Academic literature on the topic 'McMurdo Sound'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'McMurdo Sound.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "McMurdo Sound"
Parker, S. J., S. Mormede, S. M. Hanchet, A. Devries, S. Canese, and L. Ghigliotti. "Monitoring Antarctic toothfish in McMurdo Sound to evaluate the Ross Sea region Marine Protected Area." Antarctic Science 31, no. 4 (June 14, 2019): 195–207. http://dx.doi.org/10.1017/s0954102019000245.
Full textCheng, Chen, Adrian Jenkins, Paul R. Holland, Zhaomin Wang, Chengyan Liu, and Ruibin Xia. "Responses of sub-ice platelet layer thickening rate and frazil-ice concentration to variations in ice-shelf water supercooling in McMurdo Sound, Antarctica." Cryosphere 13, no. 1 (January 29, 2019): 265–80. http://dx.doi.org/10.5194/tc-13-265-2019.
Full textParker, Steven J., Sophie Mormede, Arthur L. Devries, Stuart M. Hanchet, and Regina Eisert. "Have Antarctic toothfish returned to McMurdo Sound?" Antarctic Science 28, no. 1 (September 28, 2015): 29–34. http://dx.doi.org/10.1017/s0954102015000450.
Full textChrist, Andrew J., and Paul R. Bierman. "The local Last Glacial Maximum in McMurdo Sound, Antarctica: Implications for ice-sheet behavior in the Ross Sea Embayment." GSA Bulletin 132, no. 1-2 (May 2, 2019): 31–47. http://dx.doi.org/10.1130/b35139.1.
Full textDunbar, Robert B., Amy R. Leventer, and William L. Stockton. "Biogenic sedimentation in McMurdo Sound, Antarctica." Marine Geology 85, no. 2-4 (January 1989): 155–79. http://dx.doi.org/10.1016/0025-3227(89)90152-7.
Full textLeventer, Amy, and Robert B. Dunbar. "Diatom flux in McMurdo Sound, Antarctica." Marine Micropaleontology 12 (January 1987): 49–64. http://dx.doi.org/10.1016/0377-8398(87)90013-2.
Full textTalalay, Pavel G., and Alex R. Pyne. "Geological drilling in McMurdo Dry Valleys and McMurdo Sound, Antarctica: Historical development." Cold Regions Science and Technology 141 (September 2017): 131–62. http://dx.doi.org/10.1016/j.coldregions.2017.06.007.
Full textGough, Alexander J., Andrew R. Mahoney, Pat J. Langhorne, Michael J. M. Williams, Natalie J. Robinson, and Tim G. Haskell. "Signatures of supercooling: McMurdo Sound platelet ice." Journal of Glaciology 58, no. 207 (2012): 38–50. http://dx.doi.org/10.3189/2012jog10j218.
Full textHarris, Colin M. "Protected areas review: McMurdo Sound, Ross Sea." Polar Record 30, no. 174 (July 1994): 189–92. http://dx.doi.org/10.1017/s0032247400024244.
Full textWells, Rufus M. G. "Respiration of Antarctic fish from McMurdo Sound." Comparative Biochemistry and Physiology Part A: Physiology 88, no. 3 (January 1987): 417–24. http://dx.doi.org/10.1016/0300-9629(87)90056-9.
Full textDissertations / Theses on the topic "McMurdo Sound"
Hay, Timothy Deane. "MAX-DOAS measurements of bromine explosion events in McMurdo Sound, Antarctica." Thesis, University of Canterbury. Physics and Astronomy, 2010. http://hdl.handle.net/10092/5394.
Full textRaimondi, Ellen Lynn. "Biodegradation and idealized modeling of drilling fluids, South McMurdo Sound, Antarctica." Thesis, Northern Illinois University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10008797.
Full textThis project explored the potential fate and transport of seawater-based drilling fluid used in the Antarctic Drilling Program (ANDRILL) South McMurdo Sound project (SMS). The SMS drilling reported a loss of 5.6 × 10 5 liters of drilling fluid to the surrounding formation throughout a borehole depth of 1139m. The introduction of these drilling fluids raise concerns of potential contamination to a pristine, isolated environment. The volume of fluid lost to the subsurface is unrecoverable and will only break down through natural attenuation processes, such as biodegradation. The objectives of this study are to estimate the extent of fluid migration laterally from the borehole and to determine when biodegradation of the water-based drilling fluid is effectively occurring. Variable density groundwater flow modeling (SEAWAT) was used to simulate the environment around the borehole. Applying stresses similar to the drilling events produced an estimate of how far fluid will be transported as drilling fluid is being circulated. Results show the fluid to migrate up to 7.5m into the subsurface. Additionally, laboratory microcosms were set up to incubate drilling fluid samples at various temperatures (5, 25, and 50°C) under aerobic and anaerobic conditions. Experimental data collected over 188 days was analyzed to evaluate the time frame when biodegradation of drilling fluids occurred. Carbon isotope fractionation ( 13C/12C) was used to determine the ability of the drilling fluids to be used as a food source. Biological data observed changes in microbial growth using DNA quantification, and changes in microbial communities using Biolog EcoPlates™. Results show a positive correlation between the increase of δ13C (‰) values and an increase in DNA (ng/µl) quantity. Data from geochemical and community changes indicate biodegradation of the drilling fluid occurred between time 40 and time 100. The methods employed to investigate fate and transport is a unique approach, and applied to these water-based drilling fluids for the first time in this study.
Adlam, Leah Seree. "Soil climate and permafrost temperature monitoring in the McMurdo Sound region, Antarctica." The University of Waikato, 2009. http://hdl.handle.net/10289/2764.
Full textSantos, Claudineia Lizieri dos. "Environmental attributes in assembling cyanobacterial communities from the Mcmurdo Sound region, Antarctica." Universidade Federal de Viçosa, 2014. http://www.locus.ufv.br/handle/123456789/6588.
Full textMade available in DSpace on 2015-11-09T14:17:07Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1609478 bytes, checksum: ea8fe80d5c2b8d23563fa52eff282454 (MD5) Previous issue date: 2014-03-18
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
A variedade de ecossistemas microbianos que existe na Antártica representa uma oportunidade extraordinária para pesquisas sobre a ecologia, diversidade e evolução microbiana, principamente em termos de cianobactéria. Neste trabalho, foi avaliado o papel de atributos ambientais no controle da montagem de esteiras microbianas antárticas. Inicialmente foi caracterizado a diversidade cianobacteriana das esteiras ao longo de gradientes ambientais na região do McMurdo Sound, Antártica continental. Em seguida, foi avaliado o papel das variáveis ambientais na determinação da composição da assembléia de cianobactérias através da análise de amostras de água e esteiras de cianobactérias microbianas de 25 lagos distribuídos em quatro distintas áreas geográficas: McMurdo Ice Shelf, Ross Island e Upper e Lower Wright Valleys. Finalmente, foi realizado experimentos de laboratório para determinar a extensão com que a composição de espécies afeta a formação das esteiras microbianas. Vinte e nove morfoespécies foram identificadas e descritas no capítulo 1. Quatro foram designadas à ordem Chroococcales, três Nostocales e 22 Oscillatoriales. No segundo capítulo foram investigados os fatores que podem estar envolvidos na determinação da presença e/ou ausência de cianobactérias dentro da comunidade das esteiras microbianas em cada lago amostrado. Os lagos das regiões Ross Island, McMurdo Ice Shelf e Upper e Lower Wright Vallyes apresentaram algumas características específicas próprias de cada área em termos de fatores físico-químicos e diversidade de cianobactérias, embora em vários casos houve uma sobreposição considerável das características. A análise multivariada dos dados, com base em variáveis físico-químicas mostrou que os lagos de cada área amostrada tendeu a se agruparem por local, embora com considerável sobreposição, com os dois Wright Valleys e as duas zonas costeiras tendendo a ser mais semelhantes entre si. Este padrão tendeu a ser reproduzido em análises dos dados de biomassa e composição das espécies, onde foi possível indentificar táxons que foram amplamente espalhados por toda a região e outros que foram mais restritos por área. A importância da dispersão e condições de crescimento na condução desse padrão foi discutida. No terceiro capítulo foi desenvolvido um experimento para avaliar o papel de cepas de cianobactérias isoladas no processo de formação de esteiras microbianas. Seis cepas de cianobactérias foram utilizadas, em combinações variadas, para formar biofilmes em condições de laboratório: CYN-50 (Phormidium cf. autumnale); CYN-68 (Leptolyngbya A); CYN-65 (Leptolyngbya B); CYN-66 (Microcoleus sp.); CYN-67 (cf. Aphanocapsa) e CYN- 72 (Nostoc sp.). O conteúdo de clorofila-a, exopolissacarídeo e matéria orgânica foi avaliado e utilizado como medida de avaliação do desenvolvimento dos biofilmes. No final do experimento, observou-se que os biofilmes desenvolvidos mostraram-se diferentes em termos de sua morfologia e que as cianobactérias filamentosas “oscilatoriales” são requeridas para a formação de biofilme consistente, entretanto, todas as cepas morfologicamente diferentes produziram efeito nas matrizes dos biofilmes. Phormidium produziu o melhor biofilme desenvolvido. Em conclusão, este trabalho fornece um maior conhecimento sobre a taxonomia e ecologia de cianobactérias da Antártica na região do McMurdo Sound. Nós identificamos uma mistura de organismos amplamente distribuídos e tolerantes e outros com distribuições mais locais e requerimentos ambientais específicos. A significância destes em temos de gestão da biodiversidade antártica também foi discutida. *INGLÊS* SANTOS, Claudineia Lizieri dos, D.Sc., Universidade Federal de Viçosa, March of 2014. Environmental attributes in assembling cyanobacterial communities from the Mcmurdo Sound region, Antarctica.
The variety of microbial ecosystems that exist in Antarctica represents an extraordinary opportunity for research on microbial ecology, diversity and evolution, particularly in terms of cyanobacteria. In this work we focus on the role of environment in controlling cyanobacterial mat assembly, and begin by describing the cyanobacterial diversity of mats along environmental gradients in the McMurdo Sound region, continental Antarctica. We then evaluated the role of environmental variables in determining their composition by analysing water and microbial cyanobacterial mat samples from 25 ponds from four distinct geographic sites: McMurdo Ice Shelf, Ross Island and Upper and Lower Wright Valleys. Finally we undertook a series of laboratory experiments to determine the extent to which species composition affects mat formation. Twenty nine morphospecies are identified and described in chapter one. Four were assigned to the order Chroococcales, three to the Nostocales and 22 to the Oscillatoriales. In chapter two, we investigated the factors that appeared to determine the presence or absence of morphospecies within the cyanobacterial mat community at each sampled pond. Ross Island, McMurdo Ice Shelf and Upper and Lower Wright Valleys ponds each showed some specific features in terms of physical-chemical factors and cyanobacteria diversity, though in many cases there was considerable overlap. Multivariate analysis based on physic-chemical variables showed that the ponds from each site tended to cluster by site, though with considerable overlap, and with the two Wright Valley and two coastal sites tending to be more similar to each other. This pattern tended to be reproduced in analysis of biomass and species composition data, and we were able to identify taxa that were broadly spread across the region and others that were more restricted by area. The importance of dispersal and growth conditions in driving this pattern is discussed. In chapter 3 we developed an experiment to evaluate the role of isolated cyanobacteria strains on the mat-building process. Six cyanobacteria strains, in varying combinations, were used to grow mats under laboratory conditions: CYN-50 (Phormidium cf. autumnale); CYN-68 (Leptolyngbya A); CYN-65 (Leptolyngbya B); CYN-66 (Microcoleus sp.); CYN-67 (cf. Aphanocapsa) and CYN-72 (Nostoc sp.). The content of chlorophyll-a, exopolysaccharide and organic matter was evaluated to assess mat development. At the end of our experiment, we observed that the mats developments showed variety in terms of their morphology, that oscillatorean cyanobacteria are required for coherent mat formation, but that different strains all produced effect mat matrices. P. autumnale produced the best developed mats. In conclusion, our findings provide an increased knowledge on the Antarctica cyanobacteria taxonomy and ecology in the McMurdo Sound region. We identified a mix of broadly tolerant, widely distributed organisms and other with more local distributions and specific environmental requirements. The significance of this in terms of management of Antarctic biodiversity is discussed.
Patterson, Molly O’Rourke. "FORAMINIFERA FAUNA RECOVERED FROM ANDRILL’S (ANtarctica geological DRILLing program) SOUTHERN MCMURDO SOUND (SMS) PROJECT." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/411.
Full textRousseau, Ludivine Blandine. "Reproductive strategies of Weddell seals in McMurdo Sound, Antarctica: relationship among vocalizations, behaviors, and social interactions." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5776.
Full textStutz, James Edward II. "Reconstruction of LGM and Post LGM Glacial Environment of McMurdo Sound: Implications for Ice Dynamics, Depositional Systems and Glacial Isostatic Adjustment." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1324595182.
Full textChen, Jie. "The Influence of Lithospheric Flexure Induced by Volcano Loading on Neogene Basin Evolution in McMurdo Sound, West Antarctica." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1448967436.
Full textHall, Tricia L. "Paleogene-Neogene seismic stratigraphy of McMurdo Sound, Antarctica: tectonic and climate controls on erosion, sediment delivery and preservation." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1500407899029314.
Full textClendon, Penelope Catherine. "Summertime surface mass balance and atmospheric processes on the McMurdo Ice Shelf, Antarctica." Thesis, University of Canterbury. Geography, 2009. http://hdl.handle.net/10092/2630.
Full textBooks on the topic "McMurdo Sound"
Belgrave, D. V. McMurdo Sound: Geodetic control network. Wellington: Dept. of Survey and Land Information, 1992.
Find full textStilwell, Jeffrey D., and Rodney M. Feldmann, eds. Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East Antarctica. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/ar076.
Full textOn the Ice: An Intimate Portrait of Life in McMurdo Station, Antarctica. Minneapolis, USA: Milkweed Editions, 2005.
Find full textUnited States Geological Survey. Antarctica satellite image map: Ross Island and McMurdo Sound. For sale by the Survey, 2000.
Find full textJ, Barrett P., and New Zealand. Dept. of Scientific and Industrial Research., eds. Antarctic Cenozoic history from the CIROS-1 drillhole, McMurdo Sound. Wellington: DSIR Pub., 1989.
Find full textJ, Barrett P., ed. Antarctic Cenozoic history from the MSSTS-1 drillhole, McMurdo Sound. Wellington: Science Information Pub. Centre, 1986.
Find full text(Editor), Jeffrey D. Stilwell, and Rodney M. Feldmann (Editor), eds. Paleobiology and Paleoenvironments of Eocene Rocks, McMurdo Sound, East Antarctica (Antarctic Research Series). Amer Geophysical Union, 2000.
Find full textBook chapters on the topic "McMurdo Sound"
Littlepage, Jack L. "Oceanographic Investigations in Mcmurdo Sound, Antarctica." In Biology of the Antarctic Seas II, 1–37. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/ar005p0001.
Full textLevy, Richard H., and David M. Harwood. "Sedimentary lithofacies of the McMurdo sound erratics." In Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East Antarctica, 39–61. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/ar076p0039.
Full textLewis, E. L., and R. G. Perkin. "The winter oceanography of McMurdo Sound, Antarctica." In Oceanology of the Antarctic Continental Shelf, 145–65. Washington, D. C.: American Geophysical Union, 1985. http://dx.doi.org/10.1029/ar043p0145.
Full textHarwood, David M., and Richard H. Levy. "The McMurdo erratics: Introduction and overview." In Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East Antarctica, 1–18. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/ar076p0001.
Full textKnox, G. A. "Primary Production and Consumption in McMurdo Sound, Antarctica." In Antarctic Ecosystems, 115–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84074-6_11.
Full textHolmes, Mary Anne. "Clay mineral composition of glacial erratics, McMurdo Sound." In Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East Antarctica, 63–72. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/ar076p0063.
Full textPole, Mike, Bob Hill, and David Harwood. "Eocene plant macrofossils from erratics, McMurdo Sound, Antarctica." In Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East Antarctica, 243–51. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/ar076p0243.
Full textTesta, J. W., D. B. Siniff, M. J. Ross, and J. D. Winter. "Weddell Seal — Antarctic Cod Interactions in McMurdo Sound, Antarctica." In Antarctic Nutrient Cycles and Food Webs, 561–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82275-9_76.
Full textAskin, Rosemary A. "Spores and pollen from the McMurdo Sound erratics, Antarctica." In Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East Antarctica, 161–81. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/ar076p0161.
Full textLevy, Richard H., and David M. Harwood. "Tertiary marine palynomorphs from the McMurdo Sound erratics, Antarctica." In Paleobiology and Paleoenvironments of Eocene Rocks: McMurdo Sound, East Antarctica, 183–242. Washington, D. C.: American Geophysical Union, 2000. http://dx.doi.org/10.1029/ar076p0183.
Full textConference papers on the topic "McMurdo Sound"
Yang, Mingyu, Tracy D. Frank, and Christopher R. Fielding. "CARBONATE CEMENTATION RELATED TO CRYOGENIC BRINE FORMATION DURING CENOZOIC GLACIATION, MCMURDO SOUND, ANTARCTICA." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-316983.
Full textYang, Mingyu, Tracy D. Frank, and Christopher R. Fielding. "DIAGENESIS OF GLACIOMARINE SANDSTONES RELATED TO CLIMATE AND GLACIAL PROCESSES IN MCMURDO SOUND, ANTARCTICA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-280193.
Full textChrist, Andrew J., Paul R. Bierman, and Paul R. Bierman. "DISTRIBUTION AND SOURCES OF SCATTER IN ANTARCTIC EXPOSURE AGE CHRONOLOGIES: A CASE STUDY FROM MCMURDO SOUND." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-322603.
Full textWalther, Tess L., Brenda L. Hall, and George H. Denton. "RECONSTRUCTION OF KOETTLITZ GLACIER IN THE MCMURDO SOUND REGION, ANTARCTICA DURING THE LAST GLACIAL MAXIMUM AND TERMINATION." In 54th Annual GSA Northeastern Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019ne-328560.
Full textWalther, Tess L., Brenda L. Hall, and George H. Denton. "GSA QUATERNARY GEOLOGY AND GEOMORPHOLOGY DIVISION MARIE MORISAWA AWARD: RECONSTRUCTION OF KOETTLITZ GLACIER, SOUTHERN MCMURDO SOUND, ANTARCTICA, DURING THE LAST GLACIAL MAXIMUM AND TERMINATION." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-339317.
Full textChrist, Andrew J., and David R. Marchant. "A TERRESTRIAL PERSPECTIVE OF THE LGM IN MCMURDO SOUND, ANTARCTICA: IMPLICATIONS FOR MARINE ICE SHEET DYNAMICS, ICE FLOW, AND DEGLACIATION OF THE ROSS SEA EMBAYMENT." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305311.
Full textChrist, Andrew J., and David R. Marchant. "GLACIAL GEOMORPHOLOGIC MAP OF MCMURDO SOUND, ANTARCTICA (78°S): A TERRESTRIAL RECORD OF LATE PLEISTOCENE GLACIATIONS IN THE ROSS SEA WITH IMPLICATIONS FOR FORMER ICE SHEET VOLUME AND CONTRIBUTION TO DEGLACIAL SEA LEVEL RISE." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305337.
Full text