Academic literature on the topic 'MDLNN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MDLNN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MDLNN"
AL-Ghamdi, Abdullah S. AL-Malaise, and Mahmoud Ragab. "Tunicate swarm algorithm with deep convolutional neural network-driven colorectal cancer classification from histopathological imaging data." Electronic Research Archive 31, no. 5 (2023): 2793–812. http://dx.doi.org/10.3934/era.2023141.
Full textLy, Ngoc Q., Tuong K. Do, and Binh X. Nguyen. "Large-Scale Coarse-to-Fine Object Retrieval Ontology and Deep Local Multitask Learning." Computational Intelligence and Neuroscience 2019 (July 18, 2019): 1–40. http://dx.doi.org/10.1155/2019/1483294.
Full textKhan, Mohammad Ayoub. "An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier." IEEE Access 8 (2020): 34717–27. http://dx.doi.org/10.1109/access.2020.2974687.
Full textPraveena, Anto, and B. Bharathi. "An approach to remove duplication records in healthcare dataset based on Mimic Deep Neural Network (MDNN) and Chaotic Whale Optimization (CWO)." Concurrent Engineering 29, no. 1 (March 2021): 58–67. http://dx.doi.org/10.1177/1063293x21992014.
Full textLee, Jandee, Chan Hee Kim, In Kyung Min, Seonhyang Jeong, Hyunji Kim, Moon Jung Choi, Hyeong Ju Kwon, Sang Geun Jung, and Young Suk Jo. "Detailed characterization of metastatic lymph nodes improves the prediction accuracy of currently used risk stratification systems in N1 stage papillary thyroid cancer." European Journal of Endocrinology 183, no. 1 (July 2020): 83–93. http://dx.doi.org/10.1530/eje-20-0131.
Full textSukardi, Hadi Ahmad. "ANALISIS INVESTASI SAHAM DENGAN MENGGUNAKAN CAPITAL ASSET PRICING MODEL." Jurnal SIKAP (Sistem Informasi, Keuangan, Auditing Dan Perpajakan) 5, no. 1 (February 8, 2021): 18. http://dx.doi.org/10.32897/jsikap.v5i1.251.
Full textChen, Yi, Jin Zhou, Qianting Gao, Jing Gao, and Wei Zhang. "MDNN: Predicting Student Engagement via Gaze Direction and Facial Expression in Collaborative Learning." Computer Modeling in Engineering & Sciences 136, no. 1 (2023): 381–401. http://dx.doi.org/10.32604/cmes.2023.023234.
Full textLackner, Thomas E. "Advances in Managing Overactive Bladder." Journal of Pharmacy Practice 13, no. 4 (August 1, 2000): 277–89. http://dx.doi.org/10.1106/8843-q9gl-g9xc-mdln.
Full textWang, Xingmei, Anhua Liu, Yu Zhang, and Fuzhao Xue. "Underwater Acoustic Target Recognition: A Combination of Multi-Dimensional Fusion Features and Modified Deep Neural Network." Remote Sensing 11, no. 16 (August 13, 2019): 1888. http://dx.doi.org/10.3390/rs11161888.
Full textHuang, Xixian, Xiongjun Zeng, Qingxiang Wu, Yu Lu, Xi Huang, and Hua Zheng. "Face Verification Based on Deep Learning for Person Tracking in Hazardous Goods Factories." Processes 10, no. 2 (February 17, 2022): 380. http://dx.doi.org/10.3390/pr10020380.
Full textDissertations / Theses on the topic "MDLNN"
Terefe, Adisu Wagaw. "Handwritten Recognition for Ethiopic (Ge’ez) Ancient Manuscript Documents." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288145.
Full textDet handskrivna igenkännings systemet är en process för att lära sig ett mönster från en viss bild av text. Erkännande Processen kombinerar vanligtvis en datorvisionsuppgift med sekvens inlärningstekniker. Transkribering av texter från den skannade bilden är fortfarande ett utmanande problem, särskilt när dokumenten är mycket försämrad eller har för omåttlig dammiga buller. Nuförtiden finns det flera handskrivna igenkänningar system både kommersiellt och i gratisversionen, särskilt för latin baserade språk. Det finns dock ingen tidigare studie som har byggts för Ge’ez handskrivna gamla manuskript dokument. I motsats till detta språk har många mysterier från det förflutna, i vetenskapens mänskliga historia, arkitektur, medicin och astronomi. I denna avhandling presenterar vi två separata igenkänningssystem. (1) Ett karaktärs nivå igenkänningssystem som kombinerar bildigenkänning för karaktär segmentering från forntida böcker och ett vanilj Convolutional Neural Network (CNN) för att erkänna karaktärer. (2) Ett änd-till-slut-segmentering fritt handskrivet igenkänningssystem som använder CNN, Multi-Dimensional Recurrent Neural Network (MDRNN) med Connectionist Temporal Classification (CTC) för etiopiska (Ge’ez) manuskript dokument. Den föreslagna karaktär igenkännings modellen överträffar 97,78% noggrannhet. Däremot ger den andra modellen ett uppmuntrande resultat som indikerar att ytterligare studera språk egenskaperna för bättre igenkänning av alla antika böcker.
GAUTAM, AJAI KUMAR. "BIOMETRIC RECOGNITION." Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19630.
Full textBooks on the topic "MDLNN"
Studer, J. A. GEOMECH MDLNG IN ENGNG PRACTICE. Taylor & Francis, 1986.
Find full textSpsht Mdlng and Dec Analysis. 4th ed. South-Western, Div of Thomson Learning, 2003.
Find full textPetroleum Reservoir Mdlng Simulation Geol Geostatistics Perf. McGraw-Hill Education, 2019.
Find full textBook chapters on the topic "MDLNN"
Bezerra, Byron Leite Dantas, Cleber Zanchettin, and Vinícius Braga de Andrade. "A MDRNN-SVM Hybrid Model for Cursive Offline Handwriting Recognition." In Artificial Neural Networks and Machine Learning – ICANN 2012, 246–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33266-1_31.
Full textSharma, Swati, and Varun Prakash Saxena. "Hybrid Sign Language Learning Approach Using Multi-scale Hierarchical Deep Convolutional Neural Network (MDCnn)." In Advances in Intelligent Systems and Computing, 663–77. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5443-6_51.
Full text"Optimizing MDLNS Implementations." In Multiple-Base Number System, 203–26. CRC Press, 2017. http://dx.doi.org/10.1201/b11652-8.
Full text"The Multidimensional Logarithmic Number System (MDLNS)." In Multiple-Base Number System, 109–34. CRC Press, 2017. http://dx.doi.org/10.1201/b11652-5.
Full textSingh, Pooja, Usha Chauhan, S. P. S. Chauhan, and Harshit Singh. "Advanced Detection." In Advances in Electronic Government, Digital Divide, and Regional Development, 248–68. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6418-2.ch014.
Full textConference papers on the topic "MDLNN"
Reddy, Arikatla Venkata, Pasupuleti Sai Kumar, Pathan Asif Khan, Venkata Subba Reddy Karumudi, Pradeepini G, and Sagar Imambi. "MDLNN Approach for Alcohol Detection using IRIS." In 2023 Second International Conference on Electronics and Renewable Systems (ICEARS). IEEE, 2023. http://dx.doi.org/10.1109/icears56392.2023.10085257.
Full textRosaline, S., M. Ayeesha Nasreen, P. Suganthi, T. Manimegalai, and G. Ramkumar. "Predicting Melancholy risk among IT professionals using Modified Deep Learning Neural Network (MDLNN)." In 2022 IEEE 11th International Conference on Communication Systems and Network Technologies (CSNT). IEEE, 2022. http://dx.doi.org/10.1109/csnt54456.2022.9787571.
Full textLyu, Tengfei, Jianliang Gao, Ling Tian, Zhao Li, Peng Zhang, and Ji Zhang. "MDNN: A Multimodal Deep Neural Network for Predicting Drug-Drug Interaction Events." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/487.
Full textMartin, Patrick, Jean-Pierre de la Croix, and Magnus Egersted. "MDLn: A Motion Description Language for networked systems." In 2008 47th IEEE Conference on Decision and Control. IEEE, 2008. http://dx.doi.org/10.1109/cdc.2008.4739185.
Full textZhang, Xulong, Jianzong Wang, Ning Cheng, and Jing Xiao. "MDCNN-SID: Multi-scale Dilated Convolution Network for Singer Identification." In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022. http://dx.doi.org/10.1109/ijcnn55064.2022.9892338.
Full textFrancisco, Maxwell, Felipe Gouveia, Byron Bezerra, and Mêuser Valença. "Reconhecimento de Escrita Cursiva Offline Utilizando um Modelo Composto por MDRNN-RC." In 11. Congresso Brasileiro de Inteligência Computacional. SBIC, 2016. http://dx.doi.org/10.21528/cbic2013-089.
Full textSalminen, Jukka, Rob Hindley, and Sami Saarinen. "Mackenzie Delta LNG Transport and Ice Management Study." In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32302-ms.
Full text