Academic literature on the topic 'Maximum entropy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Maximum entropy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Maximum entropy"

1

Klimešová, D., and E. Ocelíková. "Spatial data modelling and maximum entropy theory." Agricultural Economics (Zemědělská ekonomika) 51, No. 2 (February 20, 2012): 80–83. http://dx.doi.org/10.17221/5080-agricecon.

Full text
Abstract:
Spatial data modelling and consequential error estimation of the distribution function are key points of spatial analysis. For many practical problems, it is impossible to hypothesize distribution function firstly and some distribution models, such as Gaussian distribution, may not suit to complicated distribution in practice. The paper shows the possibility of the approach based on the maximum entropy theory that can optimally describe the spatial data distribution and gives  the actual error estimation. 
APA, Harvard, Vancouver, ISO, and other styles
2

Harremoës, Peter, and Flemming Topsøe. "Maximum Entropy Fundamentals." Entropy 3, no. 3 (September 30, 2001): 191–226. http://dx.doi.org/10.3390/e3030191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Livesey, A. K., and J. Skilling. "Maximum entropy theory." Acta Crystallographica Section A Foundations of Crystallography 41, no. 2 (March 1, 1985): 113–22. http://dx.doi.org/10.1107/s0108767385000241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Politis, D. N. "Nonparametric maximum entropy." IEEE Transactions on Information Theory 39, no. 4 (July 1993): 1409–13. http://dx.doi.org/10.1109/18.243458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shewry, M. C., and H. P. Wynn. "Maximum entropy sampling." Journal of Applied Statistics 14, no. 2 (January 1987): 165–70. http://dx.doi.org/10.1080/02664768700000020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abbas, Ali E. "Maximum Entropy Utility." Operations Research 54, no. 2 (April 2006): 277–90. http://dx.doi.org/10.1287/opre.1040.0204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rodriguez, Carlos C., and John Van Ryzin. "Maximum entropy histograms." Statistics & Probability Letters 3, no. 3 (June 1985): 117–20. http://dx.doi.org/10.1016/0167-7152(85)90047-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gull, S. F., and T. J. Newton. "Maximum entropy tomography." Applied Optics 25, no. 1 (January 1, 1986): 156. http://dx.doi.org/10.1364/ao.25.000156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scharfenaker, Ellis, and Jangho Yang. "Maximum entropy economics." European Physical Journal Special Topics 229, no. 9 (July 2020): 1577–90. http://dx.doi.org/10.1140/epjst/e2020-000029-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jiang, Rui, Hui Zhou, Han Wang, and Shuzhi Sam Ge. "Maximum entropy searching." CAAI Transactions on Intelligence Technology 4, no. 1 (February 20, 2019): 1–8. http://dx.doi.org/10.1049/trit.2018.1058.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Maximum entropy"

1

Sognnæs, Ida Andrea Braathen. "Maximum Entropy and Maximum Entropy Production in Macroecology." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12651.

Full text
Abstract:
The Maximum Entropy Theory of Ecology (METE), developed by John Harte, presents an entirely new method of making inferences in ecology. The method is based on the established mathematical procedure of Maximum Information Entropy (MaxEnt), developed by Edwin T. Jaynes, and is used to derive a range of important relationships in macroecology. The Maximum Entropy Production (MEP) principle is a more recent theory. This principle was used by Paltridge to successfully predict the climate on Earth in 1975. It has been suggested that this principle can be used for predicting the evolution of ecosystems over time in the framework of METE. This idea is at the very frontier of Harte's theory. This thesis investigates the hypothesis that the information entropy defined in METE is described by the MEP principle.I show that the application of the MEP principle to the information entropy in METE leads to a range of conceptual and mathematical difficulties. I show that the initial hypothesis alone cannot predict the time rate of change, but that it does predict that the number of individual organisms and the total metabolic rate of an ecosystem will continue to grow indefinitely, whereas the number of species will approach one.I also conduct a thorough review of the MEP literature and discuss the possibility of an application of the MEP principle to METE based on analogies. I also study a proof of the MEP principle published by Dewar in 2003 and 2005 in order to investigate the possibility of an application based on first principles. I conclude that the MEP principle has a low probability of success if applied directly to the information entropy in METE.One of the most central relationships derived in METE is the expected number of species in a plot of area $A$. I conduct a numerical simulation in order to study the variance of the actual number of species in a collection of plots. I then suggest two methods to be used for comparison between predictions and observations in METE.I also conduct a numerical study of selectied stability properties of Paltridge's climate model and conclude that none of these can explain the observed MEP state in nature.
APA, Harvard, Vancouver, ISO, and other styles
2

Charter, Mark Keith. "Maximum entropy pharmacokinetics." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Patterson, Brett Alexander. "Maximum entropy data analysis." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240969.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xie, Yong. "Maximum entropy in crystallography." Thesis, De Montfort University, 2003. http://hdl.handle.net/2086/4220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Purahoo, K. "Maximum entropy data analysis." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Robinson, David Richard Terence. "Developments in maximum entropy data analysis." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McLean, Andrew Lister. "Applications of maximum entropy data analysis." Thesis, University of Southampton, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sears, Timothy Dean, and tim sears@biogreenoil com. "Generalized Maximum Entropy, Convexity and Machine Learning." The Australian National University. Research School of Information Sciences and Engineering, 2008. http://thesis.anu.edu.au./public/adt-ANU20090525.210315.

Full text
Abstract:
This thesis identifies and extends techniques that can be linked to the principle of maximum entropy (maxent) and applied to parameter estimation in machine learning and statistics. Entropy functions based on deformed logarithms are used to construct Bregman divergences, and together these represent a generalization of relative entropy. The framework is analyzed using convex analysis to charac- terize generalized forms of exponential family distributions. Various connections to the existing machine learning literature are discussed and the techniques are applied to the problem of non-negative matrix factorization (NMF).
APA, Harvard, Vancouver, ISO, and other styles
9

Oliveira, V. A. "Maximum entropy image restoration in nuclear medicine." Thesis, University of Southampton, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Касьянов, Володимир, and Андрій Гончаренко. "SUBJECTIVE ENTROPY MAXIMUM PRINCIPLE AND ITS APPLICATIONS." Thesis, Національний авіаційний університет, 2017. https://er.nau.edu.ua/handle/NAU/48996.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Maximum entropy"

1

Squartini, Tiziano, and Diego Garlaschelli. Maximum-Entropy Networks. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69438-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fampa, Marcia, and Jon Lee. Maximum-Entropy Sampling. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13078-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Nailong. The Maximum Entropy Method. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60629-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

The maximum entropy method. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Nailong. The Maximum Entropy Method. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xie, Yong. Maximum entropy in crystallography. Leicester: De Montfort University, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Karmeshu, ed. Entropy Measures, Maximum Entropy Principle and Emerging Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36212-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

missing], [name. Entropy measures, maximum entropy principle, and emerging applications. Berlin: Springer Verlag, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The method of maximum entropy. Singapore: World Scientific, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bevensee, R. M. Maximum entropy solutions to scientific problems. Englewood Cliffs, N.J: Prentice Hall, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Maximum entropy"

1

Fampa, Marcia, and Jon Lee. "Upper bounds." In Maximum-Entropy Sampling, 31–143. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13078-6_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fampa, Marcia, and Jon Lee. "Environmental monitoring." In Maximum-Entropy Sampling, 145–55. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13078-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fampa, Marcia, and Jon Lee. "The problem and basic properties." In Maximum-Entropy Sampling, 1–16. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13078-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fampa, Marcia, and Jon Lee. "Branch-and-bound." In Maximum-Entropy Sampling, 17–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13078-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fampa, Marcia, and Jon Lee. "Opportunities." In Maximum-Entropy Sampling, 157–62. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13078-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bajkova, A. T. "Generalized Maximum Entropy. Comparison with Classical Maximum Entropy." In Maximum Entropy and Bayesian Methods, 407–14. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2217-9_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hoch, Jeffrey C. "Maximum Entropy Reconstruction." In Encyclopedia of Biophysics, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35943-9_337-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shekhar, Shashi, and Hui Xiong. "Bayesian Maximum Entropy." In Encyclopedia of GIS, 39. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Marti, Kurt. "Maximum Entropy Techniques." In Stochastic Optimization Methods, 323–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46214-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hoch, Jeffrey C. "Maximum Entropy Reconstruction." In Encyclopedia of Biophysics, 1431–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-16712-6_337.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Maximum entropy"

1

Sukumar, N. "Maximum Entropy Approximation." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 25th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2005. http://dx.doi.org/10.1063/1.2149812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cheeseman, Peter. "Generalized Maximum Entropy." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 25th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2005. http://dx.doi.org/10.1063/1.2149816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Seghouane, Abd-Krim, Luc Knockaert, Kevin H. Knuth, Ariel Caticha, Julian L. Center, Adom Giffin, and Carlos C. Rodríguez. "Maximum a Posteriori Maximum Entropy Signal Denoising." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING. AIP, 2007. http://dx.doi.org/10.1063/1.2821270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xiang, Gang, and Vladik Kreinovich. "Extending maximum entropy techniques to entropy constraints." In NAFIPS 2010 - 2010 Annual Meeting of the North American Fuzzy Information Processing Society. IEEE, 2010. http://dx.doi.org/10.1109/nafips.2010.5548264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harremoës, Peter. "Maximum entropy and sufficiency." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 36th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4985352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aras, Efe, and Thomas A. Courtade. "Sharp Maximum-Entropy Comparisons." In 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021. http://dx.doi.org/10.1109/isit45174.2021.9517779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cicalese, Ferdinando, and Ugo Vaccaro. "Maximum Entropy Interval Aggregations." In 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grendar, M. "Empirical Maximum Entropy Methods." In Bayesian Inference and Maximum Entropy Methods In Science and Engineering. AIP, 2006. http://dx.doi.org/10.1063/1.2423302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Heiric, D., and D. Zazula. "Modulus maximum image energy using maximum entropy." In 47th International Symposium ELMAR, 2005. IEEE, 2005. http://dx.doi.org/10.1109/elmar.2005.193640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grendar, M. "Maximum Probability and Maximum Entropy methods: Bayesian interpretation." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2004. http://dx.doi.org/10.1063/1.1751390.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Maximum entropy"

1

Mastin, G. A., and R. J. Hanson. Maximum entropy signal restoration with linear programming. Office of Scientific and Technical Information (OSTI), May 1988. http://dx.doi.org/10.2172/7043116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fellman, Laura. The Genetic Algorithm and Maximum Entropy Dice. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Silver, R. N., H. Roeder, A. F. Voter, and J. D. Kress. Chebyshev recursion methods: Kernel polynomials and maximum entropy. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/119974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Stanley F., and Ronald Rosenfeld. A Gaussian Prior for Smoothing Maximum Entropy Models. Fort Belvoir, VA: Defense Technical Information Center, February 1999. http://dx.doi.org/10.21236/ada360974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lozar, Robert, Scott Tweddale, Charles Ehlschlaeger, Carey Baxter, and Jeffrey Burkhalter. Testing maximum entropy analysis to define population distributions. Engineer Research and Development Center (U.S.), September 2018. http://dx.doi.org/10.21079/11681/29352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Silver, R. N., H. Roeder, A. F. Voter, and J. D. Kress. Chebyshev moment problems: Maximum entropy and kernel polynomial methods. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/195578.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Woodbury, A., Y. Jiang, and S. Painter. Bayesian and maximum entropy inversion of highly heterogeneous aquifers. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/299514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Archambault, M., R. W. MacCormack, and C. F. Edwards. A Maximum Entropy Moment Closure Approach to Describing Spray Flows. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada397975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lapedes, A. S., B. G. Giraud, L. C. Liu, and G. D. Stormo. A Maximum Entropy Formalism for Disentangling Chains of Correlated Sequence Positions. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/763147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hogden, J. An articulatorily constrained, maximum entropy approach to speech recognition and speech coding. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/432946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography