Academic literature on the topic 'Maxwell's equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Maxwell's equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Maxwell's equations"

1

CIARLET, PATRICK, and SIMON LABRUNIE. "NUMERICAL ANALYSIS OF THE GENERALIZED MAXWELL EQUATIONS (WITH AN ELLIPTIC CORRECTION) FOR CHARGED PARTICLE SIMULATIONS." Mathematical Models and Methods in Applied Sciences 19, no. 11 (November 2009): 1959–94. http://dx.doi.org/10.1142/s0218202509004017.

Full text
Abstract:
When computing numerical solutions to the Vlasov–Maxwell equations, the source terms in Maxwell's equations usually fail to satisfy the continuity equation. Since this condition is required for the well-posedness of Maxwell's equations, it is necessary to introduce generalized Maxwell's equations which remain well-posed when there are errors in the sources. These approaches, which involve a hyperbolic, a parabolic and an elliptic correction, have been recently analyzed mathematically. The goal of this paper is to carry out the numerical analysis for several variants of Maxwell's equations with an elliptic correction.
APA, Harvard, Vancouver, ISO, and other styles
2

Carey, A. L., and K. McNamara. "Degenerate forms of Maxwell's equations." Journal of the Australian Mathematical Society. Series B. Applied Mathematics 31, no. 3 (January 1990): 277–300. http://dx.doi.org/10.1017/s0334270000006652.

Full text
Abstract:
AbstractThis paper studies degenerate forms of Maxwell's equations which arise from approximations suggested by geophysical modelling problems. The approximations reduce Maxwell's equations to degenerate elliptic/parabolic ones. Here we consider the questions of existence, uniqueness and regularity of solutions for these equations and address the problem of showing that the solutions of the degenerate equations do approximate those of the genuine Maxwell equations.
APA, Harvard, Vancouver, ISO, and other styles
3

McCrea, W. H. "Maxwell's equations." Contemporary Physics 26, no. 3 (May 1985): 297. http://dx.doi.org/10.1080/00107518508223687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BARTHELMÉ, RÉGINE, PATRICK CIARLET, and ERIC SONNENDRÜCKER. "GENERALIZED FORMULATIONS OF MAXWELL'S EQUATIONS FOR NUMERICAL VLASOV–MAXWELL SIMULATIONS." Mathematical Models and Methods in Applied Sciences 17, no. 05 (May 2007): 657–80. http://dx.doi.org/10.1142/s0218202507002066.

Full text
Abstract:
When solving numerically approximations of the Vlasov–Maxwell equations, the source terms in Maxwell's equations coming from the numerical solution of the Vlasov equation do not generally satisfy the continuity equation which is required for Maxwell's equations to be well-posed. Hence it is necessary to introduce generalized Maxwell's equations which remain well-posed when there are errors in the sources. Different such formulations have been introduced previously. The aim of this paper is to perform their mathematical analysis and verify the existence and uniqueness of the solution.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhao, Yang, Dumitru Baleanu, Carlo Cattani, De-Fu Cheng, and Xiao-Jun Yang. "Maxwell’s Equations on Cantor Sets: A Local Fractional Approach." Advances in High Energy Physics 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/686371.

Full text
Abstract:
Maxwell’s equations on Cantor sets are derived from the local fractional vector calculus. It is shown that Maxwell’s equations on Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. Local fractional differential forms of Maxwell’s equations on Cantor sets in the Cantorian and Cantor-type cylindrical coordinates are obtained. Maxwell's equations on Cantor set with local fractional operators are the first step towards a unified theory of Maxwell’s equations for the dynamics of cold dark matter.
APA, Harvard, Vancouver, ISO, and other styles
6

Dawson, Peter, and Jim Grozier. "Maxwell's famous equations." Physics World 28, no. 4 (April 2015): 21–22. http://dx.doi.org/10.1088/2058-7058/28/4/29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arbab, A. I. "Complex Maxwell's equations." Chinese Physics B 22, no. 3 (March 2013): 030301. http://dx.doi.org/10.1088/1674-1056/22/3/030301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arbab, A. I. "Quantized Maxwell's equations." Optik 136 (May 2017): 64–70. http://dx.doi.org/10.1016/j.ijleo.2017.01.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hillion, Pierre. "Paraxial Maxwell's equations." Optics Communications 107, no. 5-6 (May 1994): 327–30. http://dx.doi.org/10.1016/0030-4018(94)90340-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

LONG, EAMONN. "EXISTENCE AND STABILITY OF SOLITARY WAVES IN NON-LINEAR KLEIN–GORDON–MAXWELL EQUATIONS." Reviews in Mathematical Physics 18, no. 07 (August 2006): 747–79. http://dx.doi.org/10.1142/s0129055x06002784.

Full text
Abstract:
We prove the existence and stability of non-topological solitons in a class of weakly coupled non-linear Klein–Gordon–Maxwell equations. These equations arise from coupling non-linear Klein–Gordon equations to Maxwell's equations for electromagnetism.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Maxwell's equations"

1

Jais, Mathias. "Parameter identification for Maxwell's equations." Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/54581/.

Full text
Abstract:
In this work we present a variational algorithm to determine the parameters iir(x) and er(x) in the Maxwell system VxE + k xTH = 0, V x H - kerE = 0 in a body Q from boundary measurements of electromagnetic pairs (n x En dci,n x Hn dn), n= 1,2,…, where n is the outer unit normal. We show that this inverse problem can be solved by minimizing a positive functional C7(m,c) and using a conjugate gradient scheme. Apart from implementations with global boundary, we also consider the case of partial boundary, where we have only data available on a subset T C dQ. Further do we develop uniqueness results, to show that the given data (n x En dn, n x Hn dn), n = 1,2,…, is a sufficient basis to solve the inverse problem. We investigate the uniqueness properties of the inverse problem in the case of global boundary data as well as in the case of partial boundary data. To show the effectivness and the stability of our approach we present various numerical results with noisy data. Finally we outline an alternative method, where one is only interested in recovering the support of the functions fi l 1 and er 1.
APA, Harvard, Vancouver, ISO, and other styles
2

Rihani, Mahran. "Maxwell's equations in presence of metamaterials." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. https://theses.hal.science/tel-03670420.

Full text
Abstract:
Le sujet principal de cette thèse est l’étude de la propagation des ondes électromagnétiques, en régime harmonique, dans un milieu hétérogène composé d’un diélectrique et d’un matériau négatif (c’est-à-dire avec une permittivité diélectrique négative ε et/ou une perméabilité magnétique négative μ) qui sont séparés par une interface avec une pointe conique. En raison du changement de signe de ε et/ou μ, les équations de Maxwell peuvent être mal posées dans les cadres classiques (basés sur l’espace L2). D’autre part, nous savons que lorsque les deux problèmes scalaires associés, impliquant respectivement ε et μ, sont bien posés dans H1, les équations de Maxwell sont bien posées. En combinant la méthode de la T-coercivité avec l’analyse de Mellin dans les espaces de Sobolev à poids, nous présentons, dans la première partie de ce travail, une étude détaillée de ces problèmes scalaires. Nous prouvons que pour chacun d’entre eux, le caractère bien posé dans H1 est perdu si et seulement si le contraste associé appartient à un ensemble critique appelé intervalle critique. Ces intervalles correspondent aux ensembles de contrastes négatifs pour lesquels des singularités propagatives, aussi appelées ondes de trou noir, apparaissent à l’extrémité de la pointe. Contrairement au cas d’un coin 2D, pour une pointe 3D, plusieurs ondes de trou noir peuvent exister. Des expressions explicites de ces intervalles critiques sont obtenues pour le cas particulier des pointes coniques circulaires. Pour les contrastes critiques, en utilisant le principe de radiation de Mandelstam, nous construisons des cadres fonctionnels dans lesquels le caractère bien posé des problèmes scalaires est restauré. Le cadre physiquement pertinent est sélectionné par un principe d’absorption limite. En outre, nous présentons, dans la deuxième partie de ce travail, une nouvelle méthode numérique pour les problèmes scalaires dans le cas des contrastes non-critiques. Cette approche, contrairement aux techniques existantes, ne nécessite pas d’hypothèses supplémentaires sur le maillage au voisinage de l’interface. La troisième partie de la thèse concerne l’étude des équations de Maxwell avec un ou deux coefficients critiques. En utilisant de nouveaux résultats de potentiels vecteurs dans des espaces de Sobolev à poids, nous expliquons comment construire de nouveaux cadres fonctionnels pour les problèmes électrique et magnétique, qui sont directement liés à ceux obtenus pour les deux problèmes scalaires associés. Si l’on utilise le cadre qui respecte le principe d’absorption limite pour les problèmes scalaires, alors les cadres fournis pour les problèmes électrique et magnétique sont également cohérents avec le principe d’absorption limite. Enfin, la dernière partie porte sur des résultats d’homogénéisation des équations de Maxwell harmoniques et des problèmes scalaires associés dans un domaine 3D qui contient une distribution périodique d’inclusions faites de matériau négatif. En utilisant l’approche de la T-coercivité, nous obtenons des conditions sur les contrastes telles que le processus d’homogénéisation est possible pour les problèmes scalaires et vectoriels. De façon peu intuitive, nous montrons que les matrices homogénéisées associées auxproblèmes limites sont soit définies positives, soit définies négatives
The main subject of this thesis is the study of time-harmonic electromagnetic waves in a heterogeneous medium composed of a dielectric and a negative material (i.e. with a negative dielectric permittivity ε and/or a negative magnetic permeability μ) which are separated by an interface with a conical tip. Because of the sign-change in ε and/or μ, the Maxwell’s equations can be ill-posed in the classical L2 −frameworks. On the other hand, we know that when the two associated scalar problems, involving respectively ε and μ, are well-posed in H1, the Maxwell’s equations are well-posed. By combining the T-coercivity approach with the Mellin analysis in weighted Sobolev spaces, we present, in the first part of this work, a detailed study of these scalar problems. We prove that for each of them, the well-posedeness in H1 is lost iff the associated contrast belong to some critical set called the critical interval. These intervals correspond to the sets of negative contrasts for which propagating singularities, also known as black hole waves, appear at the tip. Contrary to the case of a 2D corner, for a 3D tip, several black hole waves can exist. Explicit expressions of these critical intervals are obtained for the particular case of circular conical tips. For critical contrasts, using the Mandelstam radiation principle, we construct functional frameworks in which well-posedness of the scalar problems is restored. The physically relevant framework is selected by a limiting absorption principle. In the process, we present a new numerical strategy for 2D/3D scalar problems in the non-critical case. This approach, presented in the second part of this work, contrary to existing ones, does not require additional assumptions on the mesh near the interface. The third part of the thesis concerns Maxwell’s equations with one or two critical coefficients. By using new results of vector potentials in weighted Sobolev spaces, we explain how to construct new functional frameworks for the electric and magnetic problems, directly related to the ones obtained for the two associated scalar problems. If one uses the setting that respects the limiting absorption principle for the scalar problems, then the settings provided for the electric and magnetic problems are also coherent with the limiting absorption principle. Finally, the last part is devoted to the homogenization process for time-harmonic Maxwell’s equations and associated scalar problems in a 3D domain that contains a periodic distribution of inclusions made of negative material. Using the T-coercivity approach, we obtain conditions on the contrasts such that the homogenization results is possible for both the scalar and the vector problems. Interestingly, we show that the homogenized matrices associated with the limit problems are either positive definite or negative definite
APA, Harvard, Vancouver, ISO, and other styles
3

Strohm, Christian. "Circuit Simulation Including Full-Wave Maxwell's Equations." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22544.

Full text
Abstract:
Diese Arbeit widmet sich der Simulation von elektrischen/elektronischen Schaltungen welche um elektromagnetische Bauelemente erweitert werden. Im Fokus stehen unterschiedliche Kopplungen der Schaltungsgleichungen, modelliert mit der modifizierten Knotenanalyse, und den elektromagnetischen Bauelementen mit deren verfeinerten Modell basierend auf den vollen Maxwell-Gleichungen in der Lorenz-geeichten A-V Formulierung welche durch Finite-Integrations-Technik räumlich diskretisiert werden. Eine numerische Analyse erweitert die topologischen Kriterien für den Index der resultierenden differential-algebraischen Gleichungen, wie sie bereits in anderen Arbeiten mit ähnlichen Feld/Schaltkreis-Kopplungen hergeleitet wurden. Für die Simulation werden sowohl ein monolithischer Ansatz als auch Waveform-Relaxationsmethoden untersucht. Im Mittelpunkt stehen dabei Zeitintegration, Skalierungsmethoden, strukturelle Eigenschaften und ein hybride Ansatz zur Lösung der zugrundeliegenden linearen Gleichungssysteme welcher den Einsatz spezialisierter Löser für die jeweiligen Teilsysteme erlaubt. Da die vollen Maxwell-Gleichungen zusätzliche Ableitungen in der Kopplungsstruktur verursachen, sind bisher existierende Konvergenzaussagen für die Waveform-Relaxation von gekoppelten differential-algebraischen Gleichungen nicht anwendbar und motivieren eine neue Konvergenzanalyse. Auf dieser Analyse aufbauend werden hinreichende topologische Kriterien entwickelt, welche eine Konvergenz von Gauß-Seidel- und Jacobi-artigen Waveform-Relaxationen für die gekoppelten Systeme garantieren. Schließlich werden numerische Benchmarks zur Verfügung gestellt, um die eingeführten Methoden und Theoreme dieser Abhandlung zu unterstützen.
This work is devoted to the simulation of electrical/electronic circuits incorporating electromagnetic devices. The focus is on different couplings of the circuit equations, modeled with the modified nodal analysis, and the electromagnetic devices with their refined model based on full-wave Maxwell's equations in Lorenz gauged A-V formulation which are spatially discretized by the finite integration technique. A numerical analysis extends the topological criteria for the index of the resulting differential-algebraic equations, as already derived in other works with similar field/circuit couplings. For the simulation, both a monolithic approach and waveform relaxation methods are investigated. The focus is on time integration, scaling methods, structural properties and a hybrid approach to solve the underlying linear systems of equations with the use of specialized solvers for the respective subsystems. Since the full-Maxwell approach causes additional derivatives in the coupling structure, previously existing convergence statements for the waveform relaxation of coupled differential-algebraic equations are not applicable and motivate a new convergence analysis. Based on this analysis, sufficient topological criteria are developed which guarantee convergence of Gauss-Seidel and Jacobi type waveform relaxation schemes for introduced coupled systems. Finally, numerical benchmarks are provided to support the introduced methods and theorems of this treatise.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Jenn-Nan. "Inverse backscattering for acoustic and Maxwell's equations /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/5794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nilsson, Martin. "Iterative solution of Maxwell's equations in frequency domain." Licentiate thesis, Uppsala universitet, Avdelningen för teknisk databehandling, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-86390.

Full text
Abstract:
We have developed an iterative solver for the Moment Method. It computes a matrix–vector product with the multilevel Fast Multipole Method, which makes the method scale with the number of unknowns. The iterative solver is of Block Quasi-Minimum Residual type and can handle several right-hand sides at once. The linear system is preconditioned with a Sparse Approximate Inverse, which is modified to handle dense matrices. The solver is parallelized on shared memory machines using OpenMP. To verify the method some tests are conducted on varying geometries. We use simple geometries to show that the method works. We show that the method scales on several processors of a shared memory machine. To prove that the method works for real life problems, we do some tests on large scale aircrafts. The largest test is a one million unknown simulation on a full scale model of a fighter aircraft.
APA, Harvard, Vancouver, ISO, and other styles
6

Savage, Joe Scott. "Vector finite elements for the solution of Maxwell's equations." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/13901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Strohm, Christian [Verfasser]. "Circuit Simulation Including Full-Wave Maxwell's Equations / Christian Strohm." Berlin : Humboldt-Universität zu Berlin, 2021. http://d-nb.info/1229435077/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Axelsson, Andreas, and kax74@yahoo se. "Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces." The Australian National University. School of Mathematical Sciences, 2002. http://thesis.anu.edu.au./public/adt-ANU20050106.093019.

Full text
Abstract:
The aim of this thesis is to give a mathematical framework for scattering of electromagnetic waves by rough surfaces. We prove that the Maxwell transmission problem with a weakly Lipschitz interface,in finite energy norms, is well posed in Fredholm sense for real frequencies. Furthermore, we give precise conditions on the material constants ε, μ and σ and the frequency ω when this transmission problem is well posed. To solve the Maxwell transmission problem, we embed Maxwell’s equations in an elliptic Dirac equation. We develop a new boundary integral method to solve the Dirac transmission problem. This method uses a boundary integral operator, the rotation operator, which factorises the double layer potential operator. We prove spectral estimates for this rotation operator in finite energy norms using Hodge decompositions on weakly Lipschitz domains. To ensure that solutions to the Dirac transmission problem indeed solve Maxwell’s equations, we introduce an exterior/interior derivative operator acting in the trace space. By showing that this operator commutes with the two basic reflection operators, we are able to prove that the Maxwell transmission problem is well posed. We also prove well-posedness for a class of oblique Dirac transmission problems with a strongly Lipschitz interface, in the L_2 space on the interface. This is shown by employing the Rellich technique, which gives angular spectral estimates on the rotation operator.
APA, Harvard, Vancouver, ISO, and other styles
9

Chilton, Sven. "A fourth-order adaptive mesh refinement solver for Maxwell's Equations." Thesis, University of California, Berkeley, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3616542.

Full text
Abstract:

We present a fourth-order accurate, multilevel Maxwell solver, discretized in space with a finite volume approach and advanced in time with the classical fourth-order Runge Kutta method (RK4). Electric fields are decomposed into divergence-free and curl-free parts; we solve for the divergence-free parts of Faraday's Law and the Ampère-Maxwell Law while imposing Gauss' Laws as initial conditions. We employ a damping scheme inspired by the Advanced Weather Research and Forecasting Model to eliminate non-physical waves reflected off of coarse-fine grid boundaries, and Kreiss-Oliger artificial dissipation to remove standing wave instabilities. Surprisingly, artificial dissipation appears to damp the spuriously reflected waves at least as effectively as the atmospheric community's damping scheme.

APA, Harvard, Vancouver, ISO, and other styles
10

McCauley, Alexander P. (Alexander Patrick). "Novel applications of Maxwell's equations to quantum and thermal phenomena." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/77488.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 229-244).
This thesis is concerned with the extension of Maxwell's equations to situations far removed from standard electromagnetism, in order to discover novel phenomena. We discuss our contributions to the efforts to describe quantum fluctuations, known as Casimir forces, in terms of classical electromagnetism. We prove that chirality in metamaterials can have no appreciable effect on the Casimir force, and design an alternative metamaterial in which the structure can have a strong effect on the Casimir force. We present a geometry that exhibits a repulsive Casimir force between metallic objects in vacuum, and describe our efforts to enhance this repulsive force using the numerical techniques that we and others developed. We then show how our techniques can be extended to study the physics of near-field radiative heat transfer, computing for the first time the exact heat transfer and power flux profiles between a plate and non-spherical objects. We find in particular that the heat flux profile is non-monotonic in separation from the cone tip. Finally, we demonstrate how techniques to compute photonic bandstructures in periodic systems can be extended to certain types of quasi-periodic structures, termed photonic-quasicrystals (PQCs).
by Alexander P. McCauley.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Maxwell's equations"

1

Huray, Paul G. Maxwell's Equations. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470549919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fushchich, V. I. Symmetries of Maxwell's equations. Dordrecht: D. Reidel, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fushchich, Vilʹgelʹm Ilʹich. Symmetries of Maxwell's equations. Dordrecht [Netherlands]: D. Reidel, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thomas, E. G. Maxwell's equations and their applications. Bristol: A. Hilger Ltd., 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

G, Thomas E. Maxwell's equations and their applications. Bristol: Hilger, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ball, David W. Maxwell's equations of electrodynamics: An explanation. Bellingham, Washington, USA: SPIE Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fitzpatrick, Richard. Maxwell's equations and the principles of electromagnetism. Hingham, Mass: Infinity Science Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kirsch, Andreas, and Frank Hettlich. The Mathematical Theory of Time-Harmonic Maxwell's Equations. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11086-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsutomu, Kitoh, ed. Introduction to optical waveguide analysis: Solving Maxwell's equations and the Schrödinger equation. New York: J. Wiley, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kalnins, E. G. Symmetry operators for Maxwell's equations on curved space-time. Hamilton, N.Z: University of Waikato, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Maxwell's equations"

1

Gonzalez, Guillermo. "Maxwell's Equations." In Advanced Electromagnetic Wave Propagation Methods, 1–37. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003219729-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schwinger, Julian, and Kimball A. Milton. "Maxwell's Equations." In Classical Electrodynamics, 3–16. 2nd ed. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003057369-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sayas, Francisco-Javier, Thomas S. Brown, and Matthew E. Hassell. "Curl spaces and Maxwell's equations." In Variational Techniques for Elliptic Partial Differential Equations, 409–52. Boca Raton, Florida : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429507069-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kouh, Taejoon, and Minjoon Kouh. "Maxwell's Equations and Electromagnetic Wave." In Electrodynamics Tutorials with Python Simulations, 239–58. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003397496-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tyagi, R. K. "Maxwell's Equations and Electromagnetic Waves." In Elements of Electricity and Magnetism, 325–53. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003529125-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hazra, Lakshminarayan. "From Maxwell's Equations to Thin Lens Optics." In Foundations of Optical System Analysis and Design, 19–59. New York: CRC Press, 2022. http://dx.doi.org/10.1201/9780429154812-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burton, David A., and Adam Noble. "Maxwell's equations in terms of differential forms." In A Geometrical Approach to Physics, 56–75. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003228943-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Maxwell's Equations." In Special Relativity, 323–33. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-810411-8.00020-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Maxwell's Equations." In Electromagnetism, 263–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118562215.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Maxwell's equations." In Theoretical Concepts in Physics, 77–78. Cambridge University Press, 2003. http://dx.doi.org/10.1017/cbo9780511840173.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Maxwell's equations"

1

Marx, E. "Causality and Maxwell's equations." In International Symposium on Electromagnetic Compatibility. IEEE, 1992. http://dx.doi.org/10.1109/isemc.1992.626155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krumpholz, M. "TLM and Maxwell's equations." In Second International Conference on Computation in Electromagnetics. IEE, 1994. http://dx.doi.org/10.1049/cp:19940004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Warnick, K. F., and P. Russer. "Solving Maxwell's equations using fractional wave equations." In 2006 IEEE Antennas and Propagation Society International Symposium. IEEE, 2006. http://dx.doi.org/10.1109/aps.2006.1710682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Salazar Palma, Magdalena, and Sarkar Tapan Kumar. "The genesis of Maxwell's equations." In 2015 IEEE MTT-S International Microwave Symposium (IMS2015). IEEE, 2015. http://dx.doi.org/10.1109/mwsym.2015.7166868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fernandez-Guasti, M. "Tiered Structure of Maxwell's Equations." In 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Siefert, Christopher, Raymond Tuminaro, Christian Glusa, and John Kaushagen. "Multilevel Methods for Maxwell's Equations." In Proposed for presentation at the SIAM Conference on Applied Linear Algebra (LA21) held May 17-21, 2021 in New Orleans, LA. US DOE, 2021. http://dx.doi.org/10.2172/1869378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Erikson, W. L., and Surendra Singh. "Maxwell-Gaussian optical beams." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.wa1.

Full text
Abstract:
Paraxial Gaussian-beam-like solutions of the scalar wave equation, often used to model laser beams, do not satisfy Maxwell's equations. Paraxial-beam-like solutions that satisfy Maxwell's equations are constructed from the solutions of the scalar wave equation. Polarization properties of these Maxwell-Gaussian beams in free space are discussed. It is found that a Maxwell-Gaussian beam linearly polarized in the x direction and propagating in the z direction has a weak cross polarization component in the y direction in addition to a longitudinal component in the direction of propagation. These properties are demonstrated by using light beams from an Ar-ion laser.
APA, Harvard, Vancouver, ISO, and other styles
8

Gonano, Carlo Andrea, and Riccardo Enrico Zich. "Fluid-dynamic formulation of Maxwell's equations." In 2012 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2012. http://dx.doi.org/10.1109/aps.2012.6347957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bing Li, Bing Sun, Jie Chen, De-xian Deng, and Yan Wang. "Signal model based on Maxwell's equations." In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6946423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jondral, Friedrich K. "From Maxwell's Equations to Cognitive Radio." In 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom). IEEE, 2008. http://dx.doi.org/10.1109/crowncom.2008.4562458.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Maxwell's equations"

1

Albanese, Richard A., and Peter B. Monk. The Inverse Source Problem for Maxwell's Equations. Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada459256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Demkowicz, Leszek. Fully Automatic, hp-Adaptive Simulations for Maxwell's Equations. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada422164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Siefert, Christopher. Adding Magnetization to the Eddy Current Approximation of Maxwell's Equations. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1614896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shankar, Vijaya, W. Hally, C. Rowell, and A. Tohammaian. Efficient Time Domain Solutions of Maxwell's Equations for Aerospace Systems. Fort Belvoir, VA: Defense Technical Information Center, April 1995. http://dx.doi.org/10.21236/ada294019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Whealton, J. H., G. L. Chen, R. W. McGaffey, R. J. Raridon, E. F. Jaeger, M. A. Bell, and D. J. Hoffman. 3-D analysis of Maxwell's equations for cavities of arbitrary shape. Office of Scientific and Technical Information (OSTI), March 1986. http://dx.doi.org/10.2172/5918872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shields, Sidney. Novel methods for the time-dependent Maxwell's equations and their applications. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1352142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meagher, Timothy. A New Finite Difference Time Domain Method to Solve Maxwell's Equations. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

El sakori, Ahmed. A Posteriori Error Estimates for Maxwell's Equations Using Auxiliary Subspace Techniques. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hagstrom, Thomas, and Stephen Lau. Radiation Boundary Conditions for Maxwell's Equations: A Review of Accurate Time-Domain Formulations. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada470448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Jinjie. Three-Dimensional Stable Nonorthogonal FDTD Algorithm with Adaptive Mesh Refinement for Solving Maxwell's Equations. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada571241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography