Academic literature on the topic 'Mathematics laboratory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematics laboratory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Mathematics laboratory"

1

Lalli, Laura Tedeschini. "Mathematical Machines: A Laboratory for Mathematics." Nexus Network Journal 11, no. 2 (July 2009): 317–24. http://dx.doi.org/10.1007/s00004-009-0095-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Sang-Gu, Jae Hwa Lee, Jun H. Park, and Eung-Ki Kim. "Interactive Engineering Mathematics Laboratory." Communications of Mathematical Education 30, no. 3 (September 30, 2016): 281–94. http://dx.doi.org/10.7468/jksmee.2016.30.3.281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bussi, Maria G. Bartolini. "Mathematical Laboratory: Semiotic mediation and cultural artefacts in the mathematics classroom." Teaching Mathematics and Computer Science 18, no. 4 (October 29, 2020): 183–95. http://dx.doi.org/10.5485/tmcs.2020.0476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Summit, Raymond. "A computer laboratory program in engineering mathematics to enhance mathematical conceptualisation." ANZIAM Journal 51 (June 2, 2010): 280. http://dx.doi.org/10.21914/anziamj.v51i0.2616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

QUESADA, JOSÉFCO CARBALLIDO. "The Mathematics Laboratory in Engineering Studies." European Journal of Engineering Education 11, no. 2 (January 1986): 187–90. http://dx.doi.org/10.1080/03043798608939295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Istiandaru, A., V. Istihapsari, R. C. I. Prahmana, F. Setyawan, and A. Hendroanto. "Characteristics of manipulative in mathematics laboratory." Journal of Physics: Conference Series 943 (December 2017): 012023. http://dx.doi.org/10.1088/1742-6596/943/1/012023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pedrotti, Leon S., and John D. Chamberlain. "CORD Applied Mathematics: Hands-On Learning in Context." Mathematics Teacher 88, no. 8 (November 1995): 690a—707. http://dx.doi.org/10.5951/mt.88.8.690a.

Full text
Abstract:
My and José are hurrying to their morning mathematic class. They are excited! Today they are scheduled to do a mathematics-laboratory assignment. Twice a week, their classroom turns into a laboratory where they use real measuting equipment—such as a vernier caliper, a carpenter's square, or a stopwatch. They collect and analyze data. They ee just how the mathematics they learn in the classroom helps them solve real-world problems. They really like these assignments.
APA, Harvard, Vancouver, ISO, and other styles
8

Powers, Vicki. "Mathematics for the Clinical Laboratory (2nd edn)." Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 49, no. 5 (June 11, 2012): 512–13. http://dx.doi.org/10.1258/acb.2012.201208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cuomo, Salvatore, Ardelio Galletti, and Gabriele Guerriero. "An interdisciplinary laboratory in mathematics and music." Applied Mathematical Sciences 8 (2014): 6709–16. http://dx.doi.org/10.12988/ams.2014.49685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Basson, Alex, Steven G. Krantz, and Blake Thornton. "A NEW KIND OF INSTRUCTIONAL MATHEMATICS LABORATORY." PRIMUS 16, no. 4 (December 2006): 332–48. http://dx.doi.org/10.1080/10511970608984156.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Mathematics laboratory"

1

Lewis, Matthew. "Laboratory Experiences in Mathematical Biology for Post-Secondary Mathematics Students." DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/5219.

Full text
Abstract:
In addition to the memorization, algorithmic skills and vocabulary which is the default focus in many mathematics classrooms, professional mathematicians are expected to creatively apply known techniques, construct new mathematical approaches and communicate with and about mathematics. We propose that students can learn these professional, higher level skills through Laboratory Experiences in Mathematical Biology (LEMBs) which put students in the role of mathematics researcher creating mathematics to describe and understand biological data. LEMBs are constructed so they require no specialized equipment and can easily be run in the context of a college math class. Students collect data and develop mathematical models to explain the data. In this work examine how LEMBs are designed with the student as the primary focus. We explain how well-designed LEMBs lead students to interact with mathematics at higher levels of cognition while building mathematical skills sought after in both academia and industry. Additionally, we describe the online repository created to assist in the teaching and further development of LEMBs. Since student-centered teaching is foreign to many post-secondary instructors, we provide research-based, pedagogical strategies to ensure student success while maintaining high levels of cognition.
APA, Harvard, Vancouver, ISO, and other styles
2

Adenegan, Kehinde Emmanuel. "Setting mathematics laboratory in schools." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-82299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Camilla, Lindmark. "Teachers Experiences of Laboratory Mathematics - is there a Need for a Mathematics Workshop in Compulsory school level 7-9?" Thesis, Malmö högskola, Fakulteten för lärande och samhälle (LS), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-32294.

Full text
Abstract:
Lindmark, Camilla (2016). Lärares erfarenheter av laborativ matematik – finns det behov av en matematikverkstad på högstadiet? Speciallärarprogrammet. Skolutveckling och ledarskap. Lärande och samhälle. Malmö högskola, 90 hp.Förväntat kunskapsbidragForskning, se t.ex. Rystedt och Trygg (2010), Malmer (2002), Bishop (1991), belyser alla vikten av att använda sig av laborativt material i matematik för att på så sätt befästa begrepp. Syftet är att skapa ”broar” mellan det konkreta och det abstrakta inom matematiken och därigenom öka förståelsen. I detta arbete undersöks behovet, utifrån lärarnas syn, av laborativt material på högstadiet. Syfte och frågeställningarEtt intresseområde som alltid har följt mig är praktisk matematik. Utifrån detta intresse har jag formulerat mina frågeställningar och mitt syfte. Med denna studie vill jag ta reda på mer om laborativ matematik i matematikundervisning. Syftet med min studie är att undersöka lärarnas erfarenheter av laborativ matematik - finns det behov av en matematikverkstad på högstadiet? Frågeställningar:•Vilka vinster ser lärare som använder sig av laborativt material med detta arbetssätt?•Hur arbetar lärarna i studien med planering och genomförande av matematikundervisningen?TeoriI min studie utgår jag ifrån systemteori och hur denna teori är uppbyggd. Tanken med systemteori är att alla delar i systemet, på alla nivåer, påverkar varandra och är beroende av varandra. I denna studie påverkar individ, grupp och organisation varandra och samspelar i skolans verksamhet. För att få till en förändring i ett sådant system krävs att alla delar i systemet är involverade. Individen måste betraktas utifrån helheten, i det sammanhang som individen ingår. MetodEmpirin som samlats in kommer från olika skolor. Fokus har jag lagt på att välja skolor som arbetar aktivt med laborativ matematik och skolor som väljer att inte arbeta praktiskt. Samtliga lärare som ingått i studien är behöriga och legitimerade matematiklärare med minst fem års arbetslivserfarenhet. Jag valde att skicka ut 12 frågeformulär med öppna frågor, en del formulär kompletterades med följdfrågor för att få en tydligare och djupare bild av undervisningen. ResultatI min studie har jag inte kunnat dra någon slutsats kring viljan att arbeta med laborativt material eller oviljan att vilja arbeta laborativt. Lärarna har helt olika syn på att undervisa i matematik, några lärare använder sig regelbundet av laborativt material medan andra aldrig använder det samma. Alla lärarna är eniga om att det är viktigt att arbeta laborativt men vad begreppet innebär rent teoretiskt och praktiskt rådet det ingen enighet kring. Jag tycker mig kunna se ett samband mellan rektors prioriterande av fortbildning och satsning på matematikämnet, och mot en positivare inställning till att arbeta laborativt parallellt med den traditionella undervisningen. ImplikationerForskare och författare menar att matematikundervisningen måste förändras i Sverige. Skolverket har satsat på fortbildning för matematiklärare och lägger betoningen på kollegialt lärande. Många lärare behöver ett nytt synsätt kring matematikundervisningen. För att få till en förändring krävs det en samverkan genom hela systemet från individ, grupp till organisation. Det är viktigt att matematiklärarna tillsammans sätter sig ner och tolkar kunskapskraven från Lgr 11 (Skolverket, 2011), utifrån nya perspektiv så att det skapas en samsyn där lärarna kommer fram till en gemensam utgångspunkt att jobba vidare med. Undervisningens mål är att förklara och befästa begrepp och skapa broar mellan konkret matematik och abstrakt matematik. I detta arbete är det en fördel att använda konkret material. Meningen är inte att lärarna ska tvingas använda laborativt material inom alla områden utan materialet ska användas där det känns naturligt i t.ex. sannolikhetslära, ekvationer, geometri och bråk. Min utmaning blir att skapa en samsyn kring laborativ matematik och belysa fördelarna med detta material. Konkret material är inte alltid självklart på högstadieskolor, här sker undervisning oftast traditionellt med tyst räkning i matematikboken. Jag vill bidra till att fler matematiklärare påbörjar ett förändringsarbete som, upplever jag, är nödvändigt för en del skolor.
APA, Harvard, Vancouver, ISO, and other styles
4

Staaf, Elin, and Emilie Nilsson. "Laborativ matematik : - Fem pedagogers syn på laborativ matematik." Thesis, Högskolan i Halmstad, Sektionen för lärarutbildning (LUT), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-17197.

Full text
Abstract:
The students are usually eager to develop their mathematical learning. However, the Skolverket can see that this eagerness passes in the early years of school. A study shows that a varied mathematical education creates enthusiasm to learn, which can decrease the negative view of mathematics. The purpose of this study is to see how five pedagogues use laboratory mathematics, their approaches to laboratory mathematics as well as to find out their role in the laboratory education. The result of the study is based on interviews with the pedagogues, who are all teachers for students in year F-3. All of the pedagogues work in a laboratory way, but to different extents. The study shows that the pedagogues aim to make the mathematics as concrete and everyday as possible. The pedagogues use the laboratory way of working and materials in different ways and have slightly different views of what counts as laboratory material. Further, the study shows that there are more possibilities than obstacles with the laboratory way of working. The five pedagogues all agree that this way of working is beneficial for the pupils, especially for the students who are poor achievers. The possible obstacles raised by the pedagogues were lack of time and to some extend shortage of material. Two important factors within this way of working are communication and briefings.
APA, Harvard, Vancouver, ISO, and other styles
5

Petersson, Malin, and Caroline Bäckström. "How does a Government Lower Primary School in India work with mathematics? - A study on how the teachers’ mathematical beliefs affect the norms operating in the classroom." Thesis, Malmö högskola, Lärarutbildningen (LUT), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-35819.

Full text
Abstract:
Denna studie beskriver hur en kommunal grundskola i sydvästra Indien undervisar matematik.Vår frågeställning var: Hur fungerar en indisk statlig grundskola arbetar med matematik? Vilka är lärarnas uppfattningar om skolans sätt att undervisa? För att ha möjlighet att fördjupa oss i frågorna undersökte vi även Hur lärarnas föreställningar om matematik påverkar normerna i klassrummet utifrån ramen av Yack och Cobbs normteori. Det är en kvalitativ studie där vi utförde observationer av undervisningen och intervjuer med lärare och rektorn på skolan om deras syn på matematikundervisningen, under tre veckor. Vi samlade också information om och dokumenterade deras matematikverkstad.Utifrån våra intervjuer och observationer kunde vi dra slutsatsen att samtliga på skolan arbetade med en aktivitetsbaserad undervisning där matematik lärs med hjälp av manipulativt, laborativt material. De arbetade tillsammans i ett arbetslag med en strävan att uppfylla läroplanens mål och med en gemensam arbetsmetod. Vi fann också att lärarnas värderingar och föreställningar om hur matematik ska läras ut, påverkar de normer som verkar i klassrummet.Denna studie kan inte generaliserbar eftersom detta är en fallstudie på denna skola. Dock förespråkar den indiska läroplanen att undervisningen ska ske utifrån elevnära aktiviteter, men matematikverkstaden på denna skola var speciell och utvecklad på denna skola.
For our study, we visited a Government Lower Primary School in India to inquiry about how a school in another schooling context teaches mathematics. Our research questions were: How does an Indian Government Lower Primary School work with mathematics? What are the teachers' perceptions of the school’s teaching approach? In addition to these questions and to inquire deeper into this subject, we also investigated How do the teachers’ perceptions and method of teaching connect to Yackel and Cobb’s framework of the different kinds of norms operating in the classroom?We did a qualitative study, staying at the school for three weeks to interview teachers about their method of teaching mathematics as well as observing how they were teaching mathematics and the norms that operated in the classroom. We also gathered information about their mathematics laboratory. During our interviews and observations we came to the conclusion that the school worked with activity-based learning by using manipulative materials. All teachers as well as the principal cooperatively strived to meet the curricula objectives, with the same teaching approach. We also found that the teachers’ values and beliefs about how mathematics should be taught, affect the norms operating in the classroom.This study cannot be generalised for all schools in India or even in this area. This study is a minor study which only considered one particular school which used an interesting teaching method, activity-based learning with manipulatives.
APA, Harvard, Vancouver, ISO, and other styles
6

Wicks, Robert Thornton. "Mutual information and quantifying coherent structures in laboratory and solar wind plasma data." Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/3823/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Samo, Melissa. "Hur arbetar lärare med laborativ matematik? : En kvalitativ studie om hur fyra lärare arbetar främstmed avseende på laborativa inslag i undervisningen igrundskolan." Thesis, Södertörns högskola, Lärarutbildningen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-9047.

Full text
Abstract:
The objective of this research is to unveil how respective teacher consider about the laboratory working methods in mathematics. The research even includes answers to questions such as, what approaches and attitudes the teachers have and the methods they use when instructing their students when teaching mathematics, what the materials used by the teachers are and how important working creatively is to help the students develop their logical thinking. I also looked into issues that can help understand how and why teachers use laboratory mathematics for students in young ages. As a conclusion the research showed that the teachers aim to the goal that includes helping the students understand mathematics, strengthen their logical thinking and creativity. In the method section qualitative data was used, which contained four interviews with different pedagogues that daily interact with students in elementary school. The reasons for using the method of qualitative data was to help me deeper understand and answer the specific questions I had to the pedagogues and to even compare how different pedagogues differ in their approaches and methods. The theoretical framework I used throughout the research was based on and connected to the literature and theories provided during my studies and which showed that the majority of the teachers share similar views and thoughts about the laboratory working methods. During the research, the pedagogues concluded that the basis for increasing the students’ development and knowledge, creative methods of working by the teachers are needed. Working creatively provides the students a wider path of freedom of thinking logically and thereby solving problems. Summarizing the research, it is based on theories concerning laboratory mathematics and the attitudes and approaches taken by the teachers in this subject. In the research, the fact that the teachers use a wide spectrum of laboratory material, is studied and proven. My conclusion is that all the teachers concerned find it crucial to use the creative thinking as a basic approach of teaching in order to increase the interest for mathematics among the students.
APA, Harvard, Vancouver, ISO, and other styles
8

Young, Roland Michael Brendon. "Predictability of a laboratory analogue for planetary atmospheres." Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:b4f483a6-437c-4914-b94e-cb04d996b337.

Full text
Abstract:
The thermally-driven rotating annulus is a laboratory experiment used to study the dynamics of planetary atmospheres under controlled and reproducible conditions. The predictability of this experiment is studied by applying the same principles used to predict the atmosphere. A forecasting system for the annulus is built using the analysis correction method for data assimilation and the breeding method for ensemble generation. The results show that a range of flow regimes with varying complexity can be accurately assimilated, predicted, and studied in this experiment. This framework is also intended to demonstrate a proof-of-concept: that the annulus could be used as a testbed for meteorological techniques under laboratory conditions. First, a regime diagram is created using numerical simulations in order to select points in parameter space to forecast, and a new chaotic flow regime is discovered within it. The two components of the framework are then used as standalone algorithms to measure predictability in the perfect model scenario and to demonstrate data assimilation. With a perfect model, regular flow regimes are found to be predictable until the end of the forecasts, and chaotic regimes are predictable over hundreds of seconds. There is a difference in the way predictability is lost between low-order chaotic regimes and high-order chaos. Analysis correction is shown to be accurate in both regular and chaotic regimes, with residual velocity errors about 3-8 times the observational error. Specific assimilation scenarios studied include information propagation from data-rich to data-poor areas, assimilation of vortex shedding observations, and assimilation over regime and rotation rate transitions. The full framework is used to predict regular and chaotic flow, verifying the forecasts against laboratory data. The steady wave forecasts perform well, and are predictable until the end of the available data. The amplitude and structural vacillation forecasts lose quality and skill by a combination of wave drift and wavenumber transition. Amplitude vacillation is predictable up to several hundred seconds ahead, and structural vacillation is predictable for a few hundred seconds.
APA, Harvard, Vancouver, ISO, and other styles
9

Patke, Usha. "Inquiry-based laboratory investigations and student performance on standardized tests in biological science." ScholarWorks, 2011. https://scholarworks.waldenu.edu/dissertations/1089.

Full text
Abstract:
Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.
APA, Harvard, Vancouver, ISO, and other styles
10

Toro, Clarke Jose Antonio. "A participative and individualized laboratory| A strategy for increasing student success in college-level math courses." Thesis, University of Puerto Rico, Rio Piedras (Puerto Rico), 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10116943.

Full text
Abstract:

This research was carried out within a qualitative research paradigm. The objective was to observe, analyze and enrich pedagogical practice through the use of pedagogical learning strategies. The learning strategy was a participative and individualized lab carried out during a research project in a non-Traditional Laboratory (LnT). The primary aim of this research was to observe if the LnT assist the students and in this way maximizes success and knowledge in the Introductory Math course (MATE3001) on the University of Puerto Rico campus.

The investigation questions were discussed in the light of each of the strategies of information collected, personal experience and revision of literature. The methodology used was of a qualitative nature in which the student reflected on the process experienced in the LnT. Seven participants of the math course (MATE3001) who formed part of the LnT in a voluntary manner were interviewed at the beginning and at the completion of the research. The purpose of the interviewed was to discover the participant opinion regarding the pedagogical impact of the LnT. Finally, the research professor made an observation in order to discover of the LnT strategy had the anticipated acceptance by the students.

The LnT contributed to: (1) students improved their study habits; (2) the students had greater participation in the solution of math problems, their practice and discussion; (3) they accepted that the research professor supervise their work as it was carried out and understood that the presence was for their benefit. Also, the findings of this research were contrasted with the Theory of reciprocal determinism, sources of self-efficacy and self-regulation of Bandura with the impact that these have on learning (Bandura, 1986, 1989a, 1989b). It was also found as the implicit theory (Yeager & Dweck, 2012) resurges in the LnT the effects on interest, student’s resilience and situational motivation (Nolen, Horn, & Ward, 2015) which occurs during the living out of the lab experience. LnT stimulates the student, creates security and increases confidence in the solution of math problems.

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Mathematics laboratory"

1

Mathematics for the clinical laboratory. Maryland Heights, Mo: Saunders/Elsevier, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Breuer, Shlomo. Numerical mathematics: A laboratory approach. Cambridge [England]: Cambridge University Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doucette, Lorraine J. Mathematics for the clinical laboratory. Philadelphia: W.B. Saunders Co., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Milton, John, and Toru Ohira. Mathematics as a Laboratory Tool. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9096-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Milton, John, and Toru Ohira. Mathematics as a Laboratory Tool. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69579-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Buckingham, Lela. Fundamental laboratory mathematics: Required calculations for the medical laboratory professional. Philadelphia: F.A. Davis, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1933-, Campbell June Mundy, ed. Laboratory mathematics: Medical and biological applications. 5th ed. St. Louis: Mosby, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Campbell, June Mundy. Laboratory mathematics: Medical and biological applications. 4th ed. St. Louis: Mosby, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Basic laboratory calculations for biotechnology. San Francisco, CA: Pearson Benjamin Cummings, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mathematics for medical and clinical laboratory professionals. Clifton Park, NY: Cengage Delmar Learning, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Mathematics laboratory"

1

Eriksson, Kenneth, Donald Estep, and Claes Johnson. "The Mathematics Laboratory." In Applied Mathematics: Body and Soul, 21–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05796-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lalli, Laura Tedeschini. "Mathematical Machines: A Laboratory for Mathematics." In Nexus Network Journal, 317–24. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-7643-8976-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shonkwiler, Ronald W., and James Herod. "Biology, Mathematics, and a Mathematical Biology Laboratory." In Undergraduate Texts in Mathematics, 1–8. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-70984-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yeargers, Edward K., Ronald W. Shonkwiler, and James V. Herod. "Biology, Mathematics, and a Mathematical Biology Laboratory." In An Introduction to the Mathematics of Biology: with Computer Algebra Models, 1–8. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4757-1095-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Milton, John, and Toru Ohira. "The Mathematics of Change." In Mathematics as a Laboratory Tool, 17–31. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9096-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Milton, John, and Toru Ohira. "The Mathematics of Change." In Mathematics as a Laboratory Tool, 17–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69579-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dowling, Patricia K. "Mathematics for the cytogenetic technologist." In The AGT Cytogenetics Laboratory Manual, 937–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119061199.ch19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gunn, Charles, Armin Ortmann, Ulrich Pinkall, Konrad Polthier, and Uwe Schwarz. "Oorange: A Virtual Laboratory for Experimental Mathematics." In Visualization and Mathematics, 249–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59195-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nielsen, Bjørn Fredrik, Marius Lysaker, Per Grøttum, Kent-André Mardal, Aslak Tveito, Christian Tarrou, Kristina Hermann Haugaa, Andreas Abildgaard, and Jan Gunnar Fjeld. "Can ECG Recordings and Mathematics tell the Condition of Your Heart?" In Simula Research Laboratory, 287–319. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01156-6_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Milton, John, and Toru Ohira. "Science and the Mathematics of Black Boxes." In Mathematics as a Laboratory Tool, 1–15. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9096-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Mathematics laboratory"

1

Gao, Lu, and Lianjie Wang. "Laboratory experiment of the rock anelastic strain recovery compliances." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hnat, B., Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Richter, Th, S. Rudlof, B. Adjibadji, H. Berlohr, Ch Gruninger, C. D. Munz, Ch Rohde, and R. Helmig. "ViPLab - A Virtual Programming Laboratory for Mathematics and Engineering." In 2011 IEEE International Symposium on Multimedia (ISM). IEEE, 2011. http://dx.doi.org/10.1109/ism.2011.95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Samuels, Peter Charles. "Design of a Mobile Mathematics Creativity Laboratory for Contemporary Learners." In 2009 Conference in Games and Virtual Worlds for Serious Applications (VS-GAMES). IEEE, 2009. http://dx.doi.org/10.1109/vs-games.2009.34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Quezada Batalla, Ma de Lourdes, Rubén Darío Santiago Acosta, Antonio Hernández Medina, and Ernesto Manuel Hernández Cooper. "FYM-LAB: EXPERIMENTAL LABORATORY OF PHYSICS AND MATHEMATICS WITH 3D IMPRESSIONS." In 12th annual International Conference of Education, Research and Innovation. IATED, 2019. http://dx.doi.org/10.21125/iceri.2019.1755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adhiguna, D., and G. Handayani. "The laboratory methods of induced polarization measurement of manganese sample." In THE 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4930687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kurnia, Nova, Liliasari, Dede Robiatul Adawiyah, and Florentina Maria Titin Supriyanti. "Determination of carbohydrates content in red dragon fruit for food chemistry laboratory." In THE 4TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND SCIENCE EDUCATION (ICoMSE) 2020: Innovative Research in Science and Mathematics Education in The Disruptive Era. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0043135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pertiwi, Wulan Anna, Lari Andres Sanjaya, Agus Setyo Budi, Dian Pertiwi Rasmi, Halimah Al Hasanah, Kartini, Hilarius Bambang Winarko, Rasimin, and Ahmad Rifqy Ash-Shiddiqy. "Evaluation of physics laboratory management in state senior high school Jambi city." In THE 4TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND SCIENCE EDUCATION (ICoMSE) 2020: Innovative Research in Science and Mathematics Education in The Disruptive Era. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0037880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yonata, Bertha, Siti Tjahjani, and Dian Novita. "Studentsr Creativity and High-Order Thinking Skills in Laboratory Activity of Surface Chemistry." In Mathematics, Informatics, Science, and Education International Conference (MISEIC 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/miseic-18.2018.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Azizah, Zayyana Fatati, Puguh Karyanto, and Yudi Rinanto. "Challenges and opportunities of using virtual laboratory in teaching biodiversity and classification." In THE 2ND INTERNATIONAL CONFERENCE ON SCIENCE, MATHEMATICS, ENVIRONMENT, AND EDUCATION. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5139742.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Mathematics laboratory"

1

Lennon, Elizabeth B. Computer Systems Laboratory Computing and Applied Mathematics Laboratory, technical accomplishments October 1994 through March 1996. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Spiegelman, Clifford. Chemometrics and Intelligent Laboratory Systems, Volume 10, Numbers 1-2, February 1991. Proceedings of the Mathematics in Chemistry Conference Held in College Station, Texas on 8-10 November 1989. Fort Belvoir, VA: Defense Technical Information Center, February 1991. http://dx.doi.org/10.21236/ada235801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Skormin, Victor A. Laboratory Testing, Characterization and Mathematical Modeling of the Moniwrist III by Ross-Hime Designs, Incorporated. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada443326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Silbar, R. R. A computer-based ``laboratory`` course in mathematical methods for science and engineering: The Legendre Polynomials module. Final report. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/314117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography