resistance and rapid progression of cancer. Intrinsic resistance mechanisms developed by tumor cells determine chemotherapy and immunotherapy efficacy. It is now recognized that the host immune response status is in part implicated in the therapeutic outcome of patients. The aim of our research team is to characterize this response and to study the impact of therapies in order to identify the mechanisms associated with future exhaust of the tumor. In this context, we have shown that chemotherapy (5-FU, oxaliplatin, anti-VEGF: FOLFOX-bevacizumab) in some patients causes a drop in devices gMDSC (granulocytic myeloid derived suppressive cells) that is associated with better therapeutic response. Nevertheless, as in mice, this effect on gMDSC causes an elevation of Th17, a pro-angiogenic population, which limits the effectiveness of chemotherapy. The result of our work was aimed to test the effect "anti-Th17" activating SIRT1 deacetylase histone. SIRT1 is an enzyme capable of disrupting the acetylation of STAT3, a key factor in the differentiation of Th17. We have shown that by using pharmacological agonists SIRT1 (resveratrol, SRT1720, metformin) inhibits Th17 polarization by deacetylation of STAT3 and that this effect can limit tumor growth in colorectal and melanoma murine models (B16F10, CT26). We validated this concept in humans, suggesting that it is possible to target Th17 cells by this strategy in addition to chemotherapy. The final component of this work is devoted to the comparison of peripheral immunological profile of healthy volunteers to a prospective cohort of non-small cell lung cancer. This study has allowed us to highlight the immune alterations induced by the tumor and to link these changes in response to nivolumab (anti-PD-1). A first response predictive model could be generated using data from a panel analysis of myeloid cells. This model proves once again that gMDSC have a negative predictive role, while antigen presenting (dendritic cells and monocytes) expressing PD-L1 has a good predictive role. Data presented in this section are preliminary and must be confirmed with the validation cohort that is currently included. All of this work has shown that it is essential to specifically target immunosuppressive myeloid cells and Th17 to promote the efficacy of chemotherapy and immunotherapy in cancer
Metzger, Philipp [Verfasser], and Max [Akademischer Betreuer] Schnurr. "Myeloid-derived suppressor cells (MDSC) in murine pancreatic cancer: Role of IRF4 in development and function of MDSC in RIG-I-like helicase-based immunotherapy / Philipp Metzger ; Betreuer: Max Schnurr." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1213245826/34.
Full textMundy-Bosse, Bethany L. "Myeloid-Derived Suppressor Cells in Tumor Immunology." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1311261626.
Full textPapalini, Francesca. "Analisi del programma tollerogenico delle cellule soppressorie di origine mieloide." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3423333.
Full textRIASSUNTO Le cellule tumorali sono in grado di modulare la reattività del sistema immunitario mediante un insieme di processi che regolano negativamente la risposta immunitaria. Questo processo è meglio noto come tolleranza immunologica. La chemioterapia antitumorale causa immunosoppressione ma favorisce anche l’attivazione di cellule effettrici del sistema immunitario sia, promuovendo la morte immunogenica delle cellule tumorali, che riducendo una componente cellulare fondamentale nella deregolazione della risposta immune indotta dal tumore. In questo lavoro abbiamo mostrato come il farmaco antimetabolita 5-fluorouracile induca un riduzione della popolazione mieloide soppressoria residente nella milza, attraverso una duratura azione che non influenza direttamente le cellule tumorali e che dipende integralmente dalla perturbazione della nicchia biologica condivisa dalle cellule CD8+ T central memory (TCM) e da un popolazione di cellule mieloidi attivate dal tumore, altamente proliferanti e dotate di una potente azione immunosoppressiva. L’eliminazione di questa nicchia mediante rimozione chirurgica della milza abroga completamente la tolleranza immunitaria indotta dal tumore. Inoltre, allo scopo di studiare i complessi meccanismi molecolari responsabili della funzione soppressoria delle MDSC, abbiamo caratterizzato la risposta purinergica P2-mediata indotta da ATP nelle cellule mieloidi, gettando le basi per una futura e approfondita indagine degli effetti mediati da questo messaggero extracellulare presente in elevate concentrazioni nel microambiente tumorale.
Assimacopoulos, Evangelia Maria. "Monitoring and Targeting of Myeloid-Derived Suppressor Cells (MDSC) in Different Mouse Cancer Models." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/318817.
Full textLereclus, Emilie. "Origine et rôles des cellules myéloïdes suppressives dans le sepsis." Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0060/document.
Full textMyeloid-Derived Suppressor Cells (MDSC) are a heterogeneous population of immature myeloid cell, and are regrouped in two subsets: the monocytic-MDSC (M-MDSC) and the polymorphonuclear-MDSC (PMN-MDSC). These cells have immunosuppressive capacities and mainly act on T cells. MDSC can express the ligand PD-L1 and induce PD-1 expressing-T cells exhaustion. During sepsis, several immunological changes occur, and MDSC probably downregulate the hyper-inflammatory state, contributing to the immunosuppression phase encountered in patients after a sepsis. Immunocompromised patients can develop secondary infections, and reactivate latent virus. The aims of our study were to highlight the origin of MDSC in sepsis, and to explore their roles in the immunosuppression state, especially in the Torque Teno Virus (TTV) reactivation. Our results show, both ex vivo and in vitro, that in sepsis, MDSC originate from bone marrow are induced by G-CSF and IL-6. These PD-L1 expressing-cells are increased in peripheral blood very early in sepsis, and persist during hospitalization. These MDSC are able to inhibit T cells in vitro. The increase of TTV viral load is observed in peripheral blood of patients but is not correlated with MDSC frequencies. These results suggest that during sepsis, the cytokine storm boosts PD-L1 expressing MDSC’s production by bone marrow, which contribute in peripheral blood to the immunosuppression
Falisi, Erika. "Caratterizzazione di una sottopopolazione mieloide umana analoga ai promielociti e dotata di attività immunosoppressoria." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3421993.
Full textIl sistema immunitario è in grado di bloccare il riconoscimento degli antigeni self e quindi lo sviluppo di risposte autoimmunitarie mediante il mantenimento della tolleranza immunitaria. Tale fenomeno viene sostenuto dall’azione di diverse popolazioni cellulari tolerogeniche, una delle quali è rappresentata cellule soppressorie di derivazione mieloide (MDSC). Le MDSC sono una popolazione molto eterogenea composta da cellule mieloidi immature caratterizzate dalla capacità di sopprimere sia la risposta immunitaria innata che quella adattativa. È stato ipotizzato che in condizioni patologiche, quali infezioni, malattie autoimmunitarie e neoplasie, il rilascio di diversi fattori di crescita induca l’aumento della mielopoiesi ed il blocco maturativo delle cellule mieloidi che si accumulano in uno stato di immaturità. Tali fattori solubili sono inoltre ritenuti coinvolti nella mobilizzazione e nell’attivazione delle MDSC. Le MDSC sono state identificate sia nel modello murino che in pazienti affetti da tumore. Mentre il fenotipo delle MDSC murine è facilmente identificabile mediante l’uso di marcatori specifici (Gr-1, CD11b e IL4Rα), le caratteristiche immunofenotipiche delle MDSC umane non sono ancora state definite. Nonostante questo, sia nel modello murino che nei pazienti affetti da tumore, le MDSC si sono dimostrate avere caratteristiche talvolta granulocitarie e talvolta monocitarie. In questo lavoro abbiamo dimostrato che è possibile indurre, in vitro, la generazione di MDSC umane a partire da precursori midollari coltivati in presenza di diversi fattori solubili, tra i quali il G-CSF ed il GM-CSF. Il nostro studio ha dimostrato che l’uso combinato di G-CSF e di GM-CSF permette di indurre l’accumulo di cellule mieloidi immature (BM-MDSC) con caratteristiche simili a quelle da noi identificate nel sangue di pazienti affetti da tumore. Le BM-MDSC sono in grado di inibire la proliferazione di linfociti T attivati sia con mitogeni che con allo-antigeni. Inoltre abbiamo dimostrato che la soppressione mediata dalle BM-MDSC è associata sia alla diminuzione dell’espressione delle catene ζ ed ε del CD3 che alla riduzione della produzione di IFN-γ secreto dagli stessi linfociti T. Considerando l’elevata eterogeneità delle BM-MDSC, in questo lavoro abbiamo cercato di identificare quali sottopopolazioni di BM-MDSC fossero responsabili dall’attività soppressoria. Mediante esperimenti di sorting cellulare abbiamo dimostrato, che le BM-MDSC sono cellule immature ascrivibili ad un preciso stadio di differenziazione. Queste cellule, definite dal fenotipo CD16-/CD11blow/-, presentano infatti caratteristiche morfologiche simili ai promielociti isolati dal midollo ex-vivo ma, a differenza di queste, sono caratterizzate da una minore granulosità, da maggiori dimensioni e dalla capacità si sopprimere la proliferazione linfocitaria accompagnata anche dalla diminuzione dell’espressione della catena ε del CD3 espressa sulla superficie dei linfociti T. Abbiamo inoltre evidenziato l’eterogeneità di questa frazione dimostrando che, al suo interno, si possono identificare altre due sottopopolazioni caratterizzate da una diversa fluorescenza nella lunghezza d’onda del rosso, da una diversa granulosità e da una diversa attività soppressoria. Nella seconda parte del lavoro ci siamo concentrati sulla valutazione degli effetti della chemioterapia sull’accumulo e sulla funzionalità delle MDSC, una delle principali popolazioni cellulari coinvolte nell’immunosoppressione associata ai tumori e responsabili dell’inefficacia delle terapie immunoterapiche. I dati da noi ottenuti dimostrano che, come osservato nel modello murino, l’aggiunta del 5-fluorouracile a basse dosi è in grado di indurre l’eliminazione dell’attività soppressoria delle BM-MDSC nei confronti dei linfociti T. Queste osservazioni permettono di suggerire il possibile utilizzo di alcuni chemioterapici come adiuvanti nei trattamenti immunoterapici, in quanto in grado di eliminare una delle popolazioni coinvolte nell’immunosoppressione associata ai tumori.
Schlecker, Eva [Verfasser], and Viktor [Akademischer Betreuer] Umansky. "The role of tumor-infiltrating MDSC subsets in tumor progression / Eva Schlecker ; Betreuer: Viktor Umansky." Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179229649/34.
Full textWang, Ninghua. "Evidence for the Intermediate Phase in Bulk (K2O)x(GeO2)1-x glasses and its consequences on Electrical and Thermal Properties." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1187020710.
Full textWeber, Rebekka Renate [Verfasser], and Viktor [Akademischer Betreuer] Umansky. "Regulation of CCR5 expression and immunosuppressive phenotype of MDSC in melanoma / Rebekka Renate Weber ; Betreuer: Viktor Umansky." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1203716168/34.
Full textBooks on the topic "MDSC"
Massachusetts. Metropolitan District Commission. Division of Parks and Recreation. MDC bikepaths. Boston: MDC, Division of Parks and Recreation, 1986.
Find full textByrne, Dorena Orlagh. Data warehousing within MDS Harris. [s.l: The author], 1999.
Find full textResti, Benedetto Marino Di. Libro dei conti (MDXC-MDCV). Sofii︠a︡: Glavno upravlenie na arkhivite pri Ministerskii︠a︡ suvet, 2004.
Find full textResti, Benedetto Marino Di. Libro dei conti (MDXC-MDCV). Sofii︠a︡: Glavno upravlenie na arkhivite pri Ministerskii︠a︡ suvet, 2004.
Find full textHopp, Julia. The MDS troubleshooter. 2nd ed. Marblehead, MA: Opus Communications, 2002.
Find full textHopp, Julia. The MDS troubleshooter. 3rd ed. Marblehead, MA: HCPro, 2006.
Find full textI, Cofer Jennifer, ed. The MDS troubleshooter. Marblehead, MA: Opus Communications, 2000.
Find full textThe MDC Shay handbook. Arlington, Wash: Oso Pub. Co., 1997.
Find full textThe MDS coordinator's field guide. Marblehead, MA: HCPro, 2007.
Find full textMartin, Dalton &. Spettel CPA Review Course LLC. MDS CPA review: Business law. [Columbus]: Martin, Dalton & Spettel CPA Review Course, LLC, 2000.
Find full textBook chapters on the topic "MDSC"
Escors, David, and Grazyna Kochan. "Ex Vivo MDSC Differentiation Models." In Myeloid-Derived Suppressor Cells and Cancer, 49–59. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26821-7_4.
Full textShibata, Masahiko, Kenji Gonda, and Seiichi Takenoshita. "MDSC: Myeloid-Derived Suppressor Cells." In Immunotherapy of Cancer, 323–34. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55031-0_22.
Full textEhrenstein, Gottfried Wilhelm. "Dynamische Differenzkalorimetrie (DDK, DSC, MDSC)." In Thermische Analyse, 43–80. München: Carl Hanser Verlag GmbH & Co. KG, 2020. http://dx.doi.org/10.3139/9783446464247.003.
Full textDe Meuter, P., H. Rahier, and B. Van Mele. "Recrystallisation of starch studied with MDSC." In Hot Topics in Thermal Analysis and Calorimetry, 49–68. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2219-0_3.
Full textSvider, Peter, Shu-Hsia Chen, Andrew G. Sikora, and Wen-Chin Yang. "Programming of MDSC: New Opportunities for Targeted Therapy." In The Tumor Immunoenvironment, 567–84. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6217-6_24.
Full textSanchez-Pino, Maria Dulfary. "Detection of Circulating and Tissue Myeloid-Derived Suppressor Cells (MDSC) by Flow Cytometry." In Methods in Molecular Biology, 247–61. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1948-3_17.
Full textBruderek, Kirsten, Ronja Schirrmann, and Sven Brandau. "Immunophenotyping of Circulating Myeloid-Derived Suppressor Cells (MDSC) in the Peripheral Blood of Cancer Patients." In Methods in Molecular Biology, 1–7. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-1060-2_1.
Full textKochan, Grazyna. "Human MDSCs." In Myeloid-Derived Suppressor Cells and Cancer, 39–48. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26821-7_3.
Full textBrambilla, Marco, Jordi Cabot, and Manuel Wimmer. "MDSE Principles." In Model-Driven Software Engineering in Practice, 7–24. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-02546-4_2.
Full textOette, Mark, Marvin J. Stone, Hendrik P. N. Scholl, Peter Charbel Issa, Monika Fleckenstein, Steffen Schmitz-Valckenberg, Frank G. Holz, et al. "MDS." In Encyclopedia of Molecular Mechanisms of Disease, 1270. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-29676-8_6247.
Full textConference papers on the topic "MDSC"
Balouek-Thomert, Daniel, Pedro Silva, Kevin Fauvel, Alexandru Costan, Gabriel Antoniu, and Manish Parashar. "MDSC." In UCC '21: 2021 IEEE/ACM 14th International Conference on Utility and Cloud Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3492323.3495590.
Full textCassino, Theresa R., Masaho Okada, Lauren Drowley, Johnny Huard, and Philip R. LeDuc. "Mechanical Stimulation Improves Muscle-Derived Stem Cell Transplantation for Cardiac Repair." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192941.
Full textHuang., Chin-NIng. "Abstract 755: Antagonistic effect of M-MDSC and N-MDSC during astrocytoma progression." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-755.
Full textCassino, Theresa R., Masaho Okada, Lauren M. Drowley, Joseph Feduska, Johnny Huard, and Philip R. LeDuc. "Using Mechanical Environment to Enhance Stem Cell Transplantation in Muscle Regeneration." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176545.
Full textHunnicutt, Ray, and David Garza. "Mission Data Storage Consolidation (MDSC)." In SpaceOps 2002 Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-t2-71.
Full textCole, Kathryn, Holly Britton, Phyllis Warkentin, and James E. Talmadge. "Abstract 5714: SPADE identification of novel MDSC subsets." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-5714.
Full textCalvert, Ryan D., James C. Fleet, Ye Chen, Alex Pothen, Bartek Rajwa, Pierrick G. Fournier, Patricia Juarez, Theresa A. Guise, Timothy L. Ratliff, and Ben D. Elzey. "Abstract 4741: Monocytic myeloid derived suppressor cells (M-MDSC) from spleen are multipotent while tumor M-MDSC have limited plasticity." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-4741.
Full textParker, Katherine, Suzanne Rosenberg, Pratima Sinha, Huan Yang, Kevin Tracey, and Jianhua Li. "Abstract 461: Inhibition of HMGB1 delays tumor progression, reduces MDSC-mediated immune suppression, and diminishes MDSC-macrophage cross-talk interaction." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-461.
Full textBryant, A. J., C. Fu, Y. Lu, M. Williams, M. Brantly, and E. Scott. "Endothelial Inflammatory Signaling Suppresses MDSC-Mediated Pulmonary Vascular Remodeling." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a5282.
Full textHashimoto, Ayumi, Vinit Kumar, Peter Ordentlich, and Dmitry I. Gabrilovich. "Abstract 5595: HDAC inhibitor Entinostat disrupts function of PMN-MDSC." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5595.
Full textReports on the topic "MDSC"
Story, Natasha Claire. Investigating the Thermal Behavior of Polymers by Modulated Differential Scanning Calorimetry (MDSC) – A Review. Office of Scientific and Technical Information (OSTI), June 2020. http://dx.doi.org/10.2172/1633549.
Full textSchembri, Philip, and Jillian Adams. LANL MDMC Member Update: Summer 2020. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/1643904.
Full textSchembri, Philip. LANL Member Update for the 41st MDMC. Office of Scientific and Technical Information (OSTI), February 2023. http://dx.doi.org/10.2172/1923626.
Full textBailey, Marcus, Lening Rivera, Alex Altunes, and Angela Walters. 5 years of lessons via MDSGC Payloads at Capitol. Ames (Iowa): Iowa State University. Library. Digital Press, January 2018. http://dx.doi.org/10.31274/ahac.11071.
Full textRao, Shuyun. Study of Rpl22 in MDS and AML. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada613241.
Full textEl-Rayes, Khaled, and Ernest-John Ignacio. Evaluating the Benefits of Implementing Mobile Road Weather Information Sensors. Illinois Center for Transportation, February 2022. http://dx.doi.org/10.36501/0197-9191/22-004.
Full textPrecoda, K., and T. Meng. Long-term Stability of Listening Strategies Determined by MDS. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada357785.
Full textShelley, John, Christopher Haring, and Nathan Chrisman. Evaluation of cedar tree revetments for bank stabilization at the Locust Creek Conservation Area, Missouri : quantifying bank erosion volumes from preproject to postfailure. Engineer Research and Development Center (U.S.), December 2022. http://dx.doi.org/10.21079/11681/46144.
Full textVerma, Amit. Meta-Analytical Online Repository of Gene Expression Profiles of MDS Stem Cells. Fort Belvoir, VA: Defense Technical Information Center, October 2013. http://dx.doi.org/10.21236/ada603210.
Full textGuan, X., and E. C. Uberbacher. A multiple divide-and-conquer (MDC) algorithm for optimal alignments in linear space. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10168027.
Full text