Dissertations / Theses on the topic 'Maximum Power Point Technique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Maximum Power Point Technique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Aashoor, Fathi. "Maximum power point tracking techniques for photovoltaic water pumping system." Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.683537.
Full textBonini, Neto Alfredo. "Técnicas de parametrização geométrica para o método da continuação /." Ilha Solteira : [s.n.], 2011. http://hdl.handle.net/11449/100307.
Full textBanca: Sergio Azevedo de Oliveira
Banca: Francisco Carlos Vieira Malange
Banca: Luiz Carlos Pereira da Silva
Banca: Madson Cortes de Almeida
Resumo: Este trabalho analisa a utilização de técnicas de parametrização global para o fluxo de carga continuado. Essas técnicas são consideradas inadequadas para a obtenção da margem de carregamento de sistemas com problemas de estabilidade de tensão com características fortemente locais. Isto se deve ao fato de que no ponto de máximo carregamento a singularidade da matriz Jacobiana do método de parametrização global coincide com a da matriz Jacobiana do fluxo de carga. Nesses casos, a parametrização local é considerada como a única forma de se eliminar a singularidade. Entretanto, este trabalho mostra que a singularidade também pode ser eficientemente eliminada não só para estes sistemas, mas para qualquer outro, através de uma nova técnica de parametrização (global). A técnica utiliza a equação de uma reta que passa por um ponto no plano determinado pelas variáveis fator de carregamento e a somatória das magnitudes, ou dos ângulos, das tensões nodais de todas as barras do sistema, que são as variáveis comumente usadas pelas técnicas de parametrização global. Os resultados obtidos para diversos sistemas confirmam o aumento da eficiência dos métodos propostos e mostram sua viabilidade para aplicações no planejamento da operação nos atuais sistemas de gerenciamento de energia
Abstract: This work presents an analysis of the use of global parameterization techniques to the continuation power flow. Those techniques are considered inadequate for computation of the loading margin of power systems characterized by strong local static voltage stability. In such systems, at maximum loading point, the singularity of the Jacobian matrices of global parameterization techniques coincide with the one of the power flow Jacobian matrix. In those cases, the local parameterization is considered as the only way to overcome the singularity. However, this paper shows that this kind of singularity can be efficiently eliminated not only for these systems, but also for all others, by a new parameterization technique (global). This technique uses the addition of a line equation, which passes through a point in the plane determined by the sum of all the bus voltage magnitudes, or angles, and loading factor variables, that are variables commonly used by global parameterization techniques. The obtained results for several systems confirm the efficiency increased of the proposed methods and show its viability for applications in the operating planning in a modern energy management system
Doutor
Hassan, Aakash. "Improving the efficiency, power quality, and cost-effectiveness of solar PV systems using intelligent techniques." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2023. https://ro.ecu.edu.au/theses/2676.
Full textSchuss, C. (Christian). "Measurement techniques and results aiding the design of photovoltaic energy harvesting systems." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526215914.
Full textTiivistelmä Tämä työ esittelee mittaustekniikoita ja mitattuja ja simuloituja tuloksia aurinkoenergian keruujärjestelmien suunnittelun avuksi. Työtä varten kehitettiin kustannustehokas mittausjärjestelmä, jonka avulla arvioitiin aurinkoenergian määrää sekä stationaarisen että liikkuvan valokennon tapauksissa. Näiden lisäksi tutkittiin mittaustaajuuden vaikutusta arvioitaessa saatavilla olevan aurinkoenergian määrää. Liikkuvan PV (photovoltaic)-asennuksen avulla tutkittiin saatavilla olevan aurinkoenergian vaihtelun suuruutta ja nopeutta tarkoituksena analysoida näiden vaikutuksia käytettäviin MPPT-algoritmeihin. Tämä lisäksi tutkittiin myös valoenergian keruumahdollisuuksia sisätiloissa. Työn tärkein kontribuutio on valokennojen ja kokonaisten valopaneelien toiminnallisuuden testaamisen tehostaminen. Tyypillisesti PV:n toiminnallisuus varmistetaan tarkasti määritetyssä ympäristössä suoritetun I-V -ominaiskäyrämittauksen avulla. Tämän työn menetelmä on yksinkertaisesti biasoida PV:t ulkoisesti, minkä jälkeen ST (synchronized thermpgraphy) -kuvauksen avulla määritetään PV-paneelien itselämpenemistä kuvaavat infrapunakuvat. Paneelin vioittuneet alueet erottuvat IR-kuvissa kylminä alueina ulkoisen biasoinnin puuttuessa. IR-kuvista havaituista lämpötilavaihteluista on mahdollista määrittää vioittuneen alueen koko ja siten arvioida myös menetettyä lähtötehoa. Kyseisen metodin toimivuus osoitettiin niin lasikoteloiduilla kuin ilman sitä olevilla PV-paneeleilla
Magalhães, Elisabete de Mello. "Aplicação do método de Newton desacoplado para o fluxo de carga continuado /." Ilha Solteira : [s.n.], 2010. http://hdl.handle.net/11449/87114.
Full textBanca: Anna Diva Plasencia Lotufo
Banca: Edmárcio Antonio Belati
Resumo: Este trabalho apresenta o método de Newton desacoplado para o fluxo de carga continuado. O método foi melhorado por uma técnica de parametrização geométrica possibilitando assim o traçado completo das curvas P-V, e o cálculo do ponto de máximo carregamento de sistemas elétricos de potência, sem os problemas de mau condicionamento. O objetivo é o de apresentar de forma didática os passos envolvidos no processo de melhoria do método de Newton Desacoplado a partir da observação das trajetórias de solução do fluxo de carga. A técnica de parametrização geométrica que consiste na adição de uma equação de reta que passa por um ponto no plano formado pelas variáveis: tensão nodal de uma barra k qualquer e o fator de carregamento eliminam os problemas de singularidades das matrizes envolvidas no processo e ampliam o grupo das variáveis de tensão que podem ser usadas como parâmetro da continuação. Os resultados obtidos com a nova metodologia para o sistema teste do IEEE (14, 30, 57, 118 e 300 barras) e também para os sistemas reais de grande porte, o 638 barras do sistema Sul-Sudeste brasileiro e do sistema de 904 barras do sudoeste Americano, mostram que as características do método convencional são melhoradas na região do ponto de máximo carregamento e que a região de convergência ao redor da singularidade é sensivelmente aumentada. São apresentados vários testes com a finalidade de prover um completo entendimento do funcionamento do método proposto e também avaliar seu desempenho
Abstract: This work presents the decoupled Newton method for continuation power flow. The method was improved by using a geometric parameterization technique that allows the complete tracing of P-V curves, and the computation of maximum loading point of a power system, without ill-conditioning problems. The goal is to present in a clear and didactic way the steps involved in the development of the improved decoupled Newton method obtained from the observation of the geometrical behavior of power flow solutions. The geometric parameterization technique that consists of the addition of a line equation, which passes through a point in the plane determined by the bus voltage magnitude and loading factor variables, can eliminate the ill-conditioning problems of matrices used by the method and can enlarge the set of voltage variables that can be used as continuation parameter to P-V curve tracing. The method is applied to the IEEE systems (14, 30, 57, 118 and 300 buses) and two large real systems: the south-southeast Brazilian system (638 buses) and the 904-bus southwestern American system. The results show that the best characteristics of the conventional decoupled Newton's method are improved in the vicinity of the maximum loading point and therefore the region of convergence around it is enlarged. Several tests are presented with the purpose of providing a complete understanding of the behavior of the proposed method and also to evaluate its performance
Mestre
Magalhães, Elisabete de Mello [UNESP]. "Aplicação do método de Newton desacoplado para o fluxo de carga continuado." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/87114.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Este trabalho apresenta o método de Newton desacoplado para o fluxo de carga continuado. O método foi melhorado por uma técnica de parametrização geométrica possibilitando assim o traçado completo das curvas P-V, e o cálculo do ponto de máximo carregamento de sistemas elétricos de potência, sem os problemas de mau condicionamento. O objetivo é o de apresentar de forma didática os passos envolvidos no processo de melhoria do método de Newton Desacoplado a partir da observação das trajetórias de solução do fluxo de carga. A técnica de parametrização geométrica que consiste na adição de uma equação de reta que passa por um ponto no plano formado pelas variáveis: tensão nodal de uma barra k qualquer e o fator de carregamento eliminam os problemas de singularidades das matrizes envolvidas no processo e ampliam o grupo das variáveis de tensão que podem ser usadas como parâmetro da continuação. Os resultados obtidos com a nova metodologia para o sistema teste do IEEE (14, 30, 57, 118 e 300 barras) e também para os sistemas reais de grande porte, o 638 barras do sistema Sul-Sudeste brasileiro e do sistema de 904 barras do sudoeste Americano, mostram que as características do método convencional são melhoradas na região do ponto de máximo carregamento e que a região de convergência ao redor da singularidade é sensivelmente aumentada. São apresentados vários testes com a finalidade de prover um completo entendimento do funcionamento do método proposto e também avaliar seu desempenho
This work presents the decoupled Newton method for continuation power flow. The method was improved by using a geometric parameterization technique that allows the complete tracing of P-V curves, and the computation of maximum loading point of a power system, without ill-conditioning problems. The goal is to present in a clear and didactic way the steps involved in the development of the improved decoupled Newton method obtained from the observation of the geometrical behavior of power flow solutions. The geometric parameterization technique that consists of the addition of a line equation, which passes through a point in the plane determined by the bus voltage magnitude and loading factor variables, can eliminate the ill-conditioning problems of matrices used by the method and can enlarge the set of voltage variables that can be used as continuation parameter to P-V curve tracing. The method is applied to the IEEE systems (14, 30, 57, 118 and 300 buses) and two large real systems: the south-southeast Brazilian system (638 buses) and the 904-bus southwestern American system. The results show that the best characteristics of the conventional decoupled Newton’s method are improved in the vicinity of the maximum loading point and therefore the region of convergence around it is enlarged. Several tests are presented with the purpose of providing a complete understanding of the behavior of the proposed method and also to evaluate its performance
Bonini, Neto Alfredo [UNESP]. "Técnicas de parametrização geométrica para o método da continuação." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/100307.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Este trabalho analisa a utilização de técnicas de parametrização global para o fluxo de carga continuado. Essas técnicas são consideradas inadequadas para a obtenção da margem de carregamento de sistemas com problemas de estabilidade de tensão com características fortemente locais. Isto se deve ao fato de que no ponto de máximo carregamento a singularidade da matriz Jacobiana do método de parametrização global coincide com a da matriz Jacobiana do fluxo de carga. Nesses casos, a parametrização local é considerada como a única forma de se eliminar a singularidade. Entretanto, este trabalho mostra que a singularidade também pode ser eficientemente eliminada não só para estes sistemas, mas para qualquer outro, através de uma nova técnica de parametrização (global). A técnica utiliza a equação de uma reta que passa por um ponto no plano determinado pelas variáveis fator de carregamento e a somatória das magnitudes, ou dos ângulos, das tensões nodais de todas as barras do sistema, que são as variáveis comumente usadas pelas técnicas de parametrização global. Os resultados obtidos para diversos sistemas confirmam o aumento da eficiência dos métodos propostos e mostram sua viabilidade para aplicações no planejamento da operação nos atuais sistemas de gerenciamento de energia
This work presents an analysis of the use of global parameterization techniques to the continuation power flow. Those techniques are considered inadequate for computation of the loading margin of power systems characterized by strong local static voltage stability. In such systems, at maximum loading point, the singularity of the Jacobian matrices of global parameterization techniques coincide with the one of the power flow Jacobian matrix. In those cases, the local parameterization is considered as the only way to overcome the singularity. However, this paper shows that this kind of singularity can be efficiently eliminated not only for these systems, but also for all others, by a new parameterization technique (global). This technique uses the addition of a line equation, which passes through a point in the plane determined by the sum of all the bus voltage magnitudes, or angles, and loading factor variables, that are variables commonly used by global parameterization techniques. The obtained results for several systems confirm the efficiency increased of the proposed methods and show its viability for applications in the operating planning in a modern energy management system
Duncan, Joseph 1981. "A global maximum power point tracking DC-DC converter." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33152.
Full textIncludes bibliographical references (p. 79-80).
This thesis describes the design, and validation of a maximum power point tracking DC-DC converter capable of following the true global maximum power point in the presence of other local maximum. It does this without the use of costly components such as analog-to-digital converters and microprocessors. It substantially increases the efficiency of solar power conversion by allowing solar cells to operate at their ideal operating point regardless of changes in load, and illumination. The converter switches between a dithering algorithm which tracks the local maximum and a global search algorithm for ensuring that the converter is operating at the true global maximum.
by Joseph Duncan.
M.Eng.
Acharya, Parash. "Small Scale Maximum Power Point Tracking Power Converter for Developing Country Application." Thesis, University of Canterbury. Electrical and Computer Engineering, 2013. http://hdl.handle.net/10092/8608.
Full textRajan, Anita V. (Anita Varada). "A maximum power point tracker optimized for solar powered cars." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/100654.
Full textSanders, Dustin R. "Maximum Power Point Tracking and Communications for Solar Powered Vehicles." Thesis, Southern Illinois University at Edwardsville, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10010780.
Full textThe SIUe solar car team lacks a competitive communication system. To enable the competitive edge a major upgrade to the electronics and wiring was required. A new maximum power point tracker and driver support system was developed to give them the competitive edge.
Kang, Byung O. "Maximum Power Point Tracking Using Kalman Filter for Photovoltaic System." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/30920.
Full textMaster of Science
Gamboa, Gustavo. "REALIZATION OF POWER FACTOR CORRECTION AND MAXIMUM POWER POINT TRACKING FOR LOW POWER WIND TURBINES." Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4283.
Full textM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
Gohar, Ali Hina. "Maximum Power Point Tracking of Photovoltaic system using Non-Linear Controllers." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671122.
Full textLa creciente demanda de energía, el agotamiento de los combustibles fósiles y el aumento del calentamiento global debido a la emisión de carbono han hecho surgir la necesidad de un sistema energético alternativo, de eficiencia general y respetuoso con el medio ambiente. La energía solar se considera una de las formas de energía más inagotables de este universo, pero tiene el problema de la baja eficiencia debido a las diferentes condiciones ambientales. El panel solar exhibe un comportamiento no lineal en condiciones climáticas reales y la potencia de salida fluctúa con la variación de la irradiancia solar y la temperatura. Las condiciones climáticas cambiantes y el comportamiento no lineal de los sistemas fotovoltaicos plantean un desafío en el seguimiento de la variación máxima de PowerPoint. Por lo tanto, para extraer y entregar continuamente la máxima potencia posible del sistema fotovoltaico, en determinadas condiciones ambientales, se debe formular la estrategia de control de seguimiento del punto de máxima potencia (MPPT) que opere continuamente el sistema fotovoltaico en su MPP. Se requiere un controlador no lineal robusto para asegurar MPPT manejando las no linealidades de un sistema y haciéndolo robusto frente a condiciones ambientales cambiantes. El control de modo deslizante (SMC) se usa ampliamente en sistemas de control no lineales y se ha implementado en sistemas fotovoltaicos (PVC) para rastrear MPP. SMC es robusto contra perturbaciones, incertidumbres del modelo y variaciones paramétricas. Representa fenómenos indeseables como el parloteo, inherentes a él, que provocan pérdidas de energía y calor. En esta tesis, en primer lugar, se formula un controlador SMC de orden entero para extraer la máxima potencia de un sistema fotovoltaico solar en condiciones climáticas variables empleando el esquema MPPT de perturbar y observar (P&O) para el sistema fotovoltaico autónomo propuesto. El sistema propuesto consta de dos esquemas de bucles, a saber, el bucle de búsqueda y el bucle de seguimiento. P&O MPPT se utiliza en el bucle de búsqueda para generar la señal de referencia y se utiliza un controlador SMC de seguimiento en el otro bucle para extraer la máxima potencia fotovoltaica. El sistema fotovoltaico está conectado con la carga a través del convertidor elevador DC-DC electrónico de potencia. Primero se deriva un modelo matemático del convertidor elevador y, en base al modelo derivado, se formula un SMC para controlar los pulsos de puerta del interruptor del convertidor elevador. La estabilidad del sistema de circuito cerrado se verifica mediante el teorema de estabilidad de Lyapunov. El esquema de control propuesto se prueba bajo diferentes niveles de irradiancia y los resultados de la simulación se comparan con el controlador clásico proporcional integral derivado (PID). El SMC clásico describe fenómenos indeseables como el parloteo, inherente a él, que causa pérdidas de energía y calor. En la siguiente parte de esta tesis, se analiza el diseño del controlador de modo deslizante adaptativo (ASMC) para el sistema fotovoltaico propuesto. El control adoptado se ejecuta utilizando un ASMC y la mejora se actualiza utilizando un algoritmo de optimización MPPT del Método de búsqueda de patrón mejorado (IPSM). Se utiliza un IPSM MPPT para generar el voltaje de referencia para controlar el controlador ASMC subyacente. Se ha realizado una comparación con otros dos algoritmos de optimización, a saber, Perturb \ Observe (P&O) y Particle Swarm Optimization (PSO) con IPSM para MPPT. Como estrategia no lineal, la estabilidad del controlador adaptativo está garantizada mediante la realización de un análisis de Lyapunov.
The increasing energy demands, depleting fossil fuels, and increasing global warming due to carbon emission has arisen the need for an alternate, overall efficiency, and environment-friendly energy system. Solar energy is considered to be one of the most inexhaustible forms of energy in this universe, but it has the problem of low efficiency due to varying environmental conditions. Solar panel exhibits nonlinear behavior under real climatic conditions and output power fluctuates with the variation in solar irradiance and temperature. Changing weather conditions and nonlinear behavior of PV systems pose a challenge in the tracking of varying maximum PowerPoint. Hence, to continuously extract and deliver the maximum possible power from the PV system, under given environmental conditions, the maximum power point tracking (MPPT) control strategy needs to be formulated that continuously operates the PV system at its MPP. A robust nonlinear controller is required to ensure MPPT by handling nonlinearities of a system and making it robust against changing environmental conditions. Sliding mode control (SMC) is extensively used in non-linear control systems and has been implemented in photovoltaic systems (PV) to track MPP. SMC is robust against disturbances, model uncertainties, and parametric variations. It depicts undesirable phenomena like chattering, inherent in it causing power and heat losses. In this thesis, first, an integer order SMC controller is formulated for extracting maximum power from a solar PV system under variable climatic conditions employing the perturb and observe (P&O) MPPT scheme for the proposed stand-alone PV system. The proposed system consists of two loops schemes, namely the searching loop and the tracking loop. P&O MPPT is utilized in the searching loop to generate the reference signal and a tracking SMC controller is utilized in the other loop to extract the maximum PV power. PV system is connected with load through the power electronic DC-DC boost converter. A mathematical model of the boost converter is derived first, and based on the derived model, an SMC is formulated to control the gate pulses of the boost converter switch. The closed-loop system stability is verified through the Lyapunov stability theorem. The proposed control scheme is tested under varying irradiance levels and the simulation results are compared with the classical proportional integral derivative (PID) controller. Classical SMC depicts undesirable phenomena like chattering, inherent in it causing power and heat losses. In the next part of this thesis, the design of the adaptive sliding mode controller (ASMC) is discussed for the proposed PV system. The adopted control is executed utilizing an ASMC and the enhancement is actualized utilizing an Improved Pattern Search Method (IPSM) MPPT optimization algorithm. An IPSM MPPT is used to generate the reference voltage in order to command the underlying ASMC controller. Comparison with two other optimization algorithms, namely, a Perturb & Observe (P&O) and Particle Swarm Optimization (PSO) with IPSM for MPPT has been conducted. As a non-linear strategy, the stability of the adaptive controller is guaranteed by conducting a Lyapunov analysis. The performance of the proposed control architectures is validated by comparing the proposals with that of the well-known and widely used PID controller. The simulation results validate that the proposed controller effectively improves the voltage tracking, system power with reduced chattering effect, and steady-state error. A tabular comparison is provided at the end of each optimization algorithm category as a resume quantitative comparison. It is anticipated that this work will serve as a reference and provides important insight into MPPT control of the PV systems.
Paz, Francisco. "Photovoltaic maximum power point tracker with zero oscillation and adaptive step." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/49955.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Sokolov, Michael. "Small-signal modelling of maximum power point tracking for photovoltaic systems." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/39348.
Full textChabo, Alexander, and Peter Tysk. "Maximum Net-power Point Tracking of a waste heat recovery system." Thesis, KTH, Maskinkonstruktion (Inst.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202206.
Full textAbout 30% of the released energy of a truck’s fuel is waste heat in the exhaustsystem. It is possible to recover some of the energy with a waste heat recovery system that generates electricity from a temperature difference by utilising the Seebeck-effect. Two thermoelectric generators are implemented on a truck and utilises the exhaust gas as a heat source and the coolant fluid as a cold source to accomplish a temperature difference in the generators. The electricity is reintroduced to the truck’s electrical system and thus reducing the load on the electrical generator in the engine which results in lower fuel consumption. This thesis includes the construction of a function that maximises the netpowerderived from the system. The function developed is named Maximum Net Power Point Tracking (MNPT) and has the task of calculating reference values that the controllers of the system must achieve in order to obtain maximumnet-power. A simulation environment has been developed in Matlab/Simulink in order to design a control strategy to three valves and one pump. The system has been implemented on a engine control unit that has been mounted on a test rack. The engine control unit communicates through CAN to connected devices. The system has not been implemented on the truck due that all the physical components were not completed during the time of the thesis. A case study has been conducted and the results proves that the use of an MNPT-function allows up to 300% increase in regenerated net power into the trucks electrical system compared with no control algorithms, and up to 50% compared with static reference values.
Alqarni, Mohammed. "A high efficiency photovoltaic inverter system configuration with maximum power point tracking." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/12767.
Full textLiu, Ying. "Advanced control of photovoltaic converters." Thesis, University of Leicester, 2009. http://hdl.handle.net/2381/7660.
Full textRimkus, Lukas. "Tracking maximum power point of photovoltaic modules under non-uniform solar irradiance." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20140616_131014-80024.
Full textŠiame magistro darbe buvo sumodeliuotas ir ištirtas fotovoltinio modulio veikimas, veikiant Lietuvoje būdingiems saulės apšvietos ir temperatūros pokyčiams. Fotovoltinį modulį sudaro 60 polikristalinių silicio celių sujungtų nuosekliai sistema. Modeliavimui ir skaičiavimas atlikti buvo naudojamas Matlab®/Simulink® programinės įrangos paketas. Įvedus vietos ilgumą, platumą ir pasirinkus metų dieną sugeneruojama saulės apšvietos kreivė paros bėgyje. Išgauti maksimalią galią iš fotovoltinio elemento buvo pasirinkta „buck-boost“ tipo įtampos keitiklis ir „Kalno-kilimo“ didžiausios galios taško algoritmas. Naudojant pasirinkto tipo įtampos keitiklį ir algoritmą galima pasiekti iki 93,95 % maksimalios galios. Darbą sudaro 7 dalys: įvadas, maksimalios galios algoritmų literatūros apžvalga, sistemos modeliavimas, maksimalios galios algoritmo sudarymas, rezultatai, išvados, literatūros sąrašas. Darbo apimtis 60 puslapiai, 2 priedai, 41 iliustracijų 16 lentelių, 37 bibliografiniai šaltiniai.
Yang, Chia-Heag, and 楊嘉亨. "Study of a Novel Photovoltaic Maximum Power Point Tracking Technique." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/44860275920064546219.
Full text國立高雄應用科技大學
電機工程系碩士班
95
The thesis presents a novel maximum power point tracking (MPPT) technique which is based on modulating pulse width signal to obtain maximum power point. The output power of photovoltaic (PV) cells is converted into AC power through a bi-direction energy converter and then directly parallel to power system. The proposed MPPT technique has a good tracking speed without destroying original operation condition when executing MPPT. Furthermore, the bi-direction energy converter is designed to convert the DC power generated by PV cells into AC power system, in which the dc bus voltage of the converter is controlled by the concept of energy balance. The result shows that it has a good performance. In this thesis the designed hardware is first given a detailed interpretation of its operation principle and is simulated by MATLAB and Pspice, respectively. Then, an analog circuit is designed to implement the proposed MPPT technique and a GAL with a digital signal processor having the capability of calculating output current by the energy balance equation is designed to implement the bi-direction energy converter. The experiment results verify the performance and feasibility of the proposed MPPT technique.
Lee, Tai-sheng, and 李泰陞. "Application of Maximum Power Point Tracking Technique to the Development of Solar-Energy-Auxiliary-Power Ship." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/63007407706223008451.
Full text國立成功大學
系統及船舶機電工程學系碩博士班
97
Solar-energy-auxiliary-power ship includes solar array system and energy storage system. For better use of the photovoltaic effect of the solar cell, this work takes advantage of the newly developed Maximum Power Point Tracking (MPPT) technique for the solar array system to maximize the power generated by the PV array, and to store the energy in the battery. In the proposed MPPT system, we improved the circuitry, and used the quadratic maximization method combining with PWM duty cycle adjustment to calculate the maximum power point. The use of Solar Array Simulator (SAS) has proven the proposed MPPT method is faster than other methods to track the maximum power point. By implementing the proposed MPPT technique with the energy storage system, we also build a solar-energy-auxiliary-power ship. The testing results will be also reported. Key words: solar cell, photovoltaic effect, MPPT, quadratic method,energy stored system, Solar Array Simulator.
Wang, Jun-Ren, and 王俊仁. "A Two-Stage Maximum Power Point Tracking Technique for Photovoltaic Generation Systems Considering Partial Shading." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/3e9kjv.
Full text國立臺灣科技大學
電機工程系
107
Photovoltaic generation systems (PGSs) frequently experience partial shading conditions (PSCs). Because PSCs will result in multiple peak values on the power-to-voltage characteristic curve, developing an algorithm that facilitates tracking global maximum power point (GMPP) is crucial. Therefore, a two-stage GMPP tracking algorithm is proposed in this thesis. In the first stage, the vicinity of the maximum power point is obtained by performing extensive simulations, while during the second stage, alpha factor perturb and observe (P&O) method is utilized to improve the tracking accuracy and stably control the operating point at the maximum power point. To verify the correctness and feasibility of the proposed MPPT algorithm, a 600 W prototyping circuit is constructed. The simulation results compared with the deterministic cuckoo search (CS) method under partial shading conditions show that the rising time is shortened by 34.67%, the settling time is improved by 25.18%, the average tracking power loss is reduced by 35.68%, and the 99.99% steady-state tracking accuracy can be achieved. Experimental results also validate that the proposed method can obtain GMPP under different shading patterns, and above 99.00% steady-state tracking accuracy has been reached on the specific five PSC test cases.
LARASATI, DEVITA AYU, and 戴瑤妤. "Comparative Analysis of Maximum Power Point Tracking Techniques for Photovoltaic Systems." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/70841160194823818575.
Full text國立中山大學
電機工程學系研究所
104
ABSTRACT Maximum Power Point Tracking (MPPT) plays an important role in Photovoltaic Generation (PVG) systems because it maximizes the power output from a PVG system. Thus, an MPPT can minimize the overall system cost. MPPT operates a PVG system under different solar irradiances and temperatures. Many such algorithms have been proposed. This thesis provides a comparison between Perturb and Observe (P&O) method, and Particle Swarm Optimization (PSO) method with the weather data from Taiwan Weather Bureau. Matrix Laboratory (MATLAB) programming by using real data is implemented for a PVG system with a rated output of 200 W energy to obtain the curve performance and the unharvest energy for different the MPPT algorithms.
Hsu, Chun-Yen, and 徐峻彥. "An Adaptive PI Controlled Perturb and Observe Maximum Power Point Tracking Technique for Photovoltaic Generation Systems." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/62cp2b.
Full text國立臺灣科技大學
電機工程系
107
The solar panel is becoming an increasingly popular form of renewable energy due to its decreasing installation costs and environmental friendliness. When the photovoltaic generation system (PGS) is installed in an area where the insolation changes rapidly, the maximum power point tracking (MPPT) technique is the key to make full use of the solar energy. This thesis implements the PI controlled perturb and observe (P&O) MPPT algorithm in order to solve the trade-off problem between the tracking speed and the steady state tracking accuracy of the traditional fixed-step P&O method. Compared to the traditional fixed-step P&O method and the variable step P&O method, the PI controlled P&O method can improve the tracking speed of the solar system by 58% and 55.8%, respectively. Moreover, the power loss of the solar system can be reduced by 44.8% and 37.2%, respectively. In addition, the effects of the tunable parameters – KP and KI – are also discussed in this thesis to facilitate the design of the realized PI controlled perturb and observe maximum power point tracking algorithm.
Tu, Po-Hsien, and 杜柏憲. "Maximum Power Point Tracking of Photovoltaic Systems with Modified Particle Swarm Optimization Technique Under Partial-Shading Conditions." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/38051014257635357920.
Full text國立暨南國際大學
電機工程學系
104
The major target of this thesis is to develop the maximum power tracker of photovoltaic (PV) systems under the partial-shading conditions. Since the weather is unpredictable, there might exist local and global maximum power points (MPP) in the systems. Therefore, we must be able to track the global MPP under the partial-shading conditions in order to make our PV systems offer effective maximum power output for obtaining optimal system performance. First of all, the mathematical model is established for a PV array system to investigate and analyze the voltage and power output under partial-shade and non-partial-shade conditioning. However, the output power of PV systems could have various MPP under partial-shading conditions, so we have to determine an appropriate technology for the tracking control of global MPP. A novel concept is presented to modify the traditional particle swarm optimization method for strengthening algorithm capability and improving the system performance. In addition to using linear decreasing inertia weight, we apply nonlinear adapting learning factors for enhancing the tracking ability. It can avoid falling into local maximum solutions and provide the system to have more accurate convergence. As a result, the simulation results show that the modified particle swarm optimization has the potentials to track the global MPP with accurate rate of convergence under partial-shading conditions.
Chen, Cheng Chang, and 陳政昌. "Folded Photovoltaic Maximum Power Point Tracking Chip Design Based on Schedule Reordering Technique and Lookahead Restoring Divider." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/50082500358881037439.
Full text長庚大學
電機工程學系
99
In this thesis, we proposed a new folded photovoltaic maximum power point tracking circuit based on schedule reordering technique and look-ahead restoring divider, which can effectively reduce power consumption and hardware cost. Our photovoltaic maximum power point tracking algorithm is based on gain-adaptive perturb-and-observe method. It can perform with higher power conversion efficiency and response faster as weather changes and also solve the periodic disturbance problem in the traditional perturb-and-observe algorithm. With our proposed schedule reordering technique, we can solve the signal synchronization problem existing in the interface between folded maximum power point tracking circuit and photovoltaic power conversion system by adjusting folding factor and signal processing order. Through our proposed retiming and path balancing technique, we can balance the whole circuit loading to further lower power consumption in the folded maximum power point tracking circuit. With our proposed look-ahead restoring divider design, we can reduce the hardware complexity and the carry ripple switching chance in the divider. Since divider is the most complex circuit in the gain-adaptive perturb-and-observe algorithm, improvement in the divider can lower both hardware cost and power consumption in the photovoltaic power conversion system. As compared with the conventional folded photovoltaic maximum power point circuit design, we can save 40.37% transistor count and lower 78.37% power consumption while maintain the same power conversion efficiency of 97.9%. To make the whole system can be used with low-voltage solar cells, we implemented our chip in TSMC 90nmCMOS process with chip area of 1199um*679um.
Li, Jian-Xing, and 李建興. "Research on Maximum Power Point Tracking and Battery Charging Techniques for PV Systems." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/21635535864236555961.
Full text國立臺灣科技大學
電子工程系
96
Due to gradual shortage of fossil fuel, alternative energy such as solar energy has recently received global awareness, and businesses relevant to the application of it have become more and more prosperous. Based on the fact, this thesis intends to develop a solar cell-driven, high performance converter with the help of a digital signal processor (DSP) to implement Maximum Power Point Tracking (MPPT), satisfy the characteristics demand of Lead-acid battery charging, and fulfill parallel operation of multiple modules. First of all, this thesis adopts a boost converter as the main topology and individually apply three different methods of current sensing, Hall sensor, resistor and Rds(on), to the converter to see which one works best for MPPT. Another SEPIC converter would be built for comparison of MPPT performance. Furthermore, perturbation and observation method which is widely used in industry is chosen as the algorithm of MPPT and is implemented with one of the TMS320X280X family of microprocessors to examine the MPPT performance of the converter. Afterwards, a pulse charging method is combined to charge lead-acid battery. Finally, three boost converters were parallel-connected through a Master-Slave line topology and digitally controlled by three interleaved pulse-width-modulation signals which are generated by a simple control method to do battery charging. Therefore, for ease of market development, using parallel operation of multiple modules can raise the convenience and expansion of application in terms of different types of solar cells and batteries. Keywords: MPPT, pulse charging, interleave
FANG, GUAN-JIE, and 方冠傑. "A Maximum Power Point Tracking Technique Based on IFA&PSO Method for Overcoming Solar Partial Shading Problem." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/8r3a47.
Full text國立臺灣科技大學
電機工程系
105
When partial shading conditions occur, the P-V characteristics curves of the photovoltaic string may exhibit multiple peaks and the operating point may not be at the global maximum power (GMP) point, leading to low efficiency. Therefore, maximum power point tracking (MPPT) control strategy is needed in a photovoltaic system to output the power at the maximum. Combing two different MPPT strategies has gained its popularity because strategies in complementary can improve the performance of a single algorithm. This thesis proposes a hybrid method, combing improved firefly algorithm (IFA) and particle swarm optimization (PSO) to capture the great attributes from both methods, and yield a better MPPT control strategy. In order to justify the proposed method, we compared it with same of the state of the art such as Multiple Perturb-and-Observe, Perturb-and-Observe+Particle Swarm Optimization, Different Evolution+ Particle Swarm Optimization and PSO. All the verifications were done experimentally and the results showed that the proposed hybrid method yields the highest efficiency and the shortest tracking time.
Wu, Chen-Han, and 吳承翰. "Study on Sliding Mode Extremum Seeking Control Techniques for Maximum Power Point Tracking in Photovoltaic Systems." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/39832589875710625231.
Full text國立勤益科技大學
電機工程系
100
In the photovoltaic systems, a maximum power point tracking (MPPT) controller is employed in such a way that the output power provided by a photovoltaic (PV) system is boosted to its maximum level. However, in the context of abrupt changes in irradiance, conventional MPPT controller approaches suffer from insufficient robustness against ambient variation, inferior transient response and a loss of output power as a consequence of the long duration required of tracking procedures. Accordingly, in this work the maximum power point tracking is carried out successfully using a sliding mode extremum-seeking control (SMESC) method. In addition, this paper compared three controller tracking performances included extremum seeking control, sinusoidal extremum seeking control and sliding mode extremum seeking control by simulations and experiments. These three methods also show to track the maximum power point promptly in the case of an abrupt change in irradiance. The simulation and experimental results show that the SMESC approach has better transient and steady state responses under the rapid change in the atmospheric environment. An excellent robustness along with system stability is also demonstrated as well.
CHEN, SHUI-YUAN, and 陳水源. "Maximum Power Point Tracking for Photovoltaic." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/59p652.
Full text聖約翰科技大學
電機工程系碩士在職專班
104
This thesis presents a novel maximum power point tracking technique for photovoltaic. The proposed technique adjusts the operating point of a photovoltaic panel based on three physical characteristics of the photovoltaic panel: (a) the incremental surface temperature is positive correlation with the variation of sunlight intensity; (b) the normalized incremental voltage is greater than the normalized incremental current at the left-hand side of the maximum power point; and (c) the normalized incremental current is greater than the normalized incremental voltage at the right-hand side of the maximum power point. The proposed technique can correctly determine the operating point of a photovoltaic panel in rapidly changed irradiation, to improve the misjudgment defect of traditional techniques. The proposed technique enables photovoltaic panels can work close to the maximum power point under different sunlight intensity, to increase the electricity generation and efficiency of photovoltaic panels.
Nkashama, Cedrick Lupangu. "Maximum power point tracking algorithm for photovoltaic home power supply." Thesis, 2011. http://hdl.handle.net/10413/8321.
Full textThesis (M.Sc.Eng)-University of KwaZulu-Natal, Durban, 2011.
吳佳軒. "High- Power- Factor Wind Energy Maximum Power Point Tracking System." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/40661396549195311548.
Full text國立彰化師範大學
電機工程學系
98
This paper proposed a high- power- factor wind energy maximum power point tracking system, which is composed of three “Single Phase Power-Controlled Power Factor Correctors(PFC)” and one “Maximum Power Point Tracking Controller(MPPTC)”. With PFC and MPPTC, the proposed system can increase the power factor in the circuit and obtain the maximum energy from the three-phase wind generator. Each “Single Phase Power-Controlled Power Factor Correctors” is composed of one single-phase rectifier, one full bridge converter, and one power factor corrector (PFC) IC UC3854; and “Maximum Power Point Tracking Controller” is implemented by one microchip “HT46R24” with maximum power point tracking (MPPT) algorithm. The proposed system has advantages that modulizes the system、increases the wind generator efficiency and decreases the noise of the wind generator. At last, the proposed system will be verified by implementation of a 600W prototype As experiment results, the proposed “high- power- factor wind energy maximum power point tracking system” not only reach a high power factor at 0.98, but also operate at the mpp under different wind velocity conditions, which improves the efficiency of the wind energy system effectively.
Cheng-JungHsieh and 謝政融. "Paralleled Wind Energy Power Converters with Maximum Power Point Tracking." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/73428233563263027990.
Full text國立成功大學
電機工程學系
102
In recent years, permanent magnetic synchronous generator (PMSG) has been widely used in the wind power generation. A PMSG needs full-rated power converter to convert wind energy into electrical energy. Due to the increasing trend of power rating on the power converter; the power converter, however, usually operates at low wind speed. Paralleling PWM rectifiers to replace a full-rated power converter can reduce current stress of the converter and improve converter’s efficiency at low wind speed. However, paralleling PWM rectifiers may cause circulating current and distort the current waveform. In order to suppress circulating current, this thesis derives three phase rectifier model which includes generator, zero sequence impedance, and design a current controller accordingly. In addition, this research adopts a novel adaptive maximum power point tracking algorithm with current distribution strategy for the paralleling PWM rectifier. In contrast to traditional perturb and observe method, novel adaptive MPPT algorithm can be easily analyzed and determine wind change by feedback signal. The effectiveness of the circulating current suppression and maximum power tracking efficiency are verified by a wind turbine emulator.
Lin, Chun-wei, and 林俊瑋. "Parallel Operation of Modular Maximum Power Point Tracker." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/71242649994410049253.
Full text國立中正大學
電機工程所
96
The main objective of this thesis is to design and implement a modular maximum power point tracker (MPPT). Due to each MPPT module only supplying partial load current, the current stress of switching components can be reduced relatively. In addition, when one of modules fails, the rest of modules can still continuously supply load current to keep the system normally operated. Each MPPT module mainly contains two parts, the MPPT control circuit and the master-slave control circuit. The MPPT control circuit uses "Perturb and Observe" technique to track the maximum power point of the solar cell array. The master-slave control circuit detects the magnitude of currents flowing through modules. The module which has the highest current would be assigned as the master module, performing MPPT control. The other slave modules adjust the current flow through themselves to achieve current distribution between each module. Simulated results and experimental results will be presented to verify the validity of the proposed circuit.
Ming-ChingChou and 周明慶. "Nonlinear Impedance Identification Based Maximum Power Point Tracking." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/12487274765927861535.
Full textShen, Jia-Min, and 沈家民. "Novel Maximum Power Point Tracking Method for the Wind Power System." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/25574127849202253337.
Full text國立高雄應用科技大學
電機工程系碩士班
95
The fossil fuels have been widely used to due the fast development of the industry, and it results in the problem of the exhaustion of fossil fuels and the damage of environment. The development of renewable energy sources will be the trend from the viewpoints of protecting environment and obtaining more energy sources. Wind power is one of the important renewable energy sources. If the wind energy can be used widely and effectively, the problems of energy demand, environment pollution and greenhouse effect can be relieved. Power converter interface is one of the key technologies for the wind power generator system, and the maximum power point tracking is one of the key technologies for power converter interface of the wind power generator system. In this thesis, a maximum power point tracking method for the permanent magnet synchronous wind power generator is proposed. A prototype is developed and tested to verify the performance of the proposed maximum power point tracking method. The experimental results show that the performance of proposed method can effectively track the maximum power of the permanent magnet synchronous wind power generator.
LI, YA-CHEN, and 李亞宸. "Maximum Power Point Tracking and Solar Power Prediction for PV Systems." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/bdgu87.
Full text國立中正大學
電機工程研究所
107
This thesis applies the taguchi fractional order particle swarm optimization (TFPSO) with a 2kW series buck-boost converter and TI control circuit, which is self-developed and has functions of buck and boost, as the maximum power tracker (MPPT) of the solar photovoltaic system combine with solar power prediction. No matter under ideal environmental conditions or partial shading condition(PSC), the converter can operate at maximum power point. We train parameters to be the best for MPPT on computer simulation by using Taguchi method. To verify its performance, we conducted experiment base on single- peak power curve, double-peak power curve, triple-peak power curve, quadruple-peak power curve, insolation variations, and temperature variations. Results show that the proposed TFPSO has better performance then FPSO. Considering that 2kW polycrystalline solar photovoltaic panels are prone to aging problems, Therefore, the use of convolutional neural networks (CNN) for solar power prediction, and Compare and analyze the ideal power and predicted power. Keywords:Taguchi fractional order particle swarm optimization, CNN, MPPT
Tsai, Yu-Cheng, and 蔡宇程. "Research of Analog Maximum Power Point Trackingfor Solar Cells." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/50508623661767521387.
Full text國立臺灣大學
電子工程學研究所
99
Batteries have been used in many applications in our life. Nevertheless, batteries must be charged by chargers to maintain their electrical energy. There are many different chargers in the market. Because solar energy is clean and inexhaustible, using solar charger is economical and environment friendly. Traditionally, the maximum power point tracker is implemented by a digital microprocessor for high power applications and high cost. However, they are not applied to low-power applications, such as portable electronic devices. Therefore, we attempt to do a research for a maximum power point tracker that can be applied to low-power application and has low cost. The maximum power point tracker is used as a solar charger charging output power from solar cells to batteries. Besides, the MPP tracker is also modified. The MPP tracker has a simplified structure, because only one multiplier is needed. The circuit is implemented by analog design and it has excellent tracking effectiveness. Finally, an experimental circuit is implemented to verify the results. In addition, the thesis compares with the MPP tracker without modification and the modified MPP tracker.
Chang, Chien-wei, and 張建偉. "Maximum Power Point Tracking control of a Photovoltaic System." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/11494283769074279613.
Full text國立成功大學
航空太空工程學系碩博士班
97
Due to the energy crisis, renewable energy sources have been suggested as the possible solution. Among these sources, solar energy is pollution free and inexhaustible. Therefore it is a fairly good energy to generate electric power. However, the efficiency of solar cell is still very low, for that matter how to make the photovoltaic power system works in maximum power point is important. This thesis focuses on the maximum power point tracking control of photovoltaic power system. Owing to nonlinear I-V characteristics of photovoltaic cells, a maximum power point tracking algorithm is adopted to maximize the output power. In this thesis, An approach for maximum power point tracking using the sliding mode control is proposed. The proposed controller is robust to harsh environment changes and the performance of the controller is verified through simulations.
Lee, He-xing, and 李和興. "Implementation of Maximum Power Point Tracker with Soft Switching." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/53155355948421229697.
Full text國立中正大學
電機工程所
97
This thesis presents design and implementation of a maximum power point tracker (MPPT) with soft switching feature. The converter topology is a boost converter with a turn-on and turn-off passive lossless snubber (one inductor, two capacitors, and three diodes). The MPPT controller is based on a “perturb and observe” algorithm to track maximum power points of PV panels. At first, the types and characteristics of PV panels are introduced, and then, the boost converter and snubber are analyzed. A 4.8 kW MPPT has been implemented to verify its performance, which achieves the highest conversion efficiency of 97%.
Pan, Bo-Wei, and 潘博緯. "Cost Analysis of a Photovoltaic Maximum Power Point Tracker." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/55391162830823957571.
Full text國立高雄應用科技大學
電機工程系博碩士班
96
The thesis investigates the cost analysis of a kind of photovoltaic maximum power point trackers (MPPT) which is based on using the pulse width modulation (PWM) signal as perturb sources. The advantage of such tracker has a good tracking speed without destroying original operation condition when executing maximum power point tracking. However, each of photovoltaic cells shall install a MPPT to insure each photovoltaic cell is operated at maximum power point at the cost of MPPT. In order to make cost analysis, three different groups of photovoltaic cells are subjected into a MPPT and their maximum power efficiencies are discussed. The MATLAB simulation results show two groups of photovoltaic cells subjected into a MPPT provides a lower cost without sacrificing its efficiency.
Wong, Cyuan-Jyun, and 翁銓均. "An Improved Solar System with Maximum Power Point Tracking." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/y9h49y.
Full textTsai, Ping-Chi, and 蔡秉其. "Small Wind Power System Analysis of Maximum Power Point Tracking Control Methods." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/7b2pbg.
Full text中原大學
電機工程研究所
99
This report analyzes the differences of maximum power point tracking (MPPT) methods by using MATLAB simulations. Considering the small wind power system composed of a small wind turbine, permanent-magnet synchronous generator, three-phase full bridge rectifier, DC/DC converter, MPPT power controller, and load, we will find the problems for using traditional MPPT methods. Here the fuzzy logic control method as well as perturbation and observation method is utilized for the MPPT control under several cases with step, fixed, and variable speed wind. By the MATLAB simulation tests, the fuzzy logic control MPPT method is better than the perturbation and observation method.
Zhong, Fu-Jun, and 鐘富俊. "Implementation of Photovoltaic Power-Slope-Aided Incremental-Conductance Maximum Power Point Tracking." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/77201673802054929689.
Full text中原大學
電機工程研究所
105
This thesis presents a power-slope-added incremental-conductance maximum power point tracking method (PS-INC MPPT) and the control method is realized by a photovoltaic buck converter. The PS-INC MPPT is carried out in two phases: incremental-conductance tracking (INC-tracking) is performed along with the I-V curve only in the INC zone; and the power-slope tracking (PS-tracking) is carried out on the PV curve to target the INC zone. The use of PS-INC MPPT method can eliminate the ambiguous incremental-conductance detection over the I-V curve of the left-hand side of the maximum power point (MPP), allowing the maximum power tracing to proceed smoothly. This technique retains the advantage of incremental-conductance tracking in the INC zone so that the MPP tracking can be achieved accurately and quickly. Finally, a 10 kW photovoltaic buck converter is demonstrated to realize the PS-INC MPPT method. Experimental results show that both the PS-tracking and the INC tracking are quick and accurate to meet the expected tracking theme.
Chou, Pin-Chun, and 周品君. "Design of Maximum-Power-Point-Tracking Control IC for Photovoltaic Power Systems." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/97065673520711207466.
Full textChen, Chun-Fu, and 陳群夫. "Maximum Power Point Tracking with BidirectionalPartial Power Regulation for Series Photovoltaic Panels." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/u8489d.
Full text國立中山大學
電機工程學系研究所
106
This thesis proposes a maximum power point tracking (MPPT) scheme with bidirectional partial power regulation for a solar power system with a number of photovoltaic (PV) panels connected in series. To operate all PV panels at their maximum power points (MPPs), each panel is attached by a bidirectional flyback converter to add or subtract an adequate current to the PV current to flow into an identical series current. As a result, only a part of power is processed by the associated converters, most power is directly supplied to the load from the series PV panels. With such a configuration, none of the PV panels will be short-circuited, and hence no drastic change will happen on the output voltage, even though they are under extensively different irradiances. The system maximum power can be realized by allocating the identical series current at a specific MPP, at which, the associated flyback converters need not be activated, and at the same time the total processed power via the flyback converters can be minimized. A laboratory system composed of three PV panels with the associated bidirectional flyback converters is set up. Experimental results have demonstrated the feasibility and effectiveness of the proposed MPPT scheme under various partially shaded cases.
Chang, Min-Chun, and 張閔鈞. "Design of PV Power Conversion System Based on Maximum Power Point Tracking." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/5pv4qw.
Full text國立中央大學
電機工程學系
107
This thesis mainly establishes a high-efficiency solar power conversion system, and cooperates with maximum power point tracking control and DC/DC boost converter with soft switching characteristics to improve the efficiency of the overall solar power generation system. The system proposed in this thesis is mainly divided into two parts. The first part is the discussion of the maximum power point tracking strategies. It analyzes the characteristics, advantages and disadvantages of various maximum power point tracking technologies. The second part is an investigation of DC/DC boost converter with soft switching characteristics to achieve maximum power point tracking and improve the input solar source to the voltage value required at the DC bus. Using zero-voltage switching technology, the voltage of the main circuit switch is first reduced to zero and then turned on to minimize the switching loss through the second auxiliary switch and the resonant circuit. The operation time of the second auxiliary switch is determined by the algorithm in the single chip to determine the best switching time. The soft-switching technology minimizes its switching loss, and combing the two parts to achieve a high-efficiency conversion system for the solar source.
Chiu, Yi-Hsun, and 邱奕勳. "A novel maximum power point tracker for thermoelectric generation system." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/c5345b.
Full text國立臺灣科技大學
電機工程系
104
Due to the escalating energy costs and the depletion of fossil fuel sources, the search for cleaner and environmental friendly energy becomes increasingly urgent. These growing global issues force public to seek for alternative methods of generating electrical power. Among the feasible technologies for this purpose, thermoelectric (TE) energy converter is gradually earning interest because of its ability to transform heat given out from the transportation or industrial sectors into electricity. Thermoelectric generator (TEG) is an energy conversion technology which allows thermal energy directly converting into electrical energy and vice versa. TEG modules are flexible and thus can be utilized in systems from the miniature Milliwatt level to large-scale Kilowatt applications. Advantages of TEG include free maintenance, silent operation, eco-friendliness and high reliability. Furthermore, TEG is capable of generating electricity continuously as long as there are a heat source and a cold source. In this dissertation, a novel hybrid maximum power point tracking (MPPT) method suitable for TEG system is proposed and investigated. The proposed MPPT technique combines the simplicity of perturb and observe (P&O) method and the fast tracking ability of open circuit voltage (OCV) method. The advantages of the proposed MPPT approach include fast tracking speed, no additional circuit required and no temporary power loss. To validate the feasibility of the proposed MPPT technique, an 1.2 kW thermoelectric generation system for industrial waste heat recovery is also constructed, experimental results show that comparing with conventional P&O technique, the proposed method can improve the tracking speed for 42.9% and 86.2% when temperature differences are ΔT=60°C and ΔT=180°C, respectively. Moreover, the energy loss can be improved by 24.0% and 87.0% when temperature differences are ΔT=60°C and ΔT=180°C, respectively.
Liao, Wei-Liang, and 廖尉良. "High Efficiency Multiple Maximum Power Point Trackers for PV Panels." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/38796021245768607250.
Full text國立中正大學
電機工程研究所
101
This thesis presents development of high efficiency multiple maximum power point trackers (MPPTs) for PV panels in DC micro-grid and charge/discharge system. To deal with wide output voltage range of the PV panels, the proposed MPPT topology consists of buck and boost converters. When input voltage changes between high voltage and low voltage, the mechanism of changing reference input voltage is adopted to switch the operation mode. For increasing the efficiency of PV panels, a perturbation and observation algorithm is employed to track the maximum output power of the panels. Moreover, the multiple maximum power point trackers can be operated in independent mode or in parallel mode. In the parallel mode, a current balancing control is adopted for the multiple MPPT modules. In addition, the multiple MPPT modules are designed with a hot-swap feature to increase the application feasibility of the multiple MPPT modules in the DC micro-grid or charge/discharge systems. Finally experimental results have shown that the conversion efficiency can reach 98 % and the maximum power tracking accuracy can reach 99 %.