Dissertations / Theses on the topic 'Maximum entropy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Maximum entropy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sognnæs, Ida Andrea Braathen. "Maximum Entropy and Maximum Entropy Production in Macroecology." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12651.
Full textCharter, Mark Keith. "Maximum entropy pharmacokinetics." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316691.
Full textPatterson, Brett Alexander. "Maximum entropy data analysis." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240969.
Full textXie, Yong. "Maximum entropy in crystallography." Thesis, De Montfort University, 2003. http://hdl.handle.net/2086/4220.
Full textPurahoo, K. "Maximum entropy data analysis." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260038.
Full textRobinson, David Richard Terence. "Developments in maximum entropy data analysis." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307063.
Full textMcLean, Andrew Lister. "Applications of maximum entropy data analysis." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319161.
Full textSears, Timothy Dean, and tim sears@biogreenoil com. "Generalized Maximum Entropy, Convexity and Machine Learning." The Australian National University. Research School of Information Sciences and Engineering, 2008. http://thesis.anu.edu.au./public/adt-ANU20090525.210315.
Full textOliveira, V. A. "Maximum entropy image restoration in nuclear medicine." Thesis, University of Southampton, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235282.
Full textКасьянов, Володимир, and Андрій Гончаренко. "SUBJECTIVE ENTROPY MAXIMUM PRINCIPLE AND ITS APPLICATIONS." Thesis, Національний авіаційний університет, 2017. https://er.nau.edu.ua/handle/NAU/48996.
Full textКасьянов, Володимир, and Андрій Гончаренко. "SUBJECTIVE ENTROPY MAXIMUM PRINCIPLE AND ITS APPLICATIONS." Thesis, Національний авіаційний університет, 2017. http://er.nau.edu.ua/handle/NAU/30676.
Full textFellman, Laura Suzanne. "The Genetic Algorithm and Maximum Entropy Dice." PDXScholar, 1996. https://pdxscholar.library.pdx.edu/open_access_etds/5247.
Full textThomaz, Carlos Eduardo. "Maximum entropy covariance estimate for statistical pattern recognition." Thesis, Imperial College London, 2004. http://hdl.handle.net/10044/1/8755.
Full textChan, Oscar. "Prosodic features for a maximum entropy language model." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0244.
Full textBattle, David John. "Maximum Entropy Regularisation Applied to Ultrasonic Image Reconstruction." University of Sydney. Electrical Engineering, 1999. http://hdl.handle.net/2123/842.
Full textYang, Yongsheng. "A maximum entropy approach to Chinese language parsing /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?COMP%202002%20YANG.
Full textIncludes bibliographical references (leaves 54-55). Also available in electronic version. Access restricted to campus users.
Wu, Jun. "Maximum entropy language modeling with non-local dependencies." Available to US Hopkins community, 2002. http://wwwlib.umi.com/dissertations/dlnow/3068231.
Full textWhiting, Peter Mark. "Reflection traveltime tomography and the maximum entropy principle." Thesis, The University of Sydney, 1993. https://hdl.handle.net/2123/26623.
Full textSagarra, Pascual Oleguer Josep. "Non-binary maximum entropy network ensembles and their application to the study of urban mobility." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400560.
Full textLes xarxes complexes tenen una estructura complicada, on sovint es fa difícil establir les relacions de causalitat entre les seves propietats macroscòpiques (mesurables). Per tal de fer-ho es necessiten models nuls amb propietats flexibles que es puguin fixar. Per a xarxes amb connexions binàries (que tenen valor dicotòmic u o zero), s'han proposat col·lectivitats de xarxes que compleixen un principi de màxima entropia per a resoldre el problema de generació d'aquest tipus de models. En aquest treball explorem la seva generalització per a xarxes no-binàries, on les connexions entre elements estan graduades. Desenvolupem un tractament matemàtic que ens permet obtenir prediccions sobre els observables més rellevants d'una xarxa que tingui certes propietats prefixades, a triar en un rang ampli de funcions lineals i no-lineals pertanyent a col·lectivitats micro-canòniques (propietats fixades de manera estricta) i gran canòniques (propietats fixades sols en promig sobre la col·lectivitat). Detectem tres possibles varietats que duen a estadístiques d'ocupació d'enllaços diferents, depenent de la distingibilitat dels elements a partir del qual s'ha generat la xarxa. Per cada cas, desenvolupem eines per a la generació computacional i l'anàlisi de mostres de xarxes pertanyents a cada col·lectivitat. Tot seguit apliquem la teoria desenvolupada a l'anàlisi de mobilitat humana emprant sets de dades de desplaçaments de taxis a Nova York, Singapur, San Francisco i Viena. Mostrem l'estabilitat espaciotemporal de les dades estudiades i l'aparició de propietats comunes. Tot seguit realitzem un anàlisi crític de models de predicció de mobilitat existents i la seva possible adaptació als entorns urbans, mostrant com els models de màxima entropia tenen el major poder predictiu per descriure les dades. Finalment presentem dues aplicacions de la teoria desenvolupada que exploten les propietats comunes detectades a les dades estudiades. D'una banda, derivem un model que permet extrapolar dades de mobilitat sobre sets de dades reduïts. De l'altra, proposem un mètode de filtratge per extreure les contribucions de les dades reals dels trajectes esperats d'acord a qualssevol dels nostres models de màxima entropia. Aquest procediment permet obtenir versions simplificades de les xarxes originals que continguin les seves propietats més rellevants.
Uchimoto, Kiyotaka. "Maximum Entropy Models for Japanese Text Analysis and Generation." 京都大学 (Kyoto University), 2004. http://hdl.handle.net/2433/147595.
Full textTahmasbi, Mohammad Saeed. "VLSI implementation of heart sounds maximum entropy spectral estimation /." Title page, contents and summary only, 1994. http://web4.library.adelaide.edu.au/theses/09ENS/09enst128.pdf.
Full textHughes, Leslie Peter. "Maximum entropy methods applied to NMR and mass spectrometry." Thesis, Durham University, 2001. http://etheses.dur.ac.uk/3785/.
Full textMcGrath, Deirdre Maria. "Maximum entropy deconvolution of low count nuclear medicine images." Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285623.
Full textBourne, Rachel Anne. "Default reasoning using maximum entropy and variable strength defaults." Thesis, Queen Mary, University of London, 1999. http://qmro.qmul.ac.uk/xmlui/handle/123456789/3808.
Full textGuo, Weiyu. "Implementing the principle of maximum entropy in option pricing /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9946259.
Full textRama, Ritesh Rao. "Local maximum entropy approximation-based modelling of the canine heart." Master's thesis, University of Cape Town, 2012. http://hdl.handle.net/11427/16963.
Full textWu, Nailong. "The maximum entropy method and its application in radio astronomy." Thesis, The University of Sydney, 1985. https://hdl.handle.net/2123/27440.
Full textArmstrong, Nicholas. "Application of the maximum entropy method to x-ray profile analysis /." Electronic version, 1999. http://adt.lib.uts.edu.au/public/adt-NTSM20031204.135221/index.html.
Full textHofmann, Bernd, and Romy Krämer. "Maximum entropy regularization for calibrating a time-dependent volatility function." Universitätsbibliothek Chemnitz, 2004. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200401213.
Full textPadró, Muntsa, and Lluís Padró. "ME-CSSR : an extension of CSSR using maximum entropy models." Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2008/2721/.
Full textBury, Thomas. "Collective behaviours in the stock market: a maximum entropy approach." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209341.
Full textThe study of the structure and collective modes of financial markets attracts more and more attention. It has been shown that some agent based models are able to reproduce some stylized facts. Despite their partial success, there is still the problem of rules design. In this work, we used a statistical inverse approach to model the structure and co-movements in financial markets. Inverse models restrict the number of assumptions. We found that a pairwise maximum entropy model is consistent with the data and is able to describe the complex structure of financial systems. We considered the existence of a critical state which is linked to how the market processes information, how it responds to exogenous inputs and how its structure changes. The considered data sets did not reveal a persistent critical state but rather oscillations between order and disorder.
In this framework, we also showed that the collective modes are mostly dominated by pairwise co-movements and that univariate models are not good candidates to model crashes. The analysis also suggests a genuine adaptive process since both the maximum variance of the log-likelihood and the accuracy of the predictive scheme vary through time. This approach may provide some clue to crash precursors and may provide highlights on how a shock spreads in a financial network and if it will lead to a crash. The natural continuation of the present work could be the study of such a mechanism.
Doctorat en Sciences économiques et de gestion
info:eu-repo/semantics/nonPublished
Kontonasios, Kleanthis-Nikolaos. "Maximum entropy modelling for quantifying unexpectedness of data mining results." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618550.
Full textAllen, Paul Nicholas. "The quantification of SIMS depth profiles by Maximum Entropy reconstruction." Thesis, University of Warwick, 1994. http://wrap.warwick.ac.uk/3849/.
Full textPascale, Salvatore. "Maximum entropy production as a constraint on the climate system." Thesis, University of Reading, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.541950.
Full textClowser, Jonathan. "Application of the maximum entropy method to dynamical fermion simulations." Thesis, Swansea University, 2002. https://cronfa.swan.ac.uk/Record/cronfa42282.
Full textCamiola, Vito Dario. "Subbands model for semiconductors based on the Maximum Entropy Principle." Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1313.
Full textParamahamsan, Harinarayan. "Fundamental properties of Synthetic O-D Generation Formulations and Solutions." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/31143.
Full textMaster of Science
Ziebart, Brian D. "Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy." Research Showcase @ CMU, 2010. http://repository.cmu.edu/dissertations/17.
Full textTate, Graeme. "New methods in protein X-ray crystallography using maximum entropy techniques." Thesis, University of Glasgow, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396507.
Full textMattar, Essam Hussain. "Clinical application of maximum entropy image processing in planar radionuclide imaging." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323955.
Full textJohnson, Jason K. (Jason Kyle). "Convex relaxation methods for graphical models : Lagrangian and maximum entropy approaches." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45871.
Full textIncludes bibliographical references (p. 241-257).
Graphical models provide compact representations of complex probability distributions of many random variables through a collection of potential functions defined on small subsets of these variables. This representation is defined with respect to a graph in which nodes represent random variables and edges represent the interactions among those random variables. Graphical models provide a powerful and flexible approach to many problems in science and engineering, but also present serious challenges owing to the intractability of optimal inference and estimation over general graphs. In this thesis, we consider convex optimization methods to address two central problems that commonly arise for graphical models. First, we consider the problem of determining the most probable configuration-also known as the maximum a posteriori (MAP) estimate-of all variables in a graphical model, conditioned on (possibly noisy) measurements of some variables. This general problem is intractable, so we consider a Lagrangian relaxation (LR) approach to obtain a tractable dual problem. This involves using the Lagrangian decomposition technique to break up an intractable graph into tractable subgraphs, such as small "blocks" of nodes, embedded trees or thin subgraphs. We develop a distributed, iterative algorithm that minimizes the Lagrangian dual function by block coordinate descent. This results in an iterative marginal-matching procedure that enforces consistency among the subgraphs using an adaptation of the well-known iterative scaling algorithm. This approach is developed both for discrete variable and Gaussian graphical models. In discrete models, we also introduce a deterministic annealing procedure, which introduces a temperature parameter to define a smoothed dual function and then gradually reduces the temperature to recover the (non-differentiable) Lagrangian dual. When strong duality holds, we recover the optimal MAP estimate. We show that this occurs for a broad class of "convex decomposable" Gaussian graphical models, which generalizes the "pairwise normalizable" condition known to be important for iterative estimation in Gaussian models.
(cont.) In certain "frustrated" discrete models a duality gap can occur using simple versions of our approach. We consider methods that adaptively enhance the dual formulation, by including more complex subgraphs, so as to reduce the duality gap. In many cases we are able to eliminate the duality gap and obtain the optimal MAP estimate in a tractable manner. We also propose a heuristic method to obtain approximate solutions in cases where there is a duality gap. Second, we consider the problem of learning a graphical model (both the graph and its potential functions) from sample data. We propose the maximum entropy relaxation (MER) method, which is the convex optimization problem of selecting the least informative (maximum entropy) model over an exponential family of graphical models subject to constraints that small subsets of variables should have marginal distributions that are close to the distribution of sample data. We use relative entropy to measure the divergence between marginal probability distributions. We find that MER leads naturally to selection of sparse graphical models. To identify this sparse graph efficiently, we use a "bootstrap" method that constructs the MER solution by solving a sequence of tractable subproblems defined over thin graphs, including new edges at each step to correct for large marginal divergences that violate the MER constraint. The MER problem on each of these subgraphs is efficiently solved using the primaldual interior point method (implemented so as to take advantage of efficient inference methods for thin graphical models). We also consider a dual formulation of MER that minimizes a convex function of the potentials of the graphical model. This MER dual problem can be interpreted as a robust version of maximum-likelihood parameter estimation, where the MER constraints specify the uncertainty in the sufficient statistics of the model. This also corresponds to a regularized maximum-likelihood approach, in which an information-geometric regularization term favors selection of sparse potential representations. We develop a relaxed version of the iterative scaling method to solve this MER dual problem.
by Jason K. Johnson.
Ph.D.
Benjamin, Ryan Lester. "Non-maximum entropy polymer elasticity, viscoelasticity and the lattice Boltzmann method." Doctoral thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/10126.
Full textIncludes bibliographical references (p. 291-303).
Various models of viscoelasticity exist based on continuum mechanics. In this work a statistical mechanical approach is taken to derive a new isotropic, hyperelastic, viscoelastic, incompressible constitutive equation for polymers. The result has been achieved by generating a novel physics for the microscopic behaviour of polymers. A vocabulary has been created to facilitate the physics. A new differential equation describing polymer behaviour is derived based on the mathematical description of the physics.
Broqvist, Widham Emil. "Scaling up Maximum Entropy Deep Inverse Reinforcement Learning with Transfer Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281796.
Full textI denna uppsats identifieras ett vanligt problem med algoritmer för omvänd förstärkt inlärning vilket leder till att de blir beräkningstunga. En lösning föreslås som försöker addressera problemet och som kan byggas på i framtiden. Komplexiteten i algoritmer för omvänd förstärkt inlärning ökar på grund av att varje iteration kräver ett så kallat förstärkt inlärnings-steg som har som syfte att utvärdera föregående iteration och guida lärandet. Detta steg tar lång tid att genomföra för problem med stor tillståndsrymd och där många iterationer är nödvändiga. Det har observerats att problemet som löses i detta steg i många fall är väldigt likt det problem som löstes i föregående iteration. Därför är den föreslagna lösningen att använda sig av informationsöverföring för att ta tillvara denna kunskap. I denna uppsats utvärderas olika former av informationsöverföring för vanliga algoritmer för förstärkt inlärning på detta problem. Experiment görs med value iteration och Q-learning som algoritmerna för förstärkt inlärnings-steget. Algoritmerna appliceras på två ruttplanneringsproblem och finner att i båda fallen kan en informationsöverföring förbättra beräkningstider. För value iteration är överföringen enkel att implementera och förstå och visar stora förbättringar i hastighet jämfört med basfallet. För Qlearning har implementationen fler variabler och samtidigt som en förbättring visas så är den inte lika dramatisk som för value iteration. Slutsaterna som dras är att för implementationer av omvänd förstärkt inlärning där value iteration används som algoritm för förstärkt inlärnings-steget så rekommenderas alltid en informationsöverföring medan för implementationer som använder andra algoritmer så rekommenderas troligtvis en överföring men fler experiment skulle behöva utföras.
Kendall, Elizabeth Ann Caughey Thomas Kirk. "Range dependent signals and maximum entropy methods for underwater acoustic tomography /." Diss., Pasadena, Calif. : California Institute of Technology, 1985. http://resolver.caltech.edu/CaltechETD:etd-04092008-080843.
Full textGraser, David Jay. "Image restoration and enhancement by closed form positively constrained maximum entropy." Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/289224.
Full textOkafor, Anthony. "Entropy based techniques with applications in data mining." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013113.
Full textLeBlanc, Raymond. "The maximum entropy principle as a basis for statistical models in epidemiology /." Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74600.
Full textFinally, this constructive approach that proceeds from the lower level of the individual contribution of the experimental units to the global level of the population is applied to sample size determination for comparative studies when, in the compared groups, there is attrition due to noncompliance to the specific regimen. This attrition reduces the apparent treatment effect in the analysis. This presentation constitutes a foundation for a more general and elegant solution to the problem.
Kane, Thomas Brett. "Reasoning with uncertainty using Nilsson's probabilistic logic and the maximum entropy formalism." Thesis, Heriot-Watt University, 1992. http://hdl.handle.net/10399/789.
Full textFeng, Jianping. "Semi-supervised CONTRAfold for RNA Secondary Structure Prediction: A Maximum Entropy Approach." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1316225523.
Full textMacedo, Pedro Filipe Pessoa. "Contributions to the theory of maximum entropy estimation for ill-posed models." Doctoral thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11048.
Full textAs técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.
Statistical techniques are essential in most areas of science being linear regression one of the most widely used. It is well-known that under fairly conditions linear regression is a powerful statistical tool. Unfortunately, some of these conditions are usually not satisfied in practice and the regression models become ill-posed, which means that the application of traditional estimation methods may lead to non-unique or highly unstable solutions. This work is mainly focused on the maximum entropy estimation of ill-posed models, in particular the estimation of regression models with small samples sizes affected by collinearity and outliers. The research is developed in three directions, namely the estimation of technical efficiency with state-contingent production frontiers, the estimation of the ridge parameter in ridge regression, and some developments in maximum entropy estimation. In the estimation of technical efficiency with state-contingent production frontiers, this work reveals that the maximum entropy estimators outperform the maximum likelihood estimator in most of the cases analyzed, namely in models with few observations in some states of nature and models with a large number of states of nature, which usually represent models affected by collinearity. The maximum entropy estimators are expected to make an important contribution to the increase of empirical work with state-contingent production frontiers. The main challenge in ridge regression is the selection of the ridge parameter. There is a huge number of methods to estimate the ridge parameter and no single method emerges in the literature as the best overall. In this work, a new method to select the ridge parameter in ridge regression is presented. The simulation study reveals that, in the case of regression models with small samples sizes affected by collinearity, the new estimator is probably one of the best ridge parameter estimators available in the literature on ridge regression. Founded on the Shannon entropy, the ordinary least squares estimator and some concepts from quantum electrodynamics, the maximum entropy Leuven estimator overcomes the main weakness of the generalized maximum entropy estimator, avoiding exogenous information that is usually not available. Based on the maximum entropy Leuven estimator, information theory and robust regression, new developments on the theory of maximum entropy estimation are provided in this work. The simulation studies and the empirical applications reveal that the new estimators are a good choice in the estimation of linear regression models with small samples sizes affected by collinearity and outliers. Finally, a contribution to the increase of computational resources on the maximum entropy estimation is also accomplished in this work.