To see the other types of publications on this topic, follow the link: Matter models.

Journal articles on the topic 'Matter models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Matter models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sozmen, Elif G., Jason D. Hinman, and S. Thomas Carmichael. "Models That Matter: White Matter Stroke Models." Neurotherapeutics 9, no. 2 (February 24, 2012): 349–58. http://dx.doi.org/10.1007/s13311-012-0106-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Takibayev, N. "Models of dark particle interactions with ordinary matter." Physical Sciences and Technology 2, no. 2 (2015): 58–69. http://dx.doi.org/10.26577/2409-6121-2015-2-2-58-69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kristensen, Kai, Hans J. Juhl, and Jacob Eskildsen. "Models that matter." International Journal of Business Performance Management 5, no. 1 (2003): 91. http://dx.doi.org/10.1504/ijbpm.2003.002102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morgante, Enrico. "Simplified Dark Matter Models." Advances in High Energy Physics 2018 (December 17, 2018): 1–13. http://dx.doi.org/10.1155/2018/5012043.

Full text
Abstract:
I review the construction of simplified models for dark matter searches. After discussing the philosophy and some simple examples, I turn the attention to the aspect of the theoretical consistency and to the implications of the necessary extensions of these models.
APA, Harvard, Vancouver, ISO, and other styles
5

Foot, R. "Generalized mirror matter models." Physics Letters B 632, no. 4 (January 2006): 467–70. http://dx.doi.org/10.1016/j.physletb.2005.10.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Atiyah, M. F., N. S. Manton, and B. J. Schroers. "Geometric models of matter." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, no. 2141 (January 5, 2012): 1252–79. http://dx.doi.org/10.1098/rspa.2011.0616.

Full text
Abstract:
Inspired by soliton models, we propose a description of static particles in terms of Riemannian 4-manifolds with self-dual Weyl tensor. For electrically charged particles, the 4-manifolds are non-compact and asymptotically fibred by circles over physical 3-space. This is akin to the Kaluza–Klein description of electromagnetism, except that we exchange the roles of magnetic and electric fields, and only assume the bundle structure asymptotically, away from the core of the particle in question. We identify the Chern class of the circle bundle at infinity with minus the electric charge and, at least provisionally, the signature of the 4-manifold with the baryon number. Electrically neutral particles are described by compact 4-manifolds. We illustrate our approach by studying the Taub–Newman, Unti, Tamburino (Taub–NUT) manifold as a model for the electron, the Atiyah–Hitchin manifold as a model for the proton, with the Fubini–Study metric as a model for the neutron and S 4 with its standard metric as a model for the neutrino.
APA, Harvard, Vancouver, ISO, and other styles
7

Neff, Ellen P. "Models matter in metastasis." Lab Animal 46, no. 1 (January 2017): 3. http://dx.doi.org/10.1038/laban.1170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anker, Suzanne, Kevin Clarke, Agnes Denes, Michael Joaquín Grey, Ruth Kavenoff, Thomas Kovachemch, David Kremers, et al. "Models, Metaphors, and Matter." Art Journal 55, no. 1 (March 1996): 33–43. http://dx.doi.org/10.1080/00043249.1996.10791737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Phillips, Kimberley A., Karen L. Bales, John P. Capitanio, Alan Conley, Paul W. Czoty, Bert A. ‘t Hart, William D. Hopkins, et al. "Why primate models matter." American Journal of Primatology 76, no. 9 (April 10, 2014): 801–27. http://dx.doi.org/10.1002/ajp.22281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blinnikov, Sergei I. "Mirror matter and other dark matter models." Uspekhi Fizicheskih Nauk 184, no. 2 (2014): 194–99. http://dx.doi.org/10.3367/ufnr.0184.201402h.0194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Blinnikov, S. I. "Mirror matter and other dark matter models." Physics-Uspekhi 57, no. 2 (February 28, 2014): 183–88. http://dx.doi.org/10.3367/ufne.0184.201402h.0194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bormotova, I. M., and E. M. Kopteva. "Friedmann Cosmological Models with Various Equations of State of Matter." Ukrainian Journal of Physics 61, no. 9 (September 2016): 843–49. http://dx.doi.org/10.15407/ujpe61.09.0843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Arnowitt, R., B. Dutta, and Y. Santoso. "Dark matter in Susy models." Physics of Atomic Nuclei 65, no. 12 (December 2002): 2218–24. http://dx.doi.org/10.1134/1.1530303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Thirukkanesh, S., and S. D. Maharaj. "Exact models for isotropic matter." Classical and Quantum Gravity 23, no. 7 (March 17, 2006): 2697–709. http://dx.doi.org/10.1088/0264-9381/23/7/028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Maddox, John. "Refining models of nuclear matter." Nature 362, no. 6419 (April 1993): 407. http://dx.doi.org/10.1038/362407a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Maguire, John F. "Process Models for Interfacial Matter." IFAC Proceedings Volumes 31, no. 29 (October 1998): 119–26. http://dx.doi.org/10.1016/s1474-6670(17)38932-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hadeler, K. P., and Christina Kuttler. "Dynamical models for granular matter." Granular Matter 2, no. 1 (August 1999): 9–18. http://dx.doi.org/10.1007/s100350050029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Arnowitt, R., and Pran Nath. "Models of particle dark matter." Nuclear Physics B - Proceedings Supplements 51, no. 2 (November 1996): 171–77. http://dx.doi.org/10.1016/s0920-5632(96)00501-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Shaebani, M. Reza, Adam Wysocki, Roland G. Winkler, Gerhard Gompper, and Heiko Rieger. "Computational models for active matter." Nature Reviews Physics 2, no. 4 (March 10, 2020): 181–99. http://dx.doi.org/10.1038/s42254-020-0152-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shanenko, A. A., E. P. Yukalova, and V. I. Yukalov. "Statistical models of clustering matter." Physica A: Statistical Mechanics and its Applications 197, no. 4 (August 1993): 629–66. http://dx.doi.org/10.1016/0378-4371(93)90020-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Horowitz, C. J., and J. Piekarewicz. "Quark models of nuclear matter." Nuclear Physics A 536, no. 3-4 (January 1992): 669–96. http://dx.doi.org/10.1016/0375-9474(92)90118-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bertacca, Daniele, Nicola Bartolo, and Sabino Matarrese. "Unified Dark Matter Scalar Field Models." Advances in Astronomy 2010 (2010): 1–29. http://dx.doi.org/10.1155/2010/904379.

Full text
Abstract:
We analyze and review cosmological models in which the dynamics of a single scalar field accounts for a unified description of the Dark Matter and Dark Energy sectors, dubbed Unified Dark Matter (UDM) models. In this framework, we consider the general Lagrangian of -essence, which allows to find solutions around which the scalar field describes the desired mixture of Dark Matter and Dark Energy. We also discuss static and spherically symmetric solutions of Einstein's equations for a scalar field with noncanonical kinetic term, in connection with galactic halo rotation curves.
APA, Harvard, Vancouver, ISO, and other styles
23

Hollander, Elizabeth. "Subject Matter: Models for Different Media." Representations 36, no. 1 (October 1991): 133–46. http://dx.doi.org/10.1525/rep.1991.36.1.99p00867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Hollander, Elizabeth. "Subject Matter: Models for Different Media." Representations 36 (1991): 133–46. http://dx.doi.org/10.2307/2928635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Liddle, A. R., and D. H. Lyth. "Inflation and mixed dark matter models." Monthly Notices of the Royal Astronomical Society 265, no. 2 (November 15, 1993): 379–84. http://dx.doi.org/10.1093/mnras/265.2.379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Muñoz, Carlos. "Models of Supersymmetry for Dark Matter." EPJ Web of Conferences 136 (2017): 01002. http://dx.doi.org/10.1051/epjconf/201713601002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Campos, A., G. Yepes, A. Klypin, G. Murante, A. Provenzale, and S. Borgani. "Mass Segregation in Dark Matter Models." Astrophysical Journal 446 (June 1995): 54. http://dx.doi.org/10.1086/175766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Chiba, Takeshi, Naoshi Sugiyama, and Takashi Nakamura. "Observational tests of x-matter models." Monthly Notices of the Royal Astronomical Society 301, no. 1 (November 1998): 72–80. http://dx.doi.org/10.1046/j.1365-8711.1998.02012.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Olive, Keith A. "Dark Matter in SuperGUT Unification Models." Journal of Physics: Conference Series 315 (August 19, 2011): 012021. http://dx.doi.org/10.1088/1742-6596/315/1/012021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Fukuma, Masafumi, Sotaro Sugishita, and Naoya Umeda. "Matter fields in triangle–hinge models." Progress of Theoretical and Experimental Physics 2016, no. 5 (May 2016): 053B04. http://dx.doi.org/10.1093/ptep/ptw051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tod, K. P. "Isotropic cosmological singularities: other matter models." Classical and Quantum Gravity 20, no. 3 (January 15, 2003): 521–34. http://dx.doi.org/10.1088/0264-9381/20/3/309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Muñoz, Carlos. "Indirect dark matter searches and models." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 692 (November 2012): 13–19. http://dx.doi.org/10.1016/j.nima.2012.01.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rodolfa, Emil R., Nadine J. Kaslow, Alan E. Stewart, W. Gregory Keilin, and Jeff Baker. "Internship training: Do models really matter?" Professional Psychology: Research and Practice 36, no. 1 (February 2005): 25–31. http://dx.doi.org/10.1037/0735-7028.36.1.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

DUTRA, M., O. LOURENÇO, A. DELFINO, and J. S. SÁ MARTINS. "SKYRME MODELS AND NUCLEAR MATTER PROPERTIES." International Journal of Modern Physics D 19, no. 08n10 (August 2010): 1583–86. http://dx.doi.org/10.1142/s0218271810017937.

Full text
Abstract:
In this preliminary study we select a set of six Skyrme models which present reasonable symmetry energies lying in the range of 28–35 MeV to analyze the behavior of several other bulk properties at zero temperature, as well as the critical temperature parameters. The models are also investigated to see whether they satisfy a stringent constraint recently proposed from heavy-ion experiments.
APA, Harvard, Vancouver, ISO, and other styles
35

Suematsu, Daijiro. "Neutrino mass models and dark matter." Progress in Particle and Nuclear Physics 64, no. 2 (April 2010): 454–56. http://dx.doi.org/10.1016/j.ppnp.2009.12.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Vorms, Marion. "Representing with imaginary models: Formats matter." Studies in History and Philosophy of Science Part A 42, no. 2 (June 2011): 287–95. http://dx.doi.org/10.1016/j.shpsa.2010.11.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bergström, Lars. "Dark matter: Models and detection methods." Nuclear Physics B - Proceedings Supplements 118 (April 2003): 329–40. http://dx.doi.org/10.1016/s0920-5632(03)01326-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

LI, TianJun, ZhaoFeng KANG, and Xin GAO. "Introduction to the dark matter models." SCIENTIA SINICA Physica, Mechanica & Astronomica 41, no. 12 (November 1, 2011): 1396–401. http://dx.doi.org/10.1360/132011-976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cheung, Clifford, and David Sanford. "Simplified models of mixed dark matter." Journal of Cosmology and Astroparticle Physics 2014, no. 02 (February 6, 2014): 011. http://dx.doi.org/10.1088/1475-7516/2014/02/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

van Holten, J. W. "Matter coupling in supersymmetric σ-models." Nuclear Physics B 260, no. 1 (October 1985): 125–35. http://dx.doi.org/10.1016/0550-3213(85)90314-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

MURANTE, G., A. PROVENZALE, S. BORGANI, A. CAMPOS, and G. YEPES. "Scaling analysis of dark matter models." Astroparticle Physics 5, no. 1 (June 1996): 53–68. http://dx.doi.org/10.1016/0927-6505(96)00005-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lee, T. H. "Making models matter — Lessons from experience." European Journal of Operational Research 38, no. 3 (February 1989): 290–300. http://dx.doi.org/10.1016/0377-2217(89)90006-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

ABDUSSATTAR. "COSMOLOGICAL MODELS GENERALIZING ROBERTSON–WALKER MODELS." International Journal of Modern Physics D 12, no. 09 (October 2003): 1603–13. http://dx.doi.org/10.1142/s021827180300433x.

Full text
Abstract:
Considering the physical 3-space t= constant of the space–time metrics as spheroidal and pseudo-spheroidal, cosmological models which are generalizations of Robertson–Walker models are obtained. Specific forms of these general models as solutions of Einstein's field equations are also discussed in the radiation and the matter dominated era of the universe.
APA, Harvard, Vancouver, ISO, and other styles
44

BENVENUTO, O. G., J. E. HORVATH, and H. VUCETICH. "STRANGE-PULSAR MODELS." International Journal of Modern Physics A 06, no. 27 (November 20, 1991): 4769–830. http://dx.doi.org/10.1142/s0217751x91002276.

Full text
Abstract:
v1.6 We review the theory and observational status of strange-pulsar models. After introduction of the subject, a summary of observational facts about pulsars is presented. The theory of quark matter and strange matter relevant to astrophysical applications is briefly discussed, and applied afterwards to type-II supernova theory and to pulsar models. A discussion of the comparison with observation shows the viability of strange-pulsar models.
APA, Harvard, Vancouver, ISO, and other styles
45

Morales‐Barbero, Jennifer, and Julia Vega‐Álvarez. "Input matters matter: Bioclimatic consistency to map more reliable species distribution models." Methods in Ecology and Evolution 10, no. 2 (December 9, 2018): 212–24. http://dx.doi.org/10.1111/2041-210x.13124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

KOMATHIRAJ, K., and S. D. MAHARAJ. "ANALYTICAL MODELS FOR QUARK STARS." International Journal of Modern Physics D 16, no. 11 (November 2007): 1803–11. http://dx.doi.org/10.1142/s0218271807011103.

Full text
Abstract:
We find two new classes of exact solutions to the Einstein–Maxwell system of equations. The matter content satisfies a linear equation of state consistent with quark matter; a particular form of one of the gravitational potentials is specified to generate solutions. The exact solutions can be written in terms of elementary functions, and these can be related to quark matter in the presence of an electromagnetic field. The first class of solutions generalizes the Mak–Harko model. The second class of solutions does not admit any singularities in the matter and gravitational potentials at the center.
APA, Harvard, Vancouver, ISO, and other styles
47

Lee, Jae-Weon. "Brief History of Ultra-light Scalar Dark Matter Models." EPJ Web of Conferences 168 (2018): 06005. http://dx.doi.org/10.1051/epjconf/201816806005.

Full text
Abstract:
This is a review on the brief history of the scalar field dark matter model also known as fuzzy dark matter, BEC dark matter, wave dark matter, or ultra-light axion. In this model ultra-light scalar dark matter particles with mass m = O(10-22)eV condense in a single Bose-Einstein condensate state and behave collectively like a classical wave. Galactic dark matter halos can be described as a self-gravitating coherent scalar field configuration called boson stars. At the scale larger than galaxies the dark matter acts like cold dark matter, while below the scale quantum pressure from the uncertainty principle suppresses the smaller structure formation so that it can resolve the small scale crisis of the conventional cold dark matter model.
APA, Harvard, Vancouver, ISO, and other styles
48

Atiyah, Michael, and Matilde Marcolli. "Anyon Networks from Geometric Models of Matter." Quarterly Journal of Mathematics 72, no. 1-2 (February 8, 2021): 717–33. http://dx.doi.org/10.1093/qmath/haab004.

Full text
Abstract:
Abstract This paper, completed in its present form by the second author after the first author passed away in 2019, describes an intended continuation of the previous joint work on anyons in geometric models of matter. This part outlines a construction of anyon tensor networks based on four-dimensional orbifold geometries and braid representations associated with surface-braids defined by multisections of the orbifold normal bundle of the surface of orbifold points.
APA, Harvard, Vancouver, ISO, and other styles
49

Nagata, Natsumi, Keith A. Olive, and Jiaming Zheng. "Asymmetric dark matter models in SO(10)." Journal of Cosmology and Astroparticle Physics 2017, no. 02 (February 9, 2017): 016. http://dx.doi.org/10.1088/1475-7516/2017/02/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cerdeño, D. G., A. Cheek, E. Reid, and H. Schulz. "Surrogate models for direct dark matter detection." Journal of Cosmology and Astroparticle Physics 2018, no. 08 (August 9, 2018): 011. http://dx.doi.org/10.1088/1475-7516/2018/08/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography