Journal articles on the topic 'MCMC optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'MCMC optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rong, Teng Zhong, and Zhi Xiao. "MCMC Sampling Statistical Method to Solve the Optimization." Applied Mechanics and Materials 121-126 (October 2011): 937–41. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.937.
Full textZhang, Lihao, Zeyang Ye, and Yuefan Deng. "Parallel MCMC methods for global optimization." Monte Carlo Methods and Applications 25, no. 3 (September 1, 2019): 227–37. http://dx.doi.org/10.1515/mcma-2019-2043.
Full textMartino, L., V. Elvira, D. Luengo, J. Corander, and F. Louzada. "Orthogonal parallel MCMC methods for sampling and optimization." Digital Signal Processing 58 (November 2016): 64–84. http://dx.doi.org/10.1016/j.dsp.2016.07.013.
Full textYin, Long, Sheng Zhang, Kun Xiang, Yongqiang Ma, Yongzhen Ji, Ke Chen, and Dongyu Zheng. "A New Stochastic Process of Prestack Inversion for Rock Property Estimation." Applied Sciences 12, no. 5 (February 25, 2022): 2392. http://dx.doi.org/10.3390/app12052392.
Full textYang, Fan, and Jianwei Ren. "Reliability Analysis Based on Optimization Random Forest Model and MCMC." Computer Modeling in Engineering & Sciences 125, no. 2 (2020): 801–14. http://dx.doi.org/10.32604/cmes.2020.08889.
Full textGlynn, Peter W., Andrey Dolgin, Reuven Y. Rubinstein, and Radislav Vaisman. "HOW TO GENERATE UNIFORM SAMPLES ON DISCRETE SETS USING THE SPLITTING METHOD." Probability in the Engineering and Informational Sciences 24, no. 3 (April 23, 2010): 405–22. http://dx.doi.org/10.1017/s0269964810000057.
Full textLi, Chunyuan, Changyou Chen, Yunchen Pu, Ricardo Henao, and Lawrence Carin. "Communication-Efficient Stochastic Gradient MCMC for Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4173–80. http://dx.doi.org/10.1609/aaai.v33i01.33014173.
Full textYamaguchi, Kazuhiro, and Kensuke Okada. "Variational Bayes Inference for the DINA Model." Journal of Educational and Behavioral Statistics 45, no. 5 (March 31, 2020): 569–97. http://dx.doi.org/10.3102/1076998620911934.
Full textXu, Haoyu, Tao Zhang, Yiqi Luo, Xin Huang, and Wei Xue. "Parameter calibration in global soil carbon models using surrogate-based optimization." Geoscientific Model Development 11, no. 7 (July 27, 2018): 3027–44. http://dx.doi.org/10.5194/gmd-11-3027-2018.
Full textKitchen, James L., Jonathan D. Moore, Sarah A. Palmer, and Robin G. Allaby. "MCMC-ODPR: Primer design optimization using Markov Chain Monte Carlo sampling." BMC Bioinformatics 13, no. 1 (2012): 287. http://dx.doi.org/10.1186/1471-2105-13-287.
Full textLi, Xin, and Albert C. Reynolds. "A Gaussian Mixture Model as a Proposal Distribution for Efficient Markov-Chain Monte Carlo Characterization of Uncertainty in Reservoir Description and Forecasting." SPE Journal 25, no. 01 (September 23, 2019): 001–36. http://dx.doi.org/10.2118/182684-pa.
Full textPasani, Satwik, and Shruthi Viswanath. "A Framework for Stochastic Optimization of Parameters for Integrative Modeling of Macromolecular Assemblies." Life 11, no. 11 (November 5, 2021): 1183. http://dx.doi.org/10.3390/life11111183.
Full textSOLONEN, ANTTI, HEIKKI HAARIO, JEAN MICHEL TCHUENCHE, and HERIETH RWEZAURA. "STUDYING THE IDENTIFIABILITY OF EPIDEMIOLOGICAL MODELS USING MCMC." International Journal of Biomathematics 06, no. 02 (March 2013): 1350008. http://dx.doi.org/10.1142/s1793524513500083.
Full textNugroho, Widyo, Christiono Utomo, and Nur Iriawan. "A Bayesian Pipe Failure Prediction for Optimizing Pipe Renewal Time in Water Distribution Networks." Infrastructures 7, no. 10 (October 13, 2022): 136. http://dx.doi.org/10.3390/infrastructures7100136.
Full textAhmadian, Yashar, Jonathan W. Pillow, and Liam Paninski. "Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains." Neural Computation 23, no. 1 (January 2011): 46–96. http://dx.doi.org/10.1162/neco_a_00059.
Full textLópez-Santiago, J., L. Martino, M. A. Vázquez, and J. Miguez. "A Bayesian inference and model selection algorithm with an optimization scheme to infer the model noise power." Monthly Notices of the Royal Astronomical Society 507, no. 3 (August 10, 2021): 3351–61. http://dx.doi.org/10.1093/mnras/stab2303.
Full textLiu, Chenjian, Xiaoman Zheng, and Yin Ren. "Parameter Optimization of the 3PG Model Based on Sensitivity Analysis and a Bayesian Method." Forests 11, no. 12 (December 21, 2020): 1369. http://dx.doi.org/10.3390/f11121369.
Full textGrana, Dario, Leandro de Figueiredo, and Klaus Mosegaard. "Markov chain Monte Carlo for petrophysical inversion." GEOPHYSICS 87, no. 1 (November 12, 2021): M13—M24. http://dx.doi.org/10.1190/geo2021-0177.1.
Full textLibrado, Pablo, and Ludovic Orlando. "Struct-f4: a Rcpp package for ancestry profile and population structure inference from f4-statistics." Bioinformatics 38, no. 7 (January 26, 2022): 2070–71. http://dx.doi.org/10.1093/bioinformatics/btac046.
Full textVrugt, J. A., and C. J. F. Ter Braak. "DREAM<sub>(D)</sub>: an adaptive Markov Chain Monte Carlo simulation algorithm to solve discrete, noncontinuous, and combinatorial posterior parameter estimation problems." Hydrology and Earth System Sciences 15, no. 12 (December 13, 2011): 3701–13. http://dx.doi.org/10.5194/hess-15-3701-2011.
Full textWang, Shengchao, Liguo Han, Xiangbo Gong, Shaoyue Zhang, Xingguo Huang, and Pan Zhang. "Full-Waveform Inversion of Time-Lapse Crosshole GPR Data Using Markov Chain Monte Carlo Method." Remote Sensing 13, no. 22 (November 11, 2021): 4530. http://dx.doi.org/10.3390/rs13224530.
Full textŁatuszyński, Krzysztof, and Wojciech Niemiro. "Rigorous confidence bounds for MCMC under a geometric drift condition." Journal of Complexity 27, no. 1 (February 2011): 23–38. http://dx.doi.org/10.1016/j.jco.2010.07.003.
Full textGarg, Renu, Madhulika Dube, and Hare Krishna. "Estimation of Parameters and Reliability Characteristics in Lindley Distribution Using Randomly Censored Data." Statistics, Optimization & Information Computing 8, no. 1 (February 17, 2020): 80–97. http://dx.doi.org/10.19139/soic-2310-5070-692.
Full textGaucherel, C., F. Campillo, L. Misson, J. Guiot, and J. J. Boreux. "Parameterization of a process-based tree-growth model: Comparison of optimization, MCMC and Particle Filtering algorithms." Environmental Modelling & Software 23, no. 10-11 (October 2008): 1280–88. http://dx.doi.org/10.1016/j.envsoft.2008.03.003.
Full textWang, Ji, Ru Zhang, Yuting Yan, Xiaoqiang Dong, and Jun Ming Li. "Locating hazardous gas leaks in the atmosphere via modified genetic, MCMC and particle swarm optimization algorithms." Atmospheric Environment 157 (May 2017): 27–37. http://dx.doi.org/10.1016/j.atmosenv.2017.03.009.
Full textFassina, A., D. Abate, and P. Franz. "Bayesian inference applied to electron temperature data: computational performances and diagnostics integration." Journal of Instrumentation 17, no. 09 (September 1, 2022): C09012. http://dx.doi.org/10.1088/1748-0221/17/09/c09012.
Full textAdam, Abuzar B. M., Xiaoyu Wan, and Zhengqiang Wang. "Clustering and Auction-Based Power Allocation Algorithm for Energy Efficiency Maximization in Multi-Cell Multi-Carrier NOMA Networks." Applied Sciences 9, no. 23 (November 21, 2019): 5034. http://dx.doi.org/10.3390/app9235034.
Full textSasidharan, Balu Krishna, Saif Aljabab, Jatinder Saini, Tony Wong, George Laramore, Jay Liao, Upendra Parvathaneni, and Stephen R. Bowen. "Clinical Monte Carlo versus Pencil Beam Treatment Planning in Nasopharyngeal Patients Receiving IMPT." International Journal of Particle Therapy 5, no. 4 (March 1, 2019): 32–40. http://dx.doi.org/10.14338/ijpt-18-00039.1.
Full textSUGIURA, Masayuki, Kohji TANAKA, and Hiroki TSUJIKURA. "PROPOSAL OF THE OPTIMIZATION METHOD OF PARAMETERS IN THE WATER LEVEL PREDICTION MODEL BY USING MCMC ESTIMATION." Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) 74, no. 4 (2018): I_1021—I_1026. http://dx.doi.org/10.2208/jscejhe.74.i_1021.
Full textSpeagle, Joshua S., Peter L. Capak, Daniel J. Eisenstein, Daniel C. Masters, and Charles L. Steinhardt. "Exploring photometric redshifts as an optimization problem: an ensemble MCMC and simulated annealing-driven template-fitting approach." Monthly Notices of the Royal Astronomical Society 461, no. 4 (June 24, 2016): 3432–42. http://dx.doi.org/10.1093/mnras/stw1503.
Full textWilson, Aaron, Alan Fern, and Prasad Tadepalli. "Bayesian Policy Search for Multi-Agent Role Discovery." Proceedings of the AAAI Conference on Artificial Intelligence 24, no. 1 (July 3, 2010): 624–29. http://dx.doi.org/10.1609/aaai.v24i1.7679.
Full textAdam, Abuzar B. M., Xiaoyu Wan, and Zhengqiang Wang. "Energy Efficiency Maximization for Multi-Cell Multi-Carrier NOMA Networks." Sensors 20, no. 22 (November 20, 2020): 6642. http://dx.doi.org/10.3390/s20226642.
Full textMeng, Xiao-Kai, Yan-Bing Jia, Zhi-Heng Liu, Zhi-Qiang Yu, Pei-Jie Han, Zhu-Mao Lu, and Tao Jin. "High-Voltage Cable Condition Assessment Method Based on Multi-Source Data Analysis." Energies 15, no. 4 (February 14, 2022): 1369. http://dx.doi.org/10.3390/en15041369.
Full textHusaini, Noor Aida, Rozaida Ghazali, Nureize Arbaiy, and Ayodele Lasisi. "MCS-MCMC for Optimising Architectures and Weights of Higher Order Neural Networks." International Journal of Intelligent Systems and Applications 12, no. 5 (October 8, 2020): 52–72. http://dx.doi.org/10.5815/ijisa.2020.05.05.
Full textGuo, Yanbing, Lingjuan Miao, and Yusen Lin. "A Novel EM Implementation for Initial Alignment of SINS Based on Particle Filter and Particle Swarm Optimization." Mathematical Problems in Engineering 2019 (February 20, 2019): 1–12. http://dx.doi.org/10.1155/2019/6793175.
Full textShrestha, Ashish, Bishal Ghimire, and Francisco Gonzalez-Longatt. "A Bayesian Model to Forecast the Time Series Kinetic Energy Data for a Power System." Energies 14, no. 11 (June 4, 2021): 3299. http://dx.doi.org/10.3390/en14113299.
Full textGao, Guohua, Jeroen Vink, Fredrik Saaf, and Terence Wells. "Strategies to Enhance the Performance of Gaussian Mixture Model Fitting for Uncertainty Quantification." SPE Journal 27, no. 01 (November 18, 2021): 329–48. http://dx.doi.org/10.2118/204008-pa.
Full textSengupta, P., and S. Chakraborty. "Model reduction technique for Bayesian model updating of structural parameters using simulated modal data." Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, no. 1 (December 19, 2022): 1403–12. http://dx.doi.org/10.38208/acp.v1.670.
Full textNielsen, Svend V., Andrew H. Vaughn, Kalle Leppälä, Michael J. Landis, Thomas Mailund, and Rasmus Nielsen. "Bayesian inference of admixture graphs on Native American and Arctic populations." PLOS Genetics 19, no. 2 (February 13, 2023): e1010410. http://dx.doi.org/10.1371/journal.pgen.1010410.
Full textHuang, Jiangfeng, Zhiliang Deng, and Liwei Xu. "A Bayesian level set method for an inverse medium scattering problem in acoustics." Inverse Problems & Imaging 15, no. 5 (2021): 1077. http://dx.doi.org/10.3934/ipi.2021029.
Full textNoh, Yoojeong, K. K. Choi, and Ikjin Lee. "Comparison study between MCMC-based and weight-based Bayesian methods for identification of joint distribution." Structural and Multidisciplinary Optimization 42, no. 6 (July 27, 2010): 823–33. http://dx.doi.org/10.1007/s00158-010-0539-1.
Full textWakeland, Wayne, and Jack Homer. "Addressing Parameter Uncertainty in a Health Policy Simulation Model Using Monte Carlo Sensitivity Methods." Systems 10, no. 6 (November 18, 2022): 225. http://dx.doi.org/10.3390/systems10060225.
Full textMartelli, Saulo, Daniela Calvetti, Erkki Somersalo, and Marco Viceconti. "Stochastic modelling of muscle recruitment during activity." Interface Focus 5, no. 2 (April 6, 2015): 20140094. http://dx.doi.org/10.1098/rsfs.2014.0094.
Full textSingleton, Colin, and Peter Grindrod. "Forecasting for Battery Storage: Choosing the Error Metric." Energies 14, no. 19 (October 1, 2021): 6274. http://dx.doi.org/10.3390/en14196274.
Full textCemgil, A. T., and B. Kappen. "Monte Carlo Methods for Tempo Tracking and Rhythm Quantization." Journal of Artificial Intelligence Research 18 (January 1, 2003): 45–81. http://dx.doi.org/10.1613/jair.1121.
Full textDavis, Andrew D., Stefanie Hassel, Stephen R. Arnott, Geoffrey B. Hall, Jacqueline K. Harris, Mojdeh Zamyadi, Jonathan Downar, et al. "Biophysical compartment models for single-shell diffusion MRI in the human brain: a model fitting comparison." Physics in Medicine & Biology 67, no. 5 (February 28, 2022): 055009. http://dx.doi.org/10.1088/1361-6560/ac46de.
Full textMohamed, Linah, Mike Christie, and Vasily Demyanov. "Comparison of Stochastic Sampling Algorithms for Uncertainty Quantification." SPE Journal 15, no. 01 (November 17, 2009): 31–38. http://dx.doi.org/10.2118/119139-pa.
Full textGuan, Shufeng, Lingling Wang, and Chuanwen Jiang. "Optimal scheduling of regional integrated energy system considering multiple uncertainties." E3S Web of Conferences 256 (2021): 02027. http://dx.doi.org/10.1051/e3sconf/202125602027.
Full textAboutaleb, Youssef M., Mazen Danaf, Yifei Xie, and Moshe E. Ben-Akiva. "Sparse covariance estimation in logit mixture models." Econometrics Journal 24, no. 3 (March 19, 2021): 377–98. http://dx.doi.org/10.1093/ectj/utab008.
Full textVrugt, J. A. "DREAM<sub>(D)</sub>: an adaptive markov chain monte carlo simulation algorithm to solve discrete, noncontinuous, posterior parameter estimation problems." Hydrology and Earth System Sciences Discussions 8, no. 2 (April 26, 2011): 4025–52. http://dx.doi.org/10.5194/hessd-8-4025-2011.
Full text