To see the other types of publications on this topic, follow the link: Maximum entropy.

Journal articles on the topic 'Maximum entropy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Maximum entropy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Klimešová, D., and E. Ocelíková. "Spatial data modelling and maximum entropy theory." Agricultural Economics (Zemědělská ekonomika) 51, No. 2 (February 20, 2012): 80–83. http://dx.doi.org/10.17221/5080-agricecon.

Full text
Abstract:
Spatial data modelling and consequential error estimation of the distribution function are key points of spatial analysis. For many practical problems, it is impossible to hypothesize distribution function firstly and some distribution models, such as Gaussian distribution, may not suit to complicated distribution in practice. The paper shows the possibility of the approach based on the maximum entropy theory that can optimally describe the spatial data distribution and gives  the actual error estimation. 
APA, Harvard, Vancouver, ISO, and other styles
2

Harremoës, Peter, and Flemming Topsøe. "Maximum Entropy Fundamentals." Entropy 3, no. 3 (September 30, 2001): 191–226. http://dx.doi.org/10.3390/e3030191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Livesey, A. K., and J. Skilling. "Maximum entropy theory." Acta Crystallographica Section A Foundations of Crystallography 41, no. 2 (March 1, 1985): 113–22. http://dx.doi.org/10.1107/s0108767385000241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Politis, D. N. "Nonparametric maximum entropy." IEEE Transactions on Information Theory 39, no. 4 (July 1993): 1409–13. http://dx.doi.org/10.1109/18.243458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shewry, M. C., and H. P. Wynn. "Maximum entropy sampling." Journal of Applied Statistics 14, no. 2 (January 1987): 165–70. http://dx.doi.org/10.1080/02664768700000020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abbas, Ali E. "Maximum Entropy Utility." Operations Research 54, no. 2 (April 2006): 277–90. http://dx.doi.org/10.1287/opre.1040.0204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodriguez, Carlos C., and John Van Ryzin. "Maximum entropy histograms." Statistics & Probability Letters 3, no. 3 (June 1985): 117–20. http://dx.doi.org/10.1016/0167-7152(85)90047-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gull, S. F., and T. J. Newton. "Maximum entropy tomography." Applied Optics 25, no. 1 (January 1, 1986): 156. http://dx.doi.org/10.1364/ao.25.000156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scharfenaker, Ellis, and Jangho Yang. "Maximum entropy economics." European Physical Journal Special Topics 229, no. 9 (July 2020): 1577–90. http://dx.doi.org/10.1140/epjst/e2020-000029-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jiang, Rui, Hui Zhou, Han Wang, and Shuzhi Sam Ge. "Maximum entropy searching." CAAI Transactions on Intelligence Technology 4, no. 1 (February 20, 2019): 1–8. http://dx.doi.org/10.1049/trit.2018.1058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Virgo, Nathaniel. "From Maximum Entropy to Maximum Entropy Production: A New Approach." Entropy 12, no. 1 (January 18, 2010): 107–26. http://dx.doi.org/10.3390/e12010107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jana, P., S. K. Mazumder, and N. C. Das. "Optimal taxation policy maximum-entropy approach." Yugoslav Journal of Operations Research 13, no. 1 (2003): 95–105. http://dx.doi.org/10.2298/yjor0301095j.

Full text
Abstract:
The object of this paper is firstly to present entropic measure of income inequality and secondly to develop maximum entropy approaches for the optimal reduction of income inequality through taxation. .
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Cheng-shi. "Nonsymmetric entropy and maximum nonsymmetric entropy principle." Chaos, Solitons & Fractals 40, no. 5 (June 15, 2009): 2469–74. http://dx.doi.org/10.1016/j.chaos.2007.10.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Vakarin, E. V., and J. P. Badiali. "Entropy minimization within the maximum entropy approach." Journal of Physics: Conference Series 604 (April 17, 2015): 012017. http://dx.doi.org/10.1088/1742-6596/604/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Klika, Václav, Michal Pavelka, Petr Vágner, and Miroslav Grmela. "Dynamic Maximum Entropy Reduction." Entropy 21, no. 7 (July 22, 2019): 715. http://dx.doi.org/10.3390/e21070715.

Full text
Abstract:
Any physical system can be regarded on different levels of description varying by how detailed the description is. We propose a method called Dynamic MaxEnt (DynMaxEnt) that provides a passage from the more detailed evolution equations to equations for the less detailed state variables. The method is based on explicit recognition of the state and conjugate variables, which can relax towards the respective quasi-equilibria in different ways. Detailed state variables are reduced using the usual principle of maximum entropy (MaxEnt), whereas relaxation of conjugate variables guarantees that the reduced equations are closed. Moreover, an infinite chain of consecutive DynMaxEnt approximations can be constructed. The method is demonstrated on a particle with friction, complex fluids (equipped with conformation and Reynolds stress tensors), hyperbolic heat conduction and magnetohydrodynamics.
APA, Harvard, Vancouver, ISO, and other styles
16

Le, Long V., Tae Jung Kim, Young Dong Kim, and David E. Aspnes. "Decoding ‘Maximum Entropy’ Deconvolution." Entropy 24, no. 9 (September 2, 2022): 1238. http://dx.doi.org/10.3390/e24091238.

Full text
Abstract:
For over five decades, the mathematical procedure termed “maximum entropy” (M-E) has been used to deconvolve structure in spectra, optical and otherwise, although quantitative measures of performance remain unknown. Here, we examine this procedure analytically for the lowest two orders for a Lorentzian feature, obtaining expressions for the amount of sharpening and identifying how spurious structures appear. Illustrative examples are provided. These results enhance the utility of this widely used deconvolution approach to spectral analysis.
APA, Harvard, Vancouver, ISO, and other styles
17

Whiting, P. "Maximum Entropy Reflection Tomography." Exploration Geophysics 22, no. 2 (June 1991): 447–50. http://dx.doi.org/10.1071/eg991447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lee, Jon. "Constrained Maximum-Entropy Sampling." Operations Research 46, no. 5 (October 1998): 655–64. http://dx.doi.org/10.1287/opre.46.5.655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhuang, X., R. M. Haralick, and Y. Zhao. "Maximum entropy image reconstruction." IEEE Transactions on Signal Processing 39, no. 6 (June 1991): 1478–80. http://dx.doi.org/10.1109/78.136565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bunte, Christoph, and Amos Lapidoth. "Maximum Rényi Entropy Rate." IEEE Transactions on Information Theory 62, no. 3 (March 2016): 1193–205. http://dx.doi.org/10.1109/tit.2016.2521364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Herzog, Ulrike, and János A. Bergou. "Nonclassical maximum-entropy states." Physical Review A 56, no. 2 (August 1, 1997): 1658–61. http://dx.doi.org/10.1103/physreva.56.1658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Asadi, Majid, Nader Ebrahimi, G. G. Hamedani, and Ehsan S. Soofi. "Maximum dynamic entropy models." Journal of Applied Probability 41, no. 2 (June 2004): 379–90. http://dx.doi.org/10.1239/jap/1082999073.

Full text
Abstract:
A formal approach to produce a model for the data-generating distribution based on partial knowledge is the well-known maximum entropy method. In this approach, partial knowledge about the data-generating distribution is formulated in terms of some information constraints and the model is obtained by maximizing the Shannon entropy under these constraints. Frequently, in reliability analysis the problem of interest is the lifetime beyond an age t. In such cases, the distribution of interest for computing uncertainty and information is the residual distribution. The information functions involving a residual life distribution depend on t, and hence are dynamic. The maximum dynamic entropy (MDE) model is the distribution with the density that maximizes the dynamic entropy for all t. We provide a result that relates the orderings of dynamic entropy and the hazard function for distributions with monotone densities. Applications include dynamic entropy ordering within some parametric families of distributions, orderings of distributions of lifetimes of systems and their components connected in series and parallel, record values, and formulation of constraints for the MDE model in terms of the evolution paths of the hazard function and mean residual lifetime function. In particular, we identify classes of distributions in which some well-known distributions, including the mixture of two exponential distributions and the mixture of two Pareto distributions, are the MDE models.
APA, Harvard, Vancouver, ISO, and other styles
23

Petchey, Owen L. "Maximum entropy in ecology." Oikos 119, no. 4 (April 12, 2010): 577. http://dx.doi.org/10.1111/j.1600-0706.2009.18503.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Anstreicher, Kurt M., Marcia Fampa, Jon Lee, and Joy Williams. "Maximum-entropy remote sampling." Discrete Applied Mathematics 108, no. 3 (March 2001): 211–26. http://dx.doi.org/10.1016/s0166-218x(00)00217-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Asadi, Majid, Nader Ebrahimi, G. G. Hamedani, and Ehsan S. Soofi. "Maximum dynamic entropy models." Journal of Applied Probability 41, no. 02 (June 2004): 379–90. http://dx.doi.org/10.1017/s0021900200014376.

Full text
Abstract:
A formal approach to produce a model for the data-generating distribution based on partial knowledge is the well-known maximum entropy method. In this approach, partial knowledge about the data-generating distribution is formulated in terms of some information constraints and the model is obtained by maximizing the Shannon entropy under these constraints. Frequently, in reliability analysis the problem of interest is the lifetime beyond an age t. In such cases, the distribution of interest for computing uncertainty and information is the residual distribution. The information functions involving a residual life distribution depend on t, and hence are dynamic. The maximum dynamic entropy (MDE) model is the distribution with the density that maximizes the dynamic entropy for all t. We provide a result that relates the orderings of dynamic entropy and the hazard function for distributions with monotone densities. Applications include dynamic entropy ordering within some parametric families of distributions, orderings of distributions of lifetimes of systems and their components connected in series and parallel, record values, and formulation of constraints for the MDE model in terms of the evolution paths of the hazard function and mean residual lifetime function. In particular, we identify classes of distributions in which some well-known distributions, including the mixture of two exponential distributions and the mixture of two Pareto distributions, are the MDE models.
APA, Harvard, Vancouver, ISO, and other styles
26

Dimandja, Jean-Marie D., Mihkel Kaljurand, John B. Phillips, and José Valentı́n. "Maximum entropy chromatogram reconstruction." Analytica Chimica Acta 371, no. 1 (September 1998): 1–8. http://dx.doi.org/10.1016/s0003-2670(98)00271-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Holm, Juhani. "Maximum entropy Lorenz curves." Journal of Econometrics 59, no. 3 (October 1993): 377–89. http://dx.doi.org/10.1016/0304-4076(93)90031-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Minardi, E., and G. Lampis. "Maximum entropy Tokamak configurations." Plasma Physics and Controlled Fusion 32, no. 10 (October 1, 1990): 819–31. http://dx.doi.org/10.1088/0741-3335/32/10/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Karloff, Howard, and Kenneth E. Shirley. "Maximum Entropy Summary Trees." Computer Graphics Forum 32, no. 3pt1 (June 2013): 71–80. http://dx.doi.org/10.1111/cgf.12094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Verkley, W. T. M., and T. Gerkema. "On Maximum Entropy Profiles." Journal of the Atmospheric Sciences 61, no. 8 (April 2004): 931–36. http://dx.doi.org/10.1175/1520-0469(2004)061<0931:omep>2.0.co;2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

von der Linden, W. "Maximum-entropy data analysis." Applied Physics A: Materials Science & Processing 60, no. 2 (January 1, 1995): 155–65. http://dx.doi.org/10.1007/s003390050086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kang, Bingyi, and Yong Deng. "The Maximum Deng Entropy." IEEE Access 7 (2019): 120758–65. http://dx.doi.org/10.1109/access.2019.2937679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Schroeder, J. "The Maximum Entropy Method." Zeitschrift für Physikalische Chemie 208, Part_1_2 (January 1999): 288–89. http://dx.doi.org/10.1524/zpch.1999.208.part_1_2.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

BRYAN, R. K. "MAXIMUM ENTROPY DATA ANALYSIS." Le Journal de Physique Colloques 47, no. C5 (August 1986): C5–43—C5–53. http://dx.doi.org/10.1051/jphyscol:1986506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, Jon, and Joy Lind. "Generalized maximum-entropy sampling." INFOR: Information Systems and Operational Research 58, no. 2 (February 21, 2019): 168–81. http://dx.doi.org/10.1080/03155986.2018.1533774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Choi, B. S. "Multivariate Maximum Entropy Spectrum." Journal of Multivariate Analysis 46, no. 1 (July 1993): 56–60. http://dx.doi.org/10.1006/jmva.1993.1046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Grandy, W. T. "Maximum entropy in action." Journal of Atmospheric and Terrestrial Physics 57, no. 1 (January 1995): 99. http://dx.doi.org/10.1016/0021-9169(95)90013-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

von der Linden, W. "Maximum-entropy data analysis." Applied Physics A 60, no. 2 (February 1995): 155–65. http://dx.doi.org/10.1007/bf01538241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Piantadosi, Julia, Phil Howlett, and Jonathan Borwein. "Copulas with maximum entropy." Optimization Letters 6, no. 1 (October 28, 2010): 99–125. http://dx.doi.org/10.1007/s11590-010-0254-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dreyer, Wolfgang, and Matthias Kunik. "Maximum entropy principle revisited." Continuum Mechanics and Thermodynamics 10, no. 6 (December 1, 1998): 331–47. http://dx.doi.org/10.1007/s001610050097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ramos, F. M., H. F. Campos Velho, J. C. Carvalho, and N. J. Ferreira. "Beyond maximum entropy: novel approaches to entropic regularization." Computer Physics Communications 121-122 (September 1999): 722. http://dx.doi.org/10.1016/s0010-4655(06)70125-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dobovišek, Andrej, Rene Markovič, Milan Brumen, and Aleš Fajmut. "The maximum entropy production and maximum Shannon information entropy in enzyme kinetics." Physica A: Statistical Mechanics and its Applications 496 (April 2018): 220–32. http://dx.doi.org/10.1016/j.physa.2017.12.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Knockaert, L. "Maximum a posteriori maximum entropy order determination." IEEE Transactions on Signal Processing 45, no. 6 (June 1997): 1553–59. http://dx.doi.org/10.1109/78.599997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

VAKARIN, E. V., and J. P. BADIALI. "A LINK BETWEEN THE MAXIMUM ENTROPY APPROACH AND THE VARIATIONAL ENTROPY FORM." Modern Physics Letters B 25, no. 22 (August 30, 2011): 1821–28. http://dx.doi.org/10.1142/s0217984911027054.

Full text
Abstract:
The maximum entropy approach operating with quite general entropy measure and constraint is considered. It is demonstrated that for a conditional or parametrized probability distribution f(x|μ), there is a "universal" relation among the entropy rate and the functions appearing in the constraint. This relation allows one to translate the specificities of the observed behavior θ(μ) into the amount of information on the relevant random variable x at different values of the parameter μ. It is shown that the recently proposed variational formulation of the entropic functional can be obtained as a consequence of this relation, that is from the maximum entropy principle. This resolves certain puzzling points that appeared in the variational approach.
APA, Harvard, Vancouver, ISO, and other styles
45

XIAO, CHANGMING, and LIXIN HUANG. "ENTROPIC FORCE IN A CLOSED IDEAL GAS." Modern Physics Letters B 20, no. 09 (April 10, 2006): 495–500. http://dx.doi.org/10.1142/s0217984906010731.

Full text
Abstract:
For a closed thermodynamic system of ideal gas, the entropic force is studied in this paper. The results show that the entropic force arises when the entropy is deviated from its equilibrium maximum value by an external force. This entropic force resists the entropy deviation enlarging, and will drive the entropy back to its maximum value if the external forces disappear.
APA, Harvard, Vancouver, ISO, and other styles
46

Eguchi, Shinto, Osamu Komori, and Shogo Kato. "Projective Power Entropy and Maximum Tsallis Entropy Distributions." Entropy 13, no. 10 (September 26, 2011): 1746–64. http://dx.doi.org/10.3390/e13101746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Al-Nasser, Amjad D. "The Journey from Entropy to Generalized Maximum Entropy." Journal of Quantitative Methods 3, no. 1 (February 2019): 1–7. http://dx.doi.org/10.29145/2019/jqm/030101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Landau, H. J. "Maximum entropy and maximum likelihood in spectral estimation." IEEE Transactions on Information Theory 44, no. 3 (May 1998): 1332–36. http://dx.doi.org/10.1109/18.669428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Roversi, P., E. Blanc, R. Morris, C. Flensburg, and G. Bricogne. "Maximum likelihood density modification under maximum entropy control." Acta Crystallographica Section A Foundations of Crystallography 58, s1 (August 6, 2002): c251. http://dx.doi.org/10.1107/s010876730209503x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Beretta, Gian Paolo. "Modeling Non-Equilibrium Dynamics of a Discrete Probability Distribution: General Rate Equation for Maximal Entropy Generation in a Maximum-Entropy Landscape with Time-Dependent Constraints." Entropy 10, no. 3 (September 2008): 160–82. http://dx.doi.org/10.3390/entropy-e10030160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography