Academic literature on the topic 'Matter phases classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matter phases classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Matter phases classification"
Schakel, A. M. J., and F. A. Bais. "A symmetry classification of superfluid3He phases." Journal of Physics: Condensed Matter 1, no. 9 (March 6, 1989): 1743–52. http://dx.doi.org/10.1088/0953-8984/1/9/017.
Full textThiang, Guo Chuan. "On the K-Theoretic Classification of Topological Phases of Matter." Annales Henri Poincaré 17, no. 4 (May 28, 2015): 757–94. http://dx.doi.org/10.1007/s00023-015-0418-9.
Full textElben, Andreas, Jinlong Yu, Guanyu Zhu, Mohammad Hafezi, Frank Pollmann, Peter Zoller, and Benoît Vermersch. "Many-body topological invariants from randomized measurements in synthetic quantum matter." Science Advances 6, no. 15 (April 2020): eaaz3666. http://dx.doi.org/10.1126/sciadv.aaz3666.
Full textHernandes, V. F., M. S. Marques, and José Rafael Bordin. "Phase classification using neural networks: application to supercooled, polymorphic core-softened mixtures." Journal of Physics: Condensed Matter 34, no. 2 (October 28, 2021): 024002. http://dx.doi.org/10.1088/1361-648x/ac2f0f.
Full textFARAGGI, ALON E. "TOWARD CLASSIFICATION OF THE REALISTIC FREE-FERMIONIC SUPERSTRING MODELS." International Journal of Modern Physics A 14, no. 11 (April 30, 1999): 1663–702. http://dx.doi.org/10.1142/s0217751x99000841.
Full textBenalcazar, Wladimir A., B. Andrei Bernevig, and Taylor L. Hughes. "Quantized electric multipole insulators." Science 357, no. 6346 (July 6, 2017): 61–66. http://dx.doi.org/10.1126/science.aah6442.
Full textChan, Amos, and Thorsten B. Wahl. "Classification of symmetry-protected topological many-body localized phases in one dimension." Journal of Physics: Condensed Matter 32, no. 30 (May 1, 2020): 305601. http://dx.doi.org/10.1088/1361-648x/ab7f01.
Full textWunderlich, B. "A classification of molecules, phases, and transitions as recognized by thermal analysis." Thermochimica Acta 340-341 (December 1999): 37–52. http://dx.doi.org/10.1016/s0040-6031(99)00252-x.
Full textSalcedo-Gallo, J. S., C. C. Galindo-González, and E. Restrepo-Parra. "Deep learning approach for image classification of magnetic phases in chiral magnets." Journal of Magnetism and Magnetic Materials 501 (May 2020): 166482. http://dx.doi.org/10.1016/j.jmmm.2020.166482.
Full textCedzich, C., T. Geib, F. A. Grünbaum, L. Velázquez, A. H. Werner, and R. F. Werner. "Quantum Walks: Schur Functions Meet Symmetry Protected Topological Phases." Communications in Mathematical Physics 389, no. 1 (December 29, 2021): 31–74. http://dx.doi.org/10.1007/s00220-021-04284-8.
Full textDissertations / Theses on the topic "Matter phases classification"
Riesch, Christian. "Non-equilibrium dynamics in ordered modulated phases." Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-172821.
Full textSchmiedt, Jacob. "Interplay of magnetic, orthorhombic, and superconducting phase transitions in iron-based superconductors." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-154434.
Full textWang, Zitao. "Topological Phases of Matter: Exactly Solvable Models and Classification." Thesis, 2019. https://thesis.library.caltech.edu/11488/14/Wang_Zitao_2019.pdf.
Full textIn this thesis, we study gapped topological phases of matter in systems with strong inter-particle interaction. They are challenging to analyze theoretically, because interaction not only gives rise to a plethora of phases that are otherwise absent, but also renders methods used to analyze non-interacting systems inadequate. By now, people have had a relatively systematic understanding of topological orders in two spatial dimensions. However, less is known about the higher dimensional cases. In Chapter 2, we will explore three dimensional long-range entangled topological orders in the framework of Walker-Wang models, which are a class of exactly solvable models for three-dimensional topological phases that are not known previously to be able to capture these phases. We find that they can represent a class of twisted discrete gauge theories, which were discovered using a different formalism. Meanwhile, a systematic theory of bosonic symmetry protected topological (SPT) phases in all spatial dimensions have been developed based on group cohomology. A generalization of the theory to group supercohomology has been proposed to classify and characterize fermionic SPT phases in all dimensions. However, it can only handle cases where the symmetry group of the system is a product of discrete unitary symmetries. Furthermore, the classification is known to be incomplete for certain symmetries. In Chapter 3, we will construct an exactly solvable model for the two-dimensional time-reversal-invariant topological superconductors, which could be valuable as a first attempt to a systematic understanding of strongly interacting fermionic SPT phases with anti-unitary symmetries in terms of exactly solvable models. In Chapter 4, we will propose an alternative classification of fermionic SPT phases using the spin cobordism theory, which hopefully can capture all the phases missing in the supercohomology classification. We test this proposal in the case of fermionic SPT phases with Z2 symmetry, where Z2 is either time-reversal or an internal symmetry. We find that cobordism classification correctly describes all known fermionic SPT phases in space dimensions less than or equal to 3.
Roy, Sthitadhi. "Nonequilibrium and semiclassical dynamics in topological phases of quantum matter." 2017. https://monarch.qucosa.de/id/qucosa%3A32068.
Full textYou, Minyoung. "Topological Phases of Matter: Classification, Stacking Law, and Relation to Topological Quantum Field Theory." Thesis, 2020. https://thesis.library.caltech.edu/13859/1/Caltech_Thesis_Minyoung_You.pdf.
Full textWe study aspects of gapped phases of matter, focusing on their classification, including the group law under stacking, and their relation to topological quantum field theories (TQFT). In one spatial dimension, it is well-known that Matrix Product States (MPS) efficiently approximate ground states of gapped systems; by showing that these states arise naturally in 1 + 1-dimensional lattice TQFT, which in turn are closely related to continuum TQFT, we provide a concrete connection between ground states of lattice systems and TQFT in 1 + 1 dimensions. We generalize this to systems with symmetries and fermions, and obtain a classification and group law for the stacking of 1 + 1-dimensional symmetry-protected topological phases. Further, we study the effect of turning on/off interactions for the classification: the phase classification of a given symmetry class of Hamiltonians can be different depending on whether we allow interactions or not, and in low dimensions we provide some concrete formulas relating the phases under the non-interacting classification and those under the interacting classification. Lastly, we study the phases of the 2 + 1-dimensional topological superconductor, and show that for all 16 phases braiding statistics of vortices, which determine the underlying TQFT, can be obtained by stacking layers of the basic p + ip superconductor.
Gupta, Gaurav Kumar. "Interplay of Interaction and Topology From Topological Band Theory to Topological Field Theory." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4892.
Full textAlaimo, Francesco. "Phase Field Crystal Modeling of Active Matter." 2018. https://tud.qucosa.de/id/qucosa%3A32687.
Full textAktive Materie beschreibt Systeme, die Energie aus ihrer Umgebung in gerichtete bewegung umwandeln. Im Gegensatz zur passiven Materie befinden sich diese Systeme nie im physikalischen Gleichgewicht und offenbaren dadurch interessante physikalische Phänomene. Vom theoretischen Standpunkt her wurde aktive Materie bereits simuliert, typischerweise durch agenten-basierte Modelle oder hydrodynamische Ansätze, die es ermöglichen eine Vielzahl der auftretenden kollektiven Bewegungsprinzipien zu untersuchen. In dieser Doktorarbeit entwickeln wir einen mikroskopischen Kontinuumsansatz um die generischen Eigenschaften von aktiven Systemen zu untersuchen. Unsere Beschreibung kombiniert das Phasenfeld-Kristall Modell mit einem polaren Ordnungsparameter und einem Antriebsterm. Zuerst validieren wir den Ansatz durch Reproduktion bekannter Ergebnisse agenten-basierter Modelle, wie binäre Kollisionen, kollektive Bewegung und Wirbelformationen. Des Weiteren führen wir einen direkten Vergleich zwischen unserem Modell und einer mikroskopischen Phasenfeldbeschreibung aktiver Materie durch. Danach nutzen wir den kontinuierlichen Ansatz um große aktive Systeme zu simulieren und analysieren den Vergröberungsprozess in aktiven Kristallen und Mechanismen der mobilen Aggregatbildung. Wir illustrieren die Allgemeingültigkeit unseres Simulationsansatzes durch die Erweiterung auf binäre Systeme, in denen sowohl aktive als auch passive Partikel enthalten sind. Auch in diesem Fall validieren wir das Modell durch Vergleiche mit bekannten Resultaten, wie zum Beispiel die verstärkte Kristallisation durch aktives Doping oder die Unterdrückung kollektiver Bewegung durch die Einführung von Hindernissen in einem aktiven Bad. Interessanterweise finden wir bei der Präsenz mobiler passiver Partikel in einem aktiven Bad einen Fahrspur-Zustand, in welchem die aktiven Partikel nematische Fahrspuren bilden und sich nur jeweils innerhalb einer Fahrspur nematisch polar anordnen. Dieser bisher unbekannte Zustand stellt eine theoretische Vorhersage dar, die experimentell geprüft werden kann. Schließlich begeben wir uns auf das Gebiet der topologischen aktiven Materie. Wir entwickeln ein agenten-basiertes Modell um selbst-angetriebene Partikel auf gekrümmten Oberflächen zu beschreiben und untersuchen die dabei auftretenden zeitlich und räumlich komplexen Muster.%, die dabei auftreten.
Books on the topic "Matter phases classification"
Keil, Geert, Lara Keuck, and Rico Hauswald, eds. Vagueness in Psychiatry. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198722373.001.0001.
Full textJanssen, Ted, Gervais Chapuis, and Marc de Boissieu. Description and symmetry of aperiodic crystals. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824442.003.0002.
Full textCompston, Alastair. Multiple sclerosis and other demyelinating diseases. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198569381.003.0871.
Full textGiacovazzo, Carmelo. Phasing in Crystallography. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199686995.001.0001.
Full textBook chapters on the topic "Matter phases classification"
"Phase States of Matter, Their Classification." In Thermodynamics and Equations of State for Matter, 7–47. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814749206_0002.
Full textAdriana, REYES-NAVA, SANCHEZ-FLORES Diego, LÓPEZ-GONZÁLEZ Erika, and ANTONIO-VELAZQUEZ Juan Alberto. "Classification of mature corn cobs using Convolutional Neural Networks." In Handbook Science of Technology and Innovation, 16–31. ECORFAN, 2022. http://dx.doi.org/10.35429/h.2022.3.16.31.
Full textWest-Eberhard, Mary Jane. "Heterochrony." In Developmental Plasticity and Evolution. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195122343.003.0019.
Full textConference papers on the topic "Matter phases classification"
Thiang, Guo Chuan. "On the K-theoretic classification of topological phases of matter." In Frontiers of Fundamental Physics 14. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.224.0149.
Full textBadawi, W. K., Z. M. Osman, M. A. Sharkas, and M. Tamazin. "A classification technique for condensed matter phases using a combination of PCA and SVM." In 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). IEEE, 2017. http://dx.doi.org/10.1109/piers.2017.8261759.
Full textCanina, Marita, Carmen Bruno, and Eva Monestier. "An operational framework of methods for designing ethical and sustainable future digital scenarios." In 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001507.
Full textMaia, Pedro, and Raul Pinto. "Original-Copy: ideation for a lampshade inspired by nature." In 14th International Conference on Applied Human Factors and Ergonomics (AHFE 2023). AHFE International, 2023. http://dx.doi.org/10.54941/ahfe1003545.
Full textAli, Abdulbaset, Harnoor Singh, Daniel Kelly, Donald Hender, Alan Clarke, Mohammad Mahdi Ghiasi, Ronald Haynes, and Lesley James. "Automatic Classification of PDC Cutter Damage Using a Single Deep Learning Neural Network Model." In SPE/IADC International Drilling Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212503-ms.
Full text