To see the other types of publications on this topic, follow the link: Maximal curves.

Journal articles on the topic 'Maximal curves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Maximal curves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Aguglia, Angela, Gábor Korchmáros, and Fernando Torres. "Plane maximal curves." Acta Arithmetica 98, no. 2 (2001): 165–79. http://dx.doi.org/10.4064/aa98-2-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fuhrmann, Rainer, Arnaldo Garcia, and Fernando Torres. "On Maximal Curves." Journal of Number Theory 67, no. 1 (November 1997): 29–51. http://dx.doi.org/10.1006/jnth.1997.2148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Çakçak, Emrah, and Ferruh Özbudak. "Curves related to Coulter's maximal curves." Finite Fields and Their Applications 14, no. 1 (January 2008): 209–20. http://dx.doi.org/10.1016/j.ffa.2006.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Giulietti, Massimo, Luciane Quoos, and Giovanni Zini. "Maximal curves from subcovers of the GK-curve." Journal of Pure and Applied Algebra 220, no. 10 (October 2016): 3372–83. http://dx.doi.org/10.1016/j.jpaa.2016.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rzymowski, Witold, and Adam Stachura. "Curves bounding maximal area." Nonlinear Analysis: Theory, Methods & Applications 20, no. 11 (June 1993): 1369–72. http://dx.doi.org/10.1016/0362-546x(93)90131-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oliveira, Paulo César, and Fernando Torres. "On space maximal curves." Revista Colombiana de Matemáticas 53, supl (December 11, 2019): 223–35. http://dx.doi.org/10.15446/recolma.v53nsupl.84089.

Full text
Abstract:
Any maximal curve X is equipped with an intrinsic embedding π: X → Pr which reveal outstanding properties of the curve. By dealing with the contact divisors of the curve π(X) and tangent lines, in this paper we investigate the first positive element that the Weierstrass semigroup at rational points can have whenever r = 3 and π(X) is contained in a cubic surface.
APA, Harvard, Vancouver, ISO, and other styles
7

Oka, Mutsuo. "On Fermat curves and maximal nodal curves." Michigan Mathematical Journal 53, no. 2 (August 2005): 459–77. http://dx.doi.org/10.1307/mmj/1123090779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nie, Menglong. "Zeta functions of trinomial curves and maximal curves." Finite Fields and Their Applications 39 (May 2016): 52–82. http://dx.doi.org/10.1016/j.ffa.2016.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nagel, Alexander, James Vance, Stephen Wainger, and David Weinberg. "Maximal functions for convex curves." Duke Mathematical Journal 52, no. 3 (September 1985): 715–22. http://dx.doi.org/10.1215/s0012-7094-85-05237-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

CAUBERGH, MAGDALENA, and FREDDY DUMORTIER. "Algebraic curves of maximal cyclicity." Mathematical Proceedings of the Cambridge Philosophical Society 140, no. 01 (January 11, 2006): 47. http://dx.doi.org/10.1017/s0305004105008807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Abdón, Miriam, Juscelino Bezerra, and Luciane Quoos. "Further examples of maximal curves." Journal of Pure and Applied Algebra 213, no. 6 (June 2009): 1192–96. http://dx.doi.org/10.1016/j.jpaa.2008.11.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Aguglia, A., L. Giuzzi, and G. Korchmáros. "Algebraic curves and maximal arcs." Journal of Algebraic Combinatorics 28, no. 4 (January 24, 2008): 531–44. http://dx.doi.org/10.1007/s10801-008-0122-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

DIMCA, ALEXANDRU. "Freeness versus maximal global Tjurina number for plane curves." Mathematical Proceedings of the Cambridge Philosophical Society 163, no. 1 (September 21, 2016): 161–72. http://dx.doi.org/10.1017/s0305004116000803.

Full text
Abstract:
AbstractWe give a characterisation of nearly free plane curves in terms of their global Tjurina numbers, similar to the characterisation of free curves as curves with a maximal Tjurina number, given by A. A. du Plessis and C.T.C. Wall. It is also shown that an irreducible plane curve having a 1-dimensional symmetry is nearly free. A new numerical characterisation of free curves and a simple characterisation of nearly free curves in terms of their syzygies conclude this paper.
APA, Harvard, Vancouver, ISO, and other styles
14

Bak, Jong-Guk. "Weighted Lacunary Maximal Functions on Curves." Canadian Mathematical Bulletin 38, no. 3 (September 1, 1995): 271–77. http://dx.doi.org/10.4153/cmb-1995-040-3.

Full text
Abstract:
AbstractLet γ(t) = (t, t2,..., tn) + a be a curve in Rn, where n ≥ 2 and a ∊ Rn. We prove LP-Lq estimates for the weighted lacunary maximal function, related to this curve, defined byIf n = 2 or 3 our results are (nearly) sharp.
APA, Harvard, Vancouver, ISO, and other styles
15

Garcia, Arnaldo, and Henning Stichtenoth. "On Chebyshev polynomials and maximal curves." Acta Arithmetica 90, no. 4 (1999): 301–11. http://dx.doi.org/10.4064/aa-90-4-301-311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jin, Lingfei. "Quantum Stabilizer Codes From Maximal Curves." IEEE Transactions on Information Theory 60, no. 1 (January 2014): 313–16. http://dx.doi.org/10.1109/tit.2013.2287694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Beelen, Peter, and Maria Montanucci. "A new family of maximal curves." Journal of the London Mathematical Society 98, no. 3 (June 19, 2018): 573–92. http://dx.doi.org/10.1112/jlms.12144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Garcia, Arnaldo, and Saeed Tafazolian. "Certain maximal curves and Cartier operators." Acta Arithmetica 135, no. 3 (2008): 199–218. http://dx.doi.org/10.4064/aa135-3-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Cornelissen, Gunther, and Fumiharu Kato. "Mumford curves with maximal automorphism group." Proceedings of the American Mathematical Society 132, no. 7 (January 30, 2004): 1937–41. http://dx.doi.org/10.1090/s0002-9939-04-07379-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tafazolian, Saeed, and Fernando Torres. "A note on certain maximal curves." Communications in Algebra 45, no. 2 (October 7, 2016): 764–73. http://dx.doi.org/10.1080/00927872.2016.1175460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kodama, Tetsuo, Jaap Top, and Tadashi Washio. "Maximal hyperelliptic curves of genus three." Finite Fields and Their Applications 15, no. 3 (June 2009): 392–403. http://dx.doi.org/10.1016/j.ffa.2009.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bernal-González, L., M. C. Calderón-Moreno, and J. A. Prado-Bassas. "Maximal cluster sets along arbitrary curves." Journal of Approximation Theory 129, no. 2 (August 2004): 207–16. http://dx.doi.org/10.1016/j.jat.2004.06.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Abe, K., and M. A. Magid. "Complex analytic curves and maximal surfaces." Monatshefte f�r Mathematik 108, no. 4 (December 1989): 255–76. http://dx.doi.org/10.1007/bf01501129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tafazolian, Saeed. "A family of maximal hyperelliptic curves." Journal of Pure and Applied Algebra 216, no. 7 (July 2012): 1528–32. http://dx.doi.org/10.1016/j.jpaa.2012.01.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

J. Jerónimo-Castro and C. Yee-Romero. "Maximal Isoptic Chords of Convex Curves." American Mathematical Monthly 123, no. 8 (2016): 817. http://dx.doi.org/10.4169/amer.math.monthly.123.8.817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Brodmann, Markus, and Peter Schenzel. "On projective curves of maximal regularity." Mathematische Zeitschrift 244, no. 2 (June 2003): 271–89. http://dx.doi.org/10.1007/s00209-003-0496-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Carral, M., D. Rotillon, and A. Thiong Ly. "Codes defined from some maximal curves." Journal of Pure and Applied Algebra 67, no. 3 (November 1990): 247–57. http://dx.doi.org/10.1016/0022-4049(90)90046-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Abd�n, Miriam, and Fernando Torres. "On maximal curves in characteristic two." manuscripta mathematica 99, no. 1 (May 1, 1999): 39–53. http://dx.doi.org/10.1007/s002290050161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mendoza, Erik A. R., and Luciane Quoos. "Explicit equations for maximal curves as subcovers of the BM curve." Finite Fields and Their Applications 77 (January 2022): 101945. http://dx.doi.org/10.1016/j.ffa.2021.101945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Giulietti, Massimo, Maria Montanucci, and Giovanni Zini. "On maximal curves that are not quotients of the Hermitian curve." Finite Fields and Their Applications 41 (September 2016): 72–88. http://dx.doi.org/10.1016/j.ffa.2016.05.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dloussky, Georges. "Non Kählerian surfaces with a cycle of rational curves." Complex Manifolds 8, no. 1 (January 1, 2021): 208–22. http://dx.doi.org/10.1515/coma-2020-0114.

Full text
Abstract:
Abstract Let S be a compact complex surface in class VII0 + containing a cycle of rational curves C = ∑Dj . Let D = C + A be the maximal connected divisor containing C. If there is another connected component of curves C ′ then C ′ is a cycle of rational curves, A = 0 and S is a Inoue-Hirzebruch surface. If there is only one connected component D then each connected component Ai of A is a chain of rational curves which intersects a curve Dj of the cycle and for each curve Dj of the cycle there at most one chain which meets Dj . In other words, we do not prove the existence of curves other those of the cycle C, but if some other curves exist the maximal divisor looks like the maximal divisor of a Kato surface with perhaps missing curves. The proof of this topological result is an application of Donaldson theorem on trivialization of the intersection form and of deformation theory. We apply this result to show that a twisted logarithmic 1-form has a trivial vanishing divisor.
APA, Harvard, Vancouver, ISO, and other styles
32

Skabelund, Dane C. "New maximal curves as ray class fields over Deligne-Lusztig curves." Proceedings of the American Mathematical Society 146, no. 2 (August 30, 2017): 525–40. http://dx.doi.org/10.1090/proc/13753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Park, Heesang. "CURVES OF MAXIMAL GENUS ON SURFACE SCROLLS." Journal of the Chungcheong Mathematical Society 27, no. 4 (November 15, 2014): 563–69. http://dx.doi.org/10.14403/jcms.2014.27.4.563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Calderini, Marco, and Giorgio Faina. "Generalized Algebraic Geometric Codes From Maximal Curves." IEEE Transactions on Information Theory 58, no. 4 (April 2012): 2386–96. http://dx.doi.org/10.1109/tit.2011.2177068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Abdón, Miriam, and Arnaldo Garcia. "On a characterization of certain maximal curves." Finite Fields and Their Applications 10, no. 2 (April 2004): 133–58. http://dx.doi.org/10.1016/j.ffa.2003.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Tafazolian, Saeed. "A note on certain maximal hyperelliptic curves." Finite Fields and Their Applications 18, no. 5 (September 2012): 1013–16. http://dx.doi.org/10.1016/j.ffa.2012.07.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Anbar, Nurdagül, and Wilfried Meidl. "Quadratic functions and maximal Artin–Schreier curves." Finite Fields and Their Applications 30 (November 2014): 49–71. http://dx.doi.org/10.1016/j.ffa.2014.05.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kazemifard, Ahmad, Saeed Tafazolian, and Fernando Torres. "On maximal curves related to Chebyshev polynomials." Finite Fields and Their Applications 52 (July 2018): 200–213. http://dx.doi.org/10.1016/j.ffa.2018.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Liu, XiaoLei, and ShengLi Tan. "Families of hyperelliptic curves with maximal slopes." Science China Mathematics 56, no. 9 (May 11, 2013): 1743–50. http://dx.doi.org/10.1007/s11425-013-4634-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Fanali, Stefania, and Massimo Giulietti. "On maximal curves with Frobenius dimension 3." Designs, Codes and Cryptography 53, no. 3 (May 27, 2009): 165–74. http://dx.doi.org/10.1007/s10623-009-9302-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fanali, Stefania, and Massimo Giulietti. "On some open problems on maximal curves." Designs, Codes and Cryptography 56, no. 2-3 (April 13, 2010): 131–39. http://dx.doi.org/10.1007/s10623-010-9389-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Garcia, Arnaldo, and Saeed Tafazolian. "On additive polynomials and certain maximal curves." Journal of Pure and Applied Algebra 212, no. 11 (November 2008): 2513–21. http://dx.doi.org/10.1016/j.jpaa.2008.03.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Solá Conde, Luis, and Matei Toma. "Maximal rationally connected fibrations and movable curves." Annales de l’institut Fourier 59, no. 6 (2009): 2359–69. http://dx.doi.org/10.5802/aif.2493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Reid, Les, and Leslie G. Roberts. "Maximal and Cohen–Macaulay projective monomial curves." Journal of Algebra 307, no. 1 (January 2007): 409–23. http://dx.doi.org/10.1016/j.jalgebra.2006.04.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dutta, Yajnaseni, and Daniel Huybrechts. "Maximal variation of curves on K3 surfaces." Tunisian Journal of Mathematics 4, no. 3 (November 9, 2022): 443–64. http://dx.doi.org/10.2140/tunis.2022.4.443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Duursma, Iwan, and Kit-Ho Mak. "On maximal curves which are not Galois subcovers of the Hermitian curve." Bulletin of the Brazilian Mathematical Society, New Series 43, no. 3 (September 2012): 453–65. http://dx.doi.org/10.1007/s00574-012-0022-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Babb, T. G., and J. R. Rodarte. "Estimation of ventilatory capacity during submaximal exercise." Journal of Applied Physiology 74, no. 4 (April 1, 1993): 2016–22. http://dx.doi.org/10.1152/jappl.1993.74.4.2016.

Full text
Abstract:
There is presently no precise way to determine ventilatory capacity for a given individual during exercise; however, this information would be helpful in evaluating ventilatory reserve during exercise. Using schematic representations of maximal expiratory flow-volume curves and individual maximal expiratory flow-volume curves from four subjects, we describe a technique for estimating ventilatory capacity. In these subjects, we measured maximal expiratory flow-volume loops at rest and tidal flow-volume loops and inspiratory capacity (IC) during submaximal cycle ergometry. We also compared minute ventilation (VE) during submaximal exercise with calculated ventilatory maxima (VEmaxCal) and with maximal voluntary ventilation (MVV) to estimate ventilatory reserve. Using the schematic flow-volume curves, we demonstrated the theoretical effect of maximal expiratory flow and lung volume on ventilatory capacity and breathing pattern. In the subjects, we observed that the estimation of ventilatory reserve with use of VE/VEmaxCal was most helpful in indicating when subjects were approaching maximal expiratory flow over a large portion of tidal volume, especially at submaximal exercise levels where VE/VEmaxCal and VE/MVV differed the most. These data suggest that this technique may be useful in estimating ventilatory capacity, which could then be used to evaluate ventilatory reserve during exercise.
APA, Harvard, Vancouver, ISO, and other styles
48

Boltnev, Y. F., S. A. Novoselov, and V. A. Osipov. "On construction of maximal genus 3 hyperelliptic curves." Prikladnaya diskretnaya matematika. Prilozhenie, no. 14 (September 1, 2021): 24–30. http://dx.doi.org/10.17223/2226308x/14/1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Jones, Nathan. "Pairs of elliptic curves with maximal Galois representations." Journal of Number Theory 133, no. 10 (October 2013): 3381–93. http://dx.doi.org/10.1016/j.jnt.2013.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Larson, Eric. "The Maximal Rank Conjecture for sections of curves." Journal of Algebra 555 (August 2020): 223–45. http://dx.doi.org/10.1016/j.jalgebra.2020.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography