Dissertations / Theses on the topic 'Maxwell's equations in time domain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Maxwell's equations in time domain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Meagher, Timothy P. "A New Finite Difference Time Domain Method to Solve Maxwell's Equations." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4389.
Full textBrookes, P. J. "Time domain methods for the solution of Maxwell's equations on unstructured grids." Thesis, Swansea University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636158.
Full textKim, Joonshik. "Finite Element Time Domain Techniques for Maxwell's Equations Based on Differential Forms." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1293588301.
Full textEdelvik, Fredrik. "Hybrid Solvers for the Maxwell Equations in Time-Domain." Doctoral thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2156.
Full textDosopoulos, Stylianos. "Interior Penalty Discontinuous Galerkin Finite Element Method for the Time-Domain Maxwell's Equations." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1337787922.
Full textAndersson, Ulf. "Time-Domain Methods for the Maxwell Equations." Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3094.
Full textNiegemann, Jens [Verfasser], and K. [Akademischer Betreuer] Busch. "Higher-Order Methods for Solving Maxwell's Equations in the Time-Domain / Jens Niegemann. Betreuer: K. Busch." Karlsruhe : KIT-Bibliothek, 2009. http://d-nb.info/1014099129/34.
Full textBoat, Matthew. "The time-domain numerical solution of Maxwell's electromagnetic equations, via the fourth order Runge-Kutta discontinuous Galerkin method." Thesis, Swansea University, 2008. https://cronfa.swan.ac.uk/Record/cronfa42532.
Full textEng, Ju-Ling. "Higher order finite-difference time-domain method." Connect to resource, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1165607826.
Full textKung, Christopher W. "Development of a time domain hybrid finite difference/finite element method for solutions to Maxwell's equations in anisotropic media." Columbus, Ohio : Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1238024768.
Full textEdelvik, Fredrik. "Finite volume solvers for the Maxwell equations in time domain." Licentiate thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-86389.
Full textJeong, Jaehoon. "Analytical time domain electromagnetic field propagators and closed-form solutions for transmission lines." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1105.
Full textBenoit, Jaume. "Identification de sources temporelles pour les simulations numériques des équations de Maxwell." Thesis, Clermont-Ferrand 2, 2012. http://www.theses.fr/2012CLF22314.
Full textThis Ph.D thesis is the result of a collaboration between the CEM team of Pascal Institute and the EDPAN team of the Laboratory of Mathematics of the Blaise Pascal University in Clermont-Ferrand. We present here a study based on Time Reversal process in Electromagnetics. This work led to the development of a novel method called Linear Combination of Configuration Field (LCCF). This thesis first introduces the tools and the numerical methods used during this work. Then, we describe the Time Reversal process and a possible improvement to the basic technic. Afterwards, several possible applications of the LCCF method to electromagnetic source identification problems are detailed and we illustrate each of it on various numerical examples
Rawat, Vineet. "Finite Element Domain Decomposition with Second Order Transmission Conditions for Time-Harmonic Electromagnetic Problems." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243360543.
Full textAbenius, Erik. "Direct and Inverse Methods for Waveguides and Scattering Problems in the Time Domain." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6013.
Full textVegh, Viktor. "Numerical modelling of industrial microwave heating." Thesis, Queensland University of Technology, 2003. https://eprints.qut.edu.au/37144/7/37144_Digitised%20Thesis.pdf.
Full textXie, Zhongqiang. "Fourth-order finite difference methods for the time-domain Maxwell equations with applications to scattering by rough surfaces and interfaces." Thesis, Coventry University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369842.
Full textLee, Richard Todd. "A novel method for incorporating periodic boundaries into the FDTD method and the application to the study of structural color of insects." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29772.
Full textCommittee Chair: Smith, Glenn; Committee Member: Buck, John; Committee Member: Goldsztein, Guillermo; Committee Member: Peterson, Andrew; Committee Member: Scott, Waymond. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Woyna, Irene [Verfasser], Thomas [Akademischer Betreuer] Weiland, and Irina [Akademischer Betreuer] Munteanu. "Wideband Impedance Boundary Conditions for FE/DG Methods for Solving Maxwell Equations in Time Domain / Irene Woyna. Betreuer: Thomas Weiland ; Irina Munteanu." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2014. http://d-nb.info/1110792905/34.
Full textHassan, Emadeldeen. "Topology optimization of antennas and waveguide transitions." Doctoral thesis, Umeå universitet, Institutionen för datavetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-102505.
Full textChicaud, Damien. "Analysis of time-harmonic electromagnetic problems in elliptic anisotropic media." Electronic Thesis or Diss., Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAE014.
Full textThe numerical simulation of electromagnetic problems in complex physical settings is a trending topic which conveys many scientific and industrial applications, such as the design of optical metamaterials, or the study of cold plasmas. The mathematical and numerical analysis of Maxwell problems is wellknown in simple physical contexts, when the material parameters are isotropic. Some results in anisotropic media exist, but they generally tend to focus on the case where the material tensors are real symmetric (or complex) Hermitian) definite positive. However, problems in more complex media are not covered by the standard theory. Therefore, new mathematical tools need to be developped to analyse thses problems. This thesis aims at analysing time-harmonic electromagnetic problems for a general class of complex anisotropic material tensors. These are called ellopptic materials. We derive an extended functional framework well-suited for these anisotropic problems, generalizing well-known results. We study the well-posedness of Maxwell boundary value problems for Dirichlet, Neumann, and Robin boundary conditions. For the Robin case, the characterization of appropriate function spaces for Robin traces is addressed. The regularity of the solution and its curl is studied, and elements of numerical analysis for edge finite elements are provided. In the perspective of the use of Domain Decomposition Methods (DDM) for accelerated numerical computing, various decomposed formulations are proposed and studied, focusing on their right meaning in terms of function spaces and equivalence with the global problem. These results are complemented with some numerical DDM experimentations in anisotropic media
Ritzenthaler, Valentin. "Stratégies de couplage des méthodes Compatible Discrete Operators appliquées aux équations de Maxwell dans le domaine temporel." Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0060.
Full textIn numerical simulations of Maxwell's equations, one of the main goals is to accurately represent the physical reality of electromagnetic fields while keeping a low computational cost. Numerous methods exist for solving the system in the time domain, each with its own strengths and weaknesses, depending on the situation. In this thesis, we focus on two coupling strategies of Compatible Discrete Operators (CDO) schemes applied to Maxwell's equations in time domain. The first consists in locally defining the metric of the scheme by considering the mesh geometry. In the second approach, the computational domain is partitioned in two subdomains and the coupling is achieved by defining operators on the interface. To this end, Maxwell's equations are studied in two parts: the topological relations and the constitutive relations. In the CDO framework, the topological relations are formulated using discrete differential operators corresponding to the discretization of the classical vector operators. In order to take into account non-homogeneous boundary conditions, these operators are extended using a dual boundary mesh. The constitutive relations are formulated using discrete Hodge operators. They define the metric of the scheme and depend on the material parameters. The discrete scheme in space and time is then analyzed in terms of stability and consistency. We then test it on different configurations using hybrid meshes
Nilsson, Martin. "Iterative solution of Maxwell's equations in frequency domain." Licentiate thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-86390.
Full textSchwarzbach, Christoph. "Stability of finite element solutions to Maxwell's equations in frequency domain." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:bsz:105-24780.
Full textThe physics of time-harmonic electromagnetic phenomena can be mathematically described by boundary value problems. A standard approach is based on the vector Helmholtz equation in terms of the electric field. The curl operator involved has a large, non-trivial kernel which leads to an instable solution behaviour at low frequencies. If the boundary value problem is solved approximately using, e. g., the finite element method, the instability expresses itself by a badly conditioned coefficient matrix of the ensuing system of linear equations. A stable formulation is obtained by taking the continuity equation explicitly into account. In order to solve the boundary value problem numerically a finite element software package has been implemented. Its features comprise, amongst others, the treatment of unstructured meshes and piecewise polynomial, anisotropic constitutive parameters as well as the extension of Maxwell’s equations to the Perfectly Matched Layer. Successful application of the software is demonstrated with examples from marine geophysics. In particular, the incorporation of seafloor topography by a continuous surface triangulation illustrates the geometric flexibility of the software
Marchand, Renier Gustav. "Finite element tearing and interconnecting for the electromagnetic vector wave equation in two dimensions." Thesis, Stellenbosch : University of Stellenbosch, 2007. http://hdl.handle.net/10019.1/2471.
Full textThe finite element tearing and interconnect(FETI) domain decomposition(DD) method is investigated in terms of the 2D transverse electric(TEz) finite element method(FEM). The FETI is for the first time rigorously derived using the weighted residual framework from which important insights are gained. The FETI is used in a novel way to implement a total-/scattered field decomposition and is shown to give excellent results. The FETI is newly formulated for the time domain(FETI-TD), its feasibility is tested and it is further formulated and tested for implementation on a distributed computer architecture.
Rihani, Mahran. "Maxwell's equations in presence of metamaterials." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. https://theses.hal.science/tel-03670420.
Full textThe main subject of this thesis is the study of time-harmonic electromagnetic waves in a heterogeneous medium composed of a dielectric and a negative material (i.e. with a negative dielectric permittivity ε and/or a negative magnetic permeability μ) which are separated by an interface with a conical tip. Because of the sign-change in ε and/or μ, the Maxwell’s equations can be ill-posed in the classical L2 −frameworks. On the other hand, we know that when the two associated scalar problems, involving respectively ε and μ, are well-posed in H1, the Maxwell’s equations are well-posed. By combining the T-coercivity approach with the Mellin analysis in weighted Sobolev spaces, we present, in the first part of this work, a detailed study of these scalar problems. We prove that for each of them, the well-posedeness in H1 is lost iff the associated contrast belong to some critical set called the critical interval. These intervals correspond to the sets of negative contrasts for which propagating singularities, also known as black hole waves, appear at the tip. Contrary to the case of a 2D corner, for a 3D tip, several black hole waves can exist. Explicit expressions of these critical intervals are obtained for the particular case of circular conical tips. For critical contrasts, using the Mandelstam radiation principle, we construct functional frameworks in which well-posedness of the scalar problems is restored. The physically relevant framework is selected by a limiting absorption principle. In the process, we present a new numerical strategy for 2D/3D scalar problems in the non-critical case. This approach, presented in the second part of this work, contrary to existing ones, does not require additional assumptions on the mesh near the interface. The third part of the thesis concerns Maxwell’s equations with one or two critical coefficients. By using new results of vector potentials in weighted Sobolev spaces, we explain how to construct new functional frameworks for the electric and magnetic problems, directly related to the ones obtained for the two associated scalar problems. If one uses the setting that respects the limiting absorption principle for the scalar problems, then the settings provided for the electric and magnetic problems are also coherent with the limiting absorption principle. Finally, the last part is devoted to the homogenization process for time-harmonic Maxwell’s equations and associated scalar problems in a 3D domain that contains a periodic distribution of inclusions made of negative material. Using the T-coercivity approach, we obtain conditions on the contrasts such that the homogenization results is possible for both the scalar and the vector problems. Interestingly, we show that the homogenized matrices associated with the limit problems are either positive definite or negative definite
Viquerat, Jonathan. "Simulation de la propagation d'ondes électromagnétiques en nano-optique par une méthode Galerkine discontinue d'ordre élevé." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4109/document.
Full textThe goal of this thesis is to develop a discontinuous Galerkin time-domain method to be able to handle realistic nanophotonics computations. During the last decades, the evolution of lithography techniques allowed the creation of geometrical structures at the nanometer scale, thus unveiling a variety of new phenomena arising from light-matter interactions at such levels. These effects usually occur when the device is of comparable size or (much) smaller than the wavelength of the incident field. This work relies on the development and implementation of appropriate models for dispersive materials (mostly metals), as well as on a large panel of classical computational techniques. Two major methodological developments are presented and studied in details: (i) curvilinear elements, and (ii) local order of approximation. This work is complemented with several physical studies of real-life nanophotonics applications
Schütte, Maria [Verfasser]. "On shape sensitivity analysis for 3D time-dependent Maxwell's equations / Maria Schütte." Paderborn : Universitätsbibliothek, 2017. http://d-nb.info/1127109979/34.
Full textBadia, Ismaïl. "Couplage par décomposition de domaine optimisée de formulations intégrales et éléments finis d’ordre élevé pour l’électromagnétisme." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0058.
Full textIn terms of computational methods, solving three-dimensional time-harmonic electromagnetic scattering problems is known to be a challenging task, most particularly in the high frequency regime and for dielectric and inhomogeneous scatterers. Indeed, it requires to discretize a system of partial differential equations set in an unbounded domain. In addition, considering a small wavelength λ in this case, naturally requires very fine meshes, and therefore leads to very large number of degrees of freedom. A standard approach consists in combining integral equations for the exterior domain and a weak formulation for the interior domain (the scatterer) resulting in a formulation coupling the Boundary Element Method (BEM) and the Finite Element Method (FEM). Although natural, this approach has some major drawbacks. First, this standard coupling method yields a very large system having a matrix with sparse and dense blocks, which is therefore generally hard to solve and not directly adapted to compression methods. Moreover, it is not possible to easily combine two pre-existing solvers, one FEM solver for the interior domain and one BEM solver for the exterior domain, to construct a global solver for the original problem. In this thesis, we present a well-conditioned weak coupling formulation between the boundary element method and the high-order finite element method, allowing the construction of such a solver. The approach is based on the use of a non-overlapping domain decomposition method involving optimal transmission operators. The associated transmission conditions are constructed through a localization process based on complex rational Padé approximants of the nonlocal Magnetic-to-Electric operators. The number of iterations required to solve this weak coupling is only slightly dependent on the geometry configuration, the frequency, the contrast between the subdomains and the mesh refinement
Sturm, Andreas [Verfasser], and M. [Akademischer Betreuer] Hochbruck. "Locally Implicit Time Integration for Linear Maxwell's Equations / Andreas Sturm ; Betreuer: M. Hochbruck." Karlsruhe : KIT-Bibliothek, 2017. http://d-nb.info/1132997453/34.
Full textLijoka, Oluwaseun Francis. "Enriched discrete spaces for time domain wave equations." Thesis, Heriot-Watt University, 2017. http://hdl.handle.net/10399/3264.
Full textFindeisen, Stefan Matthias [Verfasser], and C. [Akademischer Betreuer] Wieners. "A Parallel and Adaptive Space-Time Method for Maxwell's Equations / Stefan Matthias Findeisen. Betreuer: C. Wieners." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1108452647/34.
Full textFreese, Jan Philip [Verfasser], and C. [Akademischer Betreuer] Wieners. "Numerical homogenization of time-dependent Maxwell's equations with dispersion effects / Jan Philip Freese ; Betreuer: C. Wieners." Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1227451113/34.
Full textKachanovska, Maryna. "Fast, Parallel Techniques for Time-Domain Boundary Integral Equations." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-132183.
Full textPino, Gabriel. "Fault location in transmission lines using time-domain equations." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-28082018-133153/.
Full textEsta dissertação é uma combinação do desenvolvimento de modelos numéricos para simulação de transitórios eletromagnéticos em linhas de transmissão e suas benesses associadas à localização de faltas. Os modelos de linha de transmissão aqui apresentados estão no domínio do tempo, o que descaracteriza a abordagem tradicional de localização de faltas como técnicas fasoriais e ondas viajantes. A utilização de fasores para esse propósito admite algumas dificuldades técnicas: presença da componente DC amortecida, maior influência da impedância de falta e disposição dos equipamentos metrológicos. Abordam-se linhas de transmissão de sistemas alternado monofásico e contínuo monopolar. A modelagem proposta possui três principais diferenciais frente ao modelo de Bergeron: plena distribuição da resistência linear; plena distribuição da condutância transversal; e apenas uma recorrência a valores históricos. O primeiro ponto é fundamental para avaliação da componente exponencialmente amortecida das correntes transitórias de curto circuito. O segundo ponto se refere à inclusão do efeito corona no modelamento. A recorrência unitária apontada no terceiro tópico apresenta a vantagem de não ser necessária a composição em série do modelo para aprimorar a qualidade das formas de onda. O princípio de localização de faltas se dá pelo cálculo da diferença absoluta entre as tensões instantâneas de falta vistas pelos terminais da linha. Essa técnica garante uma menor influência de impedância de falta e dos parâmetros elétricos.
Kachanovska, Maryna. "Fast, Parallel Techniques for Time-Domain Boundary Integral Equations." Doctoral thesis, Max-Planck-Institut für Mathematik in den Naturwissenschaften, 2013. https://ul.qucosa.de/id/qucosa%3A12278.
Full textVolpert, Thibault. "Étude d'un schéma différences finies haute précision et d'un modèle de fil mince oblique pour simuler les perturbations électromagnétiques sur véhicule aérospatial." Thesis, Toulouse, ISAE, 2014. http://www.theses.fr/2014ESAE0042/document.
Full textThis thesis is about the study of a high spatial finite element method whichcan be assimilated at an extension of the Yee schema. In the next, this method is also called high order finite difference method. In the first chapter, we give a non exhaustive recall of the major methods used to treat EMC problems and we show the necessity to have this kind of schema to simulate efficiently some EMC configurations. In the second chapter, the principle of the numerical method is presented and a stability condition is given. A numerical study analysis of the schema convergence is also done. Next, we show the interest to have the possibility to use local spatial order by cell in each direction of the computational domain. Some canonic examples are given to show the advantages interms of CPU time and memory storage of the method by comparison with Yee’s scheme and DG approach. In the third chapter, we define and validate on several examples,some physical models as thin wire, materials and perfectly metallic ground in presence of a plane wave, to have the possibility to treat EMC problems. The fourth chapter is about a hybridization strategy between our high order FDTD method and a DG schema.We focalize our study on a hybrid method which provides an energy conservation of the continuous problem. A numerical example is given to validate the method. Finally, in the last chapter, we present some simulations on industrial problems to show the possibility of the method to treat realistic EMC problems
Aghabarati, Ali. "Multilevel and algebraic multigrid methods for the higher order finite element analysis of time harmonic Maxwell's equations." Thesis, McGill University, 2014. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=121485.
Full textLa méthode des éléments finis (FEM) appliquée à la dispersion des ondes et aux problèmes de champ de vecteurs quasi-statique dans le domaine fréquentiel mène à des systèmes d'équations linéaires rares, symétriques-complexes. Pour de grands problèmes ayant des géométries complexes, la plupart du temps et de la mémoire d'ordinateur utilisé par FEM va à la résolution de l'équation de la matrice. Les méthodes itératives de Krylov sont celles largement utilisées dans la résolution de grands systèmes creux. Elles dépendent fortement des préconditionnement qui accélèrent la convergence. Toutefois, l'application de préconditionnements conventionnels à l'opérateur "rot-rot" qui surgit en électromagnétisme vectoriel n'aboutit pas à des résultats satisfaisants et des techniques de préconditionnement spécialisés sont exigées.Cette thèse présente des techniques de préconditionnement efficaces multiniveau et multigrilles algébrique (AMG) pour l'analyse p-adaptative FEM. Dans la p-adaptation, des éléments finis de différents ordres polynomiaux sont présents dans le maillage et la matrice du système peut être structurée en blocs correspondant aux ordres des fonctions de base. Les nouveaux préconditionneurs sont basés sur un type d'inversion approximative à multiniveau p Schwarz (pMUS) du système structuré de bloc. Une correction à niveaux multiples en cycle V débute par l'application de Gauss-Seidel au niveau du bloc le plus élevé, suivi par le niveau inférieur, et ainsi de suite. De l'autre côté du V, des itérations de Gauss-Seidel sont appliquées en ordre inverse. Au bas du cycle se trouve le système d'ordre le plus bas, qui est habituellement résolu exactement avec un solveur direct. L'alternative proposée est d'utiliser l'espace auxiliaire de préconditionnement (ASP) au niveau le plus bas et de poursuivre le cycle en V vers le bas, d'abord en un ensemble d'auxiliaires, basé sur les espacements de nœuds, à travers une série de plus en plus petites de matrices générées par un multigrille algébrique (AMG). L'approche de grossissement algébrique est particulièrement utile aux problèmes ayant de fins détails géométriques, nécessitant une très grande maille dans laquelle la majeure partie des éléments restent à un niveau plus bas.En outre, pour des problèmes d'onde, la technique "décalé Laplace" est appliquée, dans laquelle une partie de l'algorithme ASP/AMG utilise une fréquence complexe perturbée. Une accélération de la convergence significative est atteinte. La performance des algorithmes de Krylov est davantage renforcée au cours du p-adaptation par l'incorporation d'une technique de déflation. Cette saillie fait dépasser hors du système préconditionné, les vecteurs propres correspondants aux plus petites valeurs propres. La construction du sous-espace de déflation est basée sur une estimation efficace des vecteurs propres à partir d'informations obtenues lors de la résolution du premier problème dans une séquence p-adaptatif. Des expériences numériques approfondies ont été effectuées et les résultats sont présentés à la fois aux problèmes d'onde et quasi-statiques. Les cas de test sont considérés comme compliqués à résoudre et les résultats numériques montrent la robustesse et l'efficacité des nouveaux préconditionnements. Les méthodes de Krylov de déflation préconditionnés par l'approche multiniveaux/ASP/AMG actuelle sont toujours considérablement plus rapides que les méthodes de référence et des accélérations allant jusqu'à 10 sont atteintes pour certains problèmes de test.
Moya, Ludovic. "Méthodes Galerkine discontinues localement implicites en domaine temporel pour la propagation des ondes électromagnétiques dans les tissus biologiques." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00950386.
Full textPa¸ur, Tomislav [Verfasser], and M. [Akademischer Betreuer] Hochbruck. "Error analysis of implicit and exponential time integration of linear Maxwell's equations / Tomislav Pa¸ur. Betreuer: M. Hochbruck." Karlsruhe : KIT-Bibliothek, 2013. http://d-nb.info/1047839822/34.
Full textKlimek, Mariusz [Verfasser], Sebastian [Akademischer Betreuer] Schöps, and Stefan [Akademischer Betreuer] Kurz. "Space-Time Discretization of Maxwell's Equations in the Setting of Geometric Algebra / Mariusz Klimek ; Sebastian Schöps, Stefan Kurz." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2018. http://d-nb.info/1152384236/34.
Full textBonazzoli, Marcella. "Méthodes d'ordre élevé et méthodes de décomposition de domaine efficaces pour les équations de Maxwell en régime harmonique." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4067/document.
Full textThe time-harmonic Maxwell’s equations present several difficulties when the frequency is large, such as the sign-indefiniteness of the variational formulation, the pollution effect and the problematic construction of iterative solvers. We propose a precise and efficient solution strategy that couples high order finite element (FE) discretizations with domain decomposition (DD) preconditioners. High order FE methods make it possible for a given precision to reduce significantly the number of unknowns of the linear system to be solved. DD methods are then used as preconditioners for the iterative solver: the problem defined on the global domain is decomposed into smaller problems on subdomains, which can be solved concurrently and using robust direct solvers. The design, implementation and analysis of both these methods are particularly challenging for Maxwell’s equations. FEs suited for the approximation of the electric field are the curl-conforming or edge finite elements. Here, we revisit the classical degrees of freedom (dofs) defined by Nédélec to obtain a new more friendly expression in terms of the chosen high order basis functions. Moreover, we propose a general technique to restore duality between dofs and basis functions. We explicitly describe an implementation strategy, which we embedded in the open source language FreeFem++. Then we focus on the preconditioning of the linear system, starting with a numerical validation of a one-level overlapping Schwarz preconditioner, with impedance transmission conditions between subdomains. Finally, we investigate how two-level preconditioners recently analyzed for the Helmholtz equation work in the Maxwell case, both from the theoretical and numerical points of view. We apply these methods to the large scale problem arising from the modeling of a microwave imaging system, for the detection and monitoring of brain strokes. In this application accuracy and computing speed are indeed of paramount importance
Gläfke, Matthias. "Adaptive methods for time domain boundary integral equations for acoustic scattering." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7378.
Full textLindhe, Adam. "Reflected Stochastic Differential Equations on a Time-Dependent Non-Smooth Domain." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229073.
Full textI den här mastersuppsatsen så bevisar vi existens och entydighet för reflekterade stokastiska differentialekvation på ett icke slätt, tidsberoende område. Området är snittet mellan ett ändligt antal släta områden som tillåts variera i tiden. Reflektionen är ej nödvändigtvis vinkelrät till området och i hörnen finns det mer än en tillåten riktning. Tidsrestriktionen på området är dels existensen av en familj av semikonkava mängder som är C¹;+ i tiden. Dessutom att avståndet till området är W¹;p i tiden. Första delen av beviset är att konstruera tre hjälp funktioner med eftersökta egenskaper. Med hjälp av de här funktionerna så bevisas sedan existens av lösningar till Skorokhod problemet. Slutligen så bevisas entydighet av den reflekterade stokastiska differentialekvationen.
Hagdahl, Stefan. "Hybrid Methods for Computational Electromagnetics in Frequency Domain." Doctoral thesis, Stockholm : Numerisk analys och datalogi (NADA) ; Tekniska högsk, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-400.
Full textTinniswood, Adam D. "Solution of time domain integral equations on distributed memory parallel processing systems." Thesis, University of York, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362022.
Full textSchwarzbach, Christoph [Verfasser], Klaus [Akademischer Betreuer] Spitzer, Klaus [Gutachter] Spitzer, Peter [Gutachter] Weidelt, and Eldad [Gutachter] Haber. "Stability of finite element solutions to Maxwell's equations in frequency domain / Christoph Schwarzbach ; Gutachter: Klaus Spitzer, Peter Weidelt, Eldad Haber ; Betreuer: Klaus Spitzer." Freiberg : TU Bergakademie Freiberg, 2009. http://d-nb.info/1220836885/34.
Full textAtle, Andreas. "Numerical approximations of time domain boundary integral equation for wave propagation." Licentiate thesis, KTH, Numerical Analysis and Computer Science, NADA, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1682.
Full textBoundary integral equation techniques are useful in thenumerical simulation of scattering problems for wave equations.Their advantage over methods based on partial di.erentialequations comes from the lack of phase errors in the wavepropagation and from the fact that only the boundary of thescattering object needs to be discretized. Boundary integraltechniques are often applied in frequency domain but recentlyseveral time domain integral equation methods are beingdeveloped.
We study time domain integral equation methods for thescalar wave equation with a Galerkin discretization of twodi.erent integral formulations for a Dirichlet scatterer. The.rst method uses the Kirchho. formula for the solution of thescalar wave equation. The method is prone to get unstable modesand the method is stabilized using an averaging .lter on thesolution. The second method uses the integral formulations forthe Helmholtz equation in frequency domain, and this method isstable. The Galerkin formulation for a Neumann scattererarising from Helmholtz equation is implemented, but isunstable.
In the discretizations, integrals are evaluated overtriangles, sectors, segments and circles. Integrals areevaluated analytically and in some cases numerically. Singularintegrands are made .nite, using the Du.y transform.
The Galerkin discretizations uses constant basis functionsin time and nodal linear elements in space. Numericalcomputations verify that the Dirichlet methods are stable, .rstorder accurate in time and second order accurate in space.Tests are performed with a point source illuminating a plateand a plane wave illuminating a sphere.
We investigate the On Surface Radiation Condition, which canbe used as a medium to high frequency approximation of theKirchho. formula, for both Dirichlet and Neumann scatterers.Numerical computations are done for a Dirichlet scatterer.
Dolean, Victorita. "Algorithmes par decomposition de domaine et méthodes de discrétisation d'ordre elevé pour la résolution des systèmes d'équations aux dérivées partielles. Application aux problèmes issus de la mécanique des fluides et de l'électromagnétisme." Habilitation à diriger des recherches, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00413574.
Full textRarata, Zbigniew. "Application and assessment of time-domain DGM for intake acoustics using 3D linearized Euler equations." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/371795/.
Full text