Academic literature on the topic 'MAXWELL 3D SIMULATION'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MAXWELL 3D SIMULATION.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "MAXWELL 3D SIMULATION"

1

Rong-yan, Guo, and Shi Shui-e. "AC Contactor Electromagnetic Mechanism Dynamic Simulation Study." Open Electrical & Electronic Engineering Journal 8, no. 1 (2014): 419–27. http://dx.doi.org/10.2174/1874129001408010419.

Full text
Abstract:
In this paper, we study the application of Maxwell 3D and ADAMS software for simulation and analysis of electromagnetic system, with UG software for AC contactor and main contact system of electromagnetic system. We then study the influence of harmonic on type CJX2-40 AC contactor main contact system and operation characteristics. To establish a three-dimensional finite element model of electromagnetic mechanism of AC contactor, we take Maxwell 3D software, on the model of finite element mesh, the calculation of different closing sine excitation and containing under harmonic excitation angle electromagnetic system. For the static and dynamic characteristics of AC contactor, static magnetic field distribution and the suction characteristic curve drawing, we do a comparative study of the results of the simulation, analysis of the influence of harmonics on the AC contactor motion characteristics.
APA, Harvard, Vancouver, ISO, and other styles
2

Ganse, Urs, Tuomas Koskela, Markus Battarbee, et al. "Enabling technology for global 3D + 3V hybrid-Vlasov simulations of near-Earth space." Physics of Plasmas 30, no. 4 (2023): 042902. http://dx.doi.org/10.1063/5.0134387.

Full text
Abstract:
We present methods and algorithms that allow the Vlasiator code to run global, three-dimensional hybrid-Vlasov simulations of Earth's entire magnetosphere. The key ingredients that make Vlasov simulations at magnetospheric scales possible are the sparse velocity space implementation and spatial adaptive mesh refinement. We outline the algorithmic improvement of the semi-Lagrangian solver for six-dimensional phase space quantities, discuss the coupling of Vlasov and Maxwell equations' solvers in a refined mesh, and provide performance figures from simulation test runs that demonstrate the scalability of this simulation system to full magnetospheric runs.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Guang Cai, Hong Fu Ai, Ya Jie Xu, Qiao Yan Chen, and Xiao Dong Yang. "The Design of Small H-Style Permanent Magnet Used for NMR." Applied Mechanics and Materials 703 (December 2014): 114–18. http://dx.doi.org/10.4028/www.scientific.net/amm.703.114.

Full text
Abstract:
This paper introduces the design of permanent magnet that can been used to small nuclear magnetic resonance (NMR) system, and its static magnetic field simulation analysis uses Ansoft's Maxwell software. According to the theory of magnetic circuit design and the performance requirements of magnetic field, An H-style permanent magnetic actuator has been designed, and it can generate uniform magnetic field larger than 0.4 T in the interested region of this actuator. The static magnetic field simulation analysis of this permanent magnetic actuator has done by Ansoft's Maxwell 3D software, and the experimental results show that the design of permanent magnet can meet the requirements.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Keyu, Marcus Hartwig, and Shahram Amoozegar. "Electric machine noise and vibration prediction and validation through test." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 264, no. 1 (2022): 309–16. http://dx.doi.org/10.3397/nc-2022-735.

Full text
Abstract:
In this paper, a finite element (FE) simulation process for the NVH prediction of electric motors is proposed. The proposed process first simulates the motor excitation forces using a 2D electromagnetic force model which is derived from Maxwell and then it applies these forces to a simplified 3D electric machine model. This simplified 3D model is validated by comparing the structural transfer functions calculated from impact hammer test and FE simulation. Finally, the proposed simulation process is validated by comparing predicted sound pressure levels at different selected locations to an electric motor NVH test results from a semi-anechoic chamber.
APA, Harvard, Vancouver, ISO, and other styles
5

Peng, Wen Zhen, Shu Min Wan, Bin Lin, Li Peng Sun, and Mei Ning Yang. "Finite Element Simulation of Electromagnetic Properties of Ferrite Material." Materials Science Forum 770 (October 2013): 29–33. http://dx.doi.org/10.4028/www.scientific.net/msf.770.29.

Full text
Abstract:
As the inductance of magnetic cores is the most important parameter for their service performance. Four coupling models of EE-type ferrite cores are established to analyze the relationship between surface quality and the inductance of ferrite cores. Besides, 3D FEM simulation of different models is made by ANSOFT MAXWELL software. The results show that the surface quality has a direct influence on the service performance of ferrite devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Song, Shou Xiang, Liang Zou, Tong Zhao, Li Zhang, Qing Quan Li, and Meng Qi Liu. "FEM Simulations of Permanent-Magnet-Biased Saturation Based Fault Current Limiter." Advanced Materials Research 960-961 (June 2014): 867–70. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.867.

Full text
Abstract:
The fault current limit technology based on the principle of permanent-magnet-biased saturation has several outstanding advantages in both economy and technology. A modeling method of PMFCL based on the finite element analysis platform – Maxwell is presented in this paper. The current limiting mechanism of line-type PMFCL is analyzed, on the basis of which the 2D and 3D models are established in Maxwell, and the corresponding experiments are designed as well. Comparisons between the simulation and experimental results indicate that the modeling method is reasonable. Research achievements of this paper provides theoretical basis for further studies of PMFCL.
APA, Harvard, Vancouver, ISO, and other styles
7

Du, Lin, Geng Chen Shi, and Jing Jing Zhao. "Static Characteristics of Micro Disc Magneto Electric Generator – Simulation and Experiment." Applied Mechanics and Materials 365-366 (August 2013): 356–59. http://dx.doi.org/10.4028/www.scientific.net/amm.365-366.356.

Full text
Abstract:
Maxwell 3D software of finite-element analysis in electromagnetic fields is used to model and simulate the micro disc magneto electric generator. Distribution characteristics of magnetic induction are required and theoretical analysis and calculation is presented. Error between the simulation result and experimental result is about 6% which verify the rationality and accuracy of finite-element simulation. It can be used to guide the structural design and optimization of this type of generator.
APA, Harvard, Vancouver, ISO, and other styles
8

Blome, Mark, Kevin McPeak, Sven Burger, Frank Schmidt, and David Norris. "Back-reflector design in thin-film silicon solar cells by rigorous 3D light propagation modeling." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33, no. 4 (2014): 1282–95. http://dx.doi.org/10.1108/compel-12-2012-0367.

Full text
Abstract:
Purpose – The purpose of this paper is to find an optimized thin-film amorphous silicon solar cell design by numerically optimizing the light trapping efficiency of a pyramid-structured back-reflector using a frequency-domain finite element Maxwell solver. For this purpose short circuit current densities and absorption spectra within the investigated solar cell model are systematically analyzed. Furthermore, the authors employ a topology simulation method to accurately predict the material layer interfaces within the investigated solar cell model. The method simulates the chemical vapor deposition (CVD) process that is typically used to fabricate thin-film solar cells by combining a ballistic transport and reaction model (BTRM) with a level-set method in an iterative approach. Predicted solar cell models are far more realistic compared to solar cell models created assuming conformal material growth. The purpose of the topology simulation method is to increase the accuracy of thin-film solar cell models in order to facilitate highly accurate simulation results in solar cell design optimizations. Design/methodology/approach – The authors perform numeric optimizations using a frequency domain finite element Maxwell solver. Topology simulations are carried out using a BTRM combined with a level-set method in an iterative fashion. Findings – The simulation results reveal that the employed pyramid structured back-reflectors effectively increase the light path in the absorber mainly by exciting photonic waveguide modes. In using the optimization approach, the authors have identified solar cell models with cell periodicities around 480 nm and pyramid base widths around 450 nm to yield the highest short circuit current densities. Compared to equivalent solar cell models with flat back-reflectors, computed short circuit current densities are significantly increased. Furthermore, the paper finds that the solar cell models computed using the topology simulation approach represent a far more realistic approximation to a real solar cell stack compared to solar cell models computed by a conformal material growth assumption. Research limitations/implications – So far in the topology simulation approach the authors assume CVD as the material deposition process for all material layers. However, during the fabrication process sputtering (i.e. physical vapor deposition) will be employed for the Al:ZnO and ITO layers. In the framework of this ongoing research project the authors will extend the topology simulation approach to take the different material deposition processes into account. The differences in predicted material interfaces will presumably be only minor compared to the results shown here and certainly be insignificant relative to the differences the authors observe for solar cell models computed assuming conformal material growth. Originality/value – The authors systematically investigate and optimize the light trapping efficiency of a pyramid nano-structured back-reflector using rigorous electromagnetic field computations with a 3D finite element Maxwell solver. To the authors’ knowledge such an investigation has not been carried out yet in the solar cell research literature. The topology simulation approach (to the best of the authors’ knowledge) has previously not been applied to the modelling of solar cells. Typically a conformal layer growth assumption is used instead.
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Hao, Dongpo Wang, and Zhao Duan. "New Maxwell Creep Model Based on Fractional and Elastic-Plastic Elements." Advances in Civil Engineering 2020 (February 10, 2020): 1–11. http://dx.doi.org/10.1155/2020/9170706.

Full text
Abstract:
Creep models are mainly used to describe the rheological behaviour of geotechnical materials. An important research focus for studying creep in geotechnical materials is the development of a model with few parameters and good simulation performance. Hence, in this study, by replacing the Newtonian dashpot and spring in the classical Maxwell model with fractional and elastic-plastic elements, a new Maxwell creep model based on fractional derivatives and continuum damage mechanics was developed. One- and three-dimensional (1D/3D) creep equations of the new Maxwell creep model were derived. The 1D creep equation of the new model was used to fit existing creep data of rock salt, and the 3D creep equation was used to fit the creep data of remolded loess. The model curves matched the creep data very well, showing considerably higher accuracy than other models. Furthermore, a sensitivity study was carried out, showing the effects of the fractional derivative order β and exponent α on the creep strain of rock salt. This new model is simple with few parameters and can effectively simulate the complete creep behaviour of geotechnical materials.
APA, Harvard, Vancouver, ISO, and other styles
10

Su, Yu, Le Gong, Hui Cao, and Dan Dan Chen. "Optimization of Electrostatic Atomization Cutting Using 3D FE Simulation of Electrostatic Field." Key Engineering Materials 693 (May 2016): 1255–62. http://dx.doi.org/10.4028/www.scientific.net/kem.693.1255.

Full text
Abstract:
Compared with minimal quantity lubrication (MQL), electrostatic atomization can control the movement of mist droplets by changing the electrostatic field, thus reducing the drift of mist droplets in air. This paper first proposes the concept of electrostatic atomization cutting, and then develops a 3D FE model of electrostatic field for electrostatic atomization cutting using a commercial software Ansoft Maxwell. By simulation, the influence of nozzle angle, structure, and electrode gap and voltage on electric field intensity is investigated. Based on simulation results, the optimal nozzle angle and structure are obtained for electrostatic atomization cutting. The findings contribute to further development of this technique.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography