Academic literature on the topic 'Mathématiques – Étude et enseignement – Histoire'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathématiques – Étude et enseignement – Histoire.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathématiques – Étude et enseignement – Histoire"
Jaegers, Doriane, and Dominique Lafontaine. "Perceptions par les élèves du climat de soutien en mathématiques : validation d’échelles et étude des différences selon le genre en 5e secondaire." Mesure et évaluation en éducation 41, no. 2 (April 24, 2019): 97–130. http://dx.doi.org/10.7202/1059174ar.
Full textHoule, Virginie, and Stéphanie Bachand. "Enseignement des mathématiques dans une classe d’élèves ayant une déficience intellectuelle légère : étude de deux situations adidactiques." Didactique 4, no. 1 (February 7, 2023): 1–25. http://dx.doi.org/10.37571/2023.0101.
Full textFournier, Marcel. "Fernand Dumont et la modernité." Recherche 42, no. 2 (April 12, 2005): 267–82. http://dx.doi.org/10.7202/057447ar.
Full textGiroux, Jacinthe. "Étude des rapports enseignement/apprentissage des mathématiques dans le contexte de l’adaptation scolaire : Problématique et repères didactiques." Éducation et didactique 7, no. 1 (February 7, 2013): 59–86. http://dx.doi.org/10.4000/educationdidactique.1573.
Full textRios, Luiz Maurício, and Valdirene Maria de Araújo Gomes. "Une étude comparative de la langue des signes Québécoise (LSQ) et la langue brésilienne des signes (Libras): quelques aspects linguistiques, socio-politique-culturels et historiques." Revista Sinalizar 2, no. 2 (December 20, 2017): 235. http://dx.doi.org/10.5216/rs.v2i2.50656.
Full textBamba, Aboubacar, and Saddo Ag Almouloud. "Démonstration par l’absurde: une épine dans l´enseignement et l´apprentissage des mathématiques - une étude de cas au Mali." Revista Eletrônica de Educação Matemática 16 (March 9, 2021): 1–35. http://dx.doi.org/10.5007/1981-1322.2021.e78939.
Full textOtero, Maria Rita, Viviana Carolina Llanos, and Veronica Parra. "Training in-service teachers: study of questions and the organization of teachingFormation des enseignants en service: étude des questions et organisation de l'enseignement." Educação Matemática Pesquisa : Revista do Programa de Estudos Pós-Graduados em Educação Matemática 22, no. 4 (September 15, 2020): 742–55. http://dx.doi.org/10.23925/1983-3156.2020v22i4p742-755.
Full textOtero, Maria Rita, Viviana Carolina Llanos, and Veronica Parra. "Training in-service teachers: study of questions and the organization of teachingFormation des enseignants en service: étude des questions et organisation de l'enseignement." Educação Matemática Pesquisa : Revista do Programa de Estudos Pós-Graduados em Educação Matemática 22, no. 4 (September 15, 2020): 742–55. http://dx.doi.org/10.23925/1983-3156.2020v22i4p742-755.
Full textGrévin, Benoît. "Langues d'Islam et sociétés médiévales." Annales. Histoire, Sciences Sociales 70, no. 03 (September 2015): 563–75. http://dx.doi.org/10.1353/ahs.2015.0140.
Full textFreitas, Rita Lobo, and Saddo Ag Almouloud. "La construction de savoirs pour un enseignement de la géométrie analytique plane : conception d’un PER – Formation ProfessionnelleBuilding knowledge for teaching plane analytical geometry: designing a PER - Professional Training." Educação Matemática Pesquisa : Revista do Programa de Estudos Pós-Graduados em Educação Matemática 22, no. 4 (September 15, 2020): 827–35. http://dx.doi.org/10.23925/1983-3156.2020v22i4p827-835.
Full textDissertations / Theses on the topic "Mathématiques – Étude et enseignement – Histoire"
Hermet, Isabelle. "Engagement dans la recherche et rapport du sujet au savoir à l'université : genèse du choix d'études des doctorants en histoire et en mathématiques." Toulouse 2, 2000. http://www.theses.fr/2000TOU20086.
Full textMoussard, Guillaume. "Les notions de problèmes et de méthodes dans les ouvrages d’enseignement de la géométrie en France (1794-1891)." Nantes, 2015. http://www.theses.fr/2015NANT2084.
Full textThis thesis systematically surveys textbooks of elementary geometry and analytic geometry published in France between 1794 and 1891 in order to identify the place of problems and methods, the challenges in introducing them, as well as the authors' arguments on the subject. The choices made are related to the institutional and mathematical contexts. This work led to identify steps towards normalization along the century of the organization of the problems in geometry textbooks, which involves the classification of different types of problems. We show how the presence of problems is related to the preparation of examinations and competitions, to educational intentions of the authors, to the idea of implementing the theory and to the idea of what is geometric activity. We also show that the methods are the focus of the attention not only of geometers, but also, to a large extent, of the teachers. We analyze how the geometrical and analytical methods are renewed in the 19th century at the same time they circulate between the books. Different underlying conceptions to the exposure of these methods are identified and throw light on the connection the authors have with the notion of generality in geometry. Finally, we analyze the nature of the relations between problems and methods in our textbooks, and the changes in their interactions over the century
Félix, Marie-Christine. "Une analyse comparative des gestes de l'étude personnelle : Le cas des mathématiques et de l'histoire." Aix-Marseille 1, 2002. http://www.theses.fr/2002AIX10051.
Full textGuiet, Jeanne-Gabrielle. "La division : une longue souffrance." Paris 5, 1994. http://www.theses.fr/1994PA05H064.
Full textDoing a division calculation is a target which comes up against obstacles linked with the meaning of the operational technique itself. This research aims to determine the origins and the nature of the most frequent mistakes in order to analyze the procedures used by pupils when they have to divide we will examine how the pupils interpret the learning of this operation. How the meanings are related themselves, and how they evolve. Our objective is to determine how the choice of different divisions makes it possible to check the mental processes of the pupils and to understand the meaning that they give to these calculations. The exploration of the areas to which the mathematical concepts belong will be done according to the classification and reflection on the meaning that the children give to their knowledge of the algorithm. Our study of the history of division allows us to distinguish a whole series of epistemological obstacles which come in the way of the establishment of this notion: division is a difficult algorithm. Which builds up strong "schemes" in children's minds, and continues to reveal itself through mistakes certain of which are recurrent. The epistemological obstacles which are of interest for teaching are those which now seem unavoidable either because the obstacle is inevitably constructed by the pupils during his cognitive development, or because it must be taught, to serve as a support for future knowledge. History shows how slow and difficult this construction has been and the resistance it has come up against. We also attempt to clarify how the concept comes from; and we’ve come up with a more or less plausible answer, without knowing how to go about finding a true answer. To simplify this situation we can say that this shows simultaneous coexistence of several perspectives
Lemes, Ana Jimena. "L'histoire des mathématiques dans la formation des enseignants : éléments pour la construction d'une compétence historique." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I096.
Full textPresent in many countries around the world, the place of the history of mathematics (hm) in teacher education continues to challenge a large community of researchers and teachers. In the 2000s, this community reinterpreted the integration of a historical perspective into mathematics education and highlighted three major current problems: 1) the real impact of teacher training specific to this field, 2) access to relevant documentation and materials developed by and for teachers, and 3) the lack of theoretical frameworks for research that would analyze their effectiveness. In our work we address the first problem by focusing on the role of the hm in initial teacher training. In particular, we are interested in the influence of an hm course on the conceptions of future mathematics teachers. In the first chapter, we present the state of the art in which we have examined six different approaches to the role of the hm in education: IREM in France, Socio-epistemology in Mexico, the History and Epistemology Group in Mathematics Education in Brazil, the proposed didactics of the hm in Colombia, the considerations of Jankvist in Denmark and finally Guillemette in Canada. Thus, we identify the most representative bibliography in French, English, Spanish and Portuguese. In the second chapter, we mobilize the theoretical framework defined by Ball, Thames and Phelps (2008), namely "mathematical knowledge for teaching". This framework allows us to specify the professional knowledge necessary for the pedagogical act. We then use the ideas of Thompson (1984) and Ernest (1989) to remind us that a teacher builds his or her knowledge, conceptions of mathematics and teaching on the basis of theoretical content, but also on his or her school experience. These conceptions are part of a system that acts as a filter through which the teacher makes his or her pedagogical choices; this influences the knowledge taught. As a result, students not only learn this knowledge, but they are also exposed to the teacher's conceptions.In the third chapter, we detail the research methodology. We decided to focus on three communities: a group of student interns who take an hm course at university, a group of mathematics teachers who include a historical perspective in their courses and finally a group of teacher-researchers recognized as experts in the history or epistemology of mathematics. These three communities have been identified more particularly in France and Uruguay. The fourth chapter is devoted to analyses. For the student community, these were questionnaires, interviews and files presented for the final evaluation of the hm course. For teachers and experts, only interviews were conducted. To complement this, we also considered the official programs in each country. The analysis is mainly based on a qualitative content methodology to read interviews and documents. We supplemented this approach with quantitative processing of the questionnaires using statistical tools such as principal component analysis. In the last chapter we prepare a synthesis of the results in France and Uruguay. The objective is then to have a new reading of the data and to establish a new interpretation to determine the specific characteristics of integrating the hm into teacher training in each country. These characteristics, which we can describe as complementary, make visible the construction of a historical competence linked to the integration of the hm in mathematics teaching
Petitfour, Edith. "Enseignement de la géométrie à des élèves en difficulté d'apprentissage : étude du processus d'accès à la géométrie d'élèves dyspraxiques visuo-spatiaux lors de la transition CM2-6ème." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC022.
Full textThe aim of our study is to provide a method for teaching elementary plane geometry to dyspraxic fifth and sixth-grade pupils other than making them produce geometric constructions using instruments, because their lack of organisational and fine motor skills prevent them from learning in this way. Based on the instrumental approach of cognitive ergonomics, motor developnnent from neurophysiology and our own observations of dyspraxic pupils, we developed a theoretical framework for analysing the process of learning geometry via construction with geometric instruments. This enables us to separate geometric knowledge from practical skills during the construction process. We then added tools for analysing language and movement activated during geometric constructions created in a pairs setting as well as tools for analysing aids likely to be given to a dyspraxic pupil. Using this framework, we analysed how the dyspraxic pupil is catered for in class, to provide a basis for experimenting with two pupils, one of whom is dyspraxic, outside the classroom. The excellent results obtained pave the way for developing strategies for including dyspraxic pupils in class by creating appropriate conditions to enable them to learn geometry. Moreover, the study leads us to challenge the accepted consensus that construction with geometric instruments described by a geometric language disconnected from the instruments is the best approach for learning geometry in the 5th grade. The study also identifies hidden aspects of learning in geometry
Gosztonyi, Katalin. "Traditions et réformes de l’enseignement des mathématiques à l’époque des ‘mathématiques modernes’ : le cas de la Hongrie et de la France." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC314.
Full textIn my thesis, I compare the reform of mathematics education introduced by Tamás Varga in Hungary during the 1960s and ‘70s to the French reform of the period, the “mathématiques modernes”. After studying the historical context, and the epistemological background of the reforms, I analyse them using different didactical frameworks: the structure and the content of the curricula with the help of the ecological approach and on the notion of paradigms of geometry and of probability; for the analysis of the expected teaching practices, the theory of didactical situations. The comparative study shows that even if some common elements, coming probably from the common international context can be found, some essential differences can also be observed between the two reforms. These differences can partly be explained by differences in the epistemological background: the “bourbakian” approach on one hand, the “heuristic” on the other serve as mathematical paradigms, influencing different characteristics of the two reforms. A comparison of Varga’s and Brousseau’s experimental project from the 1970s using the terms of the TDS contribute to a better description of Varga’s conception but lead in the same time to questioning the transmissibility of didactical theories from one context to the other
Chambris, Christine. "Relations entre les grandeurs et les nombres dans les mathématiques de l'école primaire : Evolution de l'enseignement au cours du 20e siècle : connaissances des élèves actuels." Paris 7, 2008. http://www.theses.fr/2008PA070034.
Full textDuring the last 150 years, relationships between quantifies and numbers have deeply changed in academic mathematics, taught mathematics, and in everyday life. We want to understand these relationships at french primary school in mathematics education nowadays and foresee other possibilities for the future. Our framework is the anthropological theory of the didactic (Chevallard). We have particularly developed the study of the teaching of metrical System, System of place value for whole numbers and links between both; and started the study of relationships between calculation (meaning, rules of calculation, types of numbers) and quantifies (notably length and diagrams with dimensions). Our study is developing into three directions which echo one to another: -links between quantifies, numbers, calculation and everyday life pratice before the reform of modem mathematics; breaks the reform caused in these links. Our analysis is based on a corpus of texts made up of national curriculum and textbooks mainly from 2nd and 3rd grades, over the 20th century; - academic mathematical knowledge. On the one hand, we want to identify transposed knowledge at several periods, on the other hand, we want to identify conditions for mathematical theories (possibly to be written) which could be used as reference for the teaching of quantifies, numbers and calculation. For that, we take into account mathematical and didactical needs: notably tasks, rationales of rules for students, consistency of knowledge, continuity of learning; -knowledge of present students (277 on 5th grade). We want to better define some potential breaks and gaps highlighted with studies of links and academic knowledge
Sagna, Oumar. "L'histoire des mathématiques au service d'une nouvelle didactique de la discipline dans les cursus scolaires au Sénégal : approches théoriques et applications." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR2035.
Full textOur experience as a mathematics teacher has led us to explore a way that is still underused in Senegal, introducing a historical perspective into mathematics education, to check if it could interest students and motivate them to scientific studies.This thesis, which consists of seven chapters; the first five of which deal with the state of the art and the theoretical approaches. The last two describe and analyze the experimentation carried out in class of “Quatrième” at a College in the suburbs of Dakar.Chapter I is devoted on the one hand to the nature and specificity of mathematics to better understand the difficulties related to its teaching, and on the other hand to a review of the literature on the introduction of a historical perspective into teaching of mathematics, which clarified the use of history in the mathematics classroom. In this chapter are also defined the didactic framework of the thesis and the methodology used to carry out an experimentation in class of “Quatrième”.The context of our research was then detailed in Chapter II through a thorough description of the Senegalese educational system characterized by good results in the construction of classrooms and new scientific and technical blocks (BST), the parity index favorable to girls in primary school and high schools, but also by insufficiencies with the plethoric numbers of students, the weakness of the pedagogic supervision, the desertion of the scientific disciplines, the poor results in examinations certifications and external evaluations in mathematics.The presence of the History of Mathematics in curricula, textbooks and teacher training schemes is examined in Chapter III and compared to France, which has enormous potential in the field.These historical informations served as the subject for the didactic analysis proposed in Chapter IV, which also contains another input to the analysis: the illustrated description of the different types of use of the History of Mathematics. The didactic analysis inspired us in the development of a repertoire integrating the History of Mathematics, proposed to evolve the Senegalese programs.Chapter V, quizzes mathematics students and teachers, prior to the experiment, to collect and analyze their opinions and practices regarding the introduction of a historical perspective. The President of the National Commission of Mathematics (CNM) of Senegal is also put to contribution, through an interview, to give his opinion on the question and to bring us clarifications on some options of the program.The experimentation that we have done is discussed in Chapter VI and concerns six sessions in class of "Quatrième" which relate to the intersection of a circle and a line, the condition of existence of a triangle, the history of numbers, the equation modelling, the resolution of equations of the type ax + b = 0, and the theorem of Pythagoras. We have conceived their didactic engineering. They were then tested by a teacher in our presence. The sequences in the classroom were filmed and transcribed.The last chapter focuses on the analysis of experimentation, which was based on Chevallard’s Anthropological Theory of Didactics (TAD) through praxeology and didactical moments to study students’tasks and filmed sequences. Barbin’s three hypothetical arguments, namely replacement, disorientation, and cultural understanding, were also used in this chapter, along with the analysis of questionnaire responses and interviews submitted to students one year after the experiment, to measure positive effects of experimentation on students.The general conclusion provides information on the results of the experiment which are on the whole very promising in the framework of the improvement of the teaching lessons of the mathematics in Senegal despite the difficulties noted in the management of the time and related to the large number of students in the class where the experiment took place
Decayeux-Cuvillier, Maryse. "Histoire de l'enseignement mathématique pour les filles dans les écoles primaires publiques et privées de la Somme de 1881 à 1923." Thesis, Amiens, 2017. http://www.theses.fr/2017AMIE0012/document.
Full textMy thesis is set in the history of one particular subject : arithmetic, taught to girls in primary schools of the Somme under the Third Republic. This way, the thesis is in line with the works led by B. Belhoste, B. Dancel, A. Chervel, R. d'Enfert, B. Poucet, and other school subjects historians. Furthermore, it is also in line with girls education, initiated by F. Mayeur and continued by R. Rogers. That kind of research requires the collection and analysis of sources dealing with the different roles evolving in a classroom : not only the teacher and the pupils but also the Public Instruction Ministry and its hierarchical representatives. At the regional archives of the Somme you can find numerous hand-written and printed sources, hence my decision to focus on this particular area. My previous works enabled me to come to a certain number of conclusions about the aim of arithmetic as well as girls' education. My thesis looks at the rest of this work and focuses on the schooling of girls in public and private schools, specifically on their performances during this time, the content and goals of the education offered to them, as well as on the education or training of both religious and secular female teachers. Speaking of the teachers' practices and the pupils' results, I intend to determine the potential gap between official instruction and their actual application. This study reveals that the teaching of mathematics in primary school reached a much more educational dimension by the end of the Twenties and that the girls' and boys' performance became equal, finally emphasizing a certain success of the Republican school project in both subjects
Books on the topic "Mathématiques – Étude et enseignement – Histoire"
], Cyrielle [pseud, ed. Toute mon année de CE2. Paris: Magnard, 2008.
Find full textA matemática em Portugal: Uma questão de educacão. Lisboa: Fundacão Francisco Manuel dos Santos, 2012.
Find full textF, Coray D., Université de Genève, and International Commission on Mathematical Instruction., eds. One hundred years of L'Enseignement Mathematique: Moments of mathematics education in the twentieth century ; proceedings of the EM-ICMI Symposium, Geneva, 20-22 October 2000. Geneve: L'Enseignement Mathematique, 2003.
Find full textHélène, Gispert-Chambaz, Hélayel Josiane, and Institut national de recherche pédagogique (France). Service d'histoire de l'éducation, eds. L'enseignement mathématique à l'école primaire, de la Révolution à nos jours: Textes officiels. Paris: Institut national de recherche pédagogique, 2003.
Find full textWalmsley, Angela Lynn Evans. A history of mathematics education during the twentieth century. Lanham, MD: University Press of America, 2006.
Find full textWilson, Suzanne M. California Dreaming. New Haven: Yale University Press, 2008.
Find full textOntario. Le curriculum de l'Ontario 9e et 10e année: Mathématiques. Toronto, Ont: Imprimeur de la Reine, 2005.
Find full textPapert, Seymour. Mindstorms: Children, computers, and powerful ideas. 2nd ed. New York: Basic Books, 1993.
Find full textPapert, Seymour. Mindstorms: Children, computers and powerful ideas. 2nd ed. New York: Harvester Wheatsheaf, 1993.
Find full textOntario. Le curriculum de l'Ontario 11e et 12e année: Mathématiques. Toronto, Ont: Imprimeur de la Reine, 2007.
Find full textBook chapters on the topic "Mathématiques – Étude et enseignement – Histoire"
Vlassis, Joëlle. "Chapitre 10. Étude de l'utilisation du signe négatif dans les opérations algébriques élémentaires." In Enseignement et apprentissage des mathématiques, 247. De Boeck Supérieur, 2008. http://dx.doi.org/10.3917/dbu.craha.2008.01.0247.
Full textSpiesser, Maryvonne. "L’impact des mathématiques pratiques du xve siècle sur l’évolution de la discipline et son enseignement élémentaire." In Didactique, épistémologie et histoire des sciences, 303. Presses Universitaires de France, 2008. http://dx.doi.org/10.3917/puf.vienn.2008.01.0303.
Full textPURI, Asha. "Traduction littéraire en audiovisuel." In Médier entre langues, cultures et identités : enjeux, outils, stratégies, 99–108. Editions des archives contemporaines, 2022. http://dx.doi.org/10.17184/eac.5506.
Full text